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To achieve optimum torque per amp, we retain the angle of the stator-current-
vector with respect to the rotor-flux at 90 degrees, rather than controlling the
amplitude of the stator-current-vector. Without or with the load torque, the
proportional integral (P1) controller produced better results in the speed control
loop. A controller is required to maintain a consistent speed and improve
system performance as the load changes. This work develops an auto-tuning PI
speed controller for 3-phase permanent-magnet synchronous motors using
field oriented algorithm. The 3-phase voltage from the grid is converted to DC
through a transformer and a grid-side rectifier. The DC voltage is converted
back into AC through a machine-side inverter, which drives the motor with
time-varying loud. The objective of field oriented control (FOC) in this work is
to control the semiconductor switches in the machine-side power inverter to
achieve the desired torque and flux. The stator-currents are measured and fed
into the flux observer to obtain the direct-quadrature-zero (DQ-axis) current,

the rotor magnetizing current, and the angle of the synchronously rotating
reference frame. The results show that the motor's speed response has an
earlier transient response and a less steady-state inaccuracy after tuning the
controllers during acceleration and torque load adjustments.
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1. INTRODUCTION

High-performance control systems for induction motors (IM), such as field oriented control (FOC),
are widely employed in industry and electric vehicle applications. FOC is mathematical modeling for an
induction motor to resemble a DC motor. As a result, designing and implementing this system is simple.
sliding mode control (SMC) and other robust and stable control methods must be incorporated to ensure their
robustness and stability [1]. Because the use of a 3-phase induction motor is becoming more common,
research on speed regulation in 3-phase induction motors is being more widely studied [2]. This is due to the
increased use of 3-phase induction motors in the industry, particularly in hybrid automobiles [3].

To regulate the torque on any electrical equipment, we must first control the current. Referring to
Figure 1, it is possible to divide this method into four distinct stages; i) measuring the current that already
flowing in the motor, which may be conducted by a shunt resistor and an analog-to-digital converter (ADC)
converter to take a sample of the current reading. ii) Comparing the desired current with the measured current
to produce error signals. iii) Amplifying the error signals to produce an adjustment voltage. It is essential to
increase the voltage when there is a low current, and it is required to lower the voltage when the current is
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high. iv) Directing the corrective voltage to the motor terminals. These four phases make up the process of
current-mode control, which the CPU does thousands, if not tens of thousands, of times every second.
Understanding these four steps help to understand field oriented control (FOC).
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Figure 1. The basic control diagram of a DC motor [4]

For a 3-phase AC machine, there are three currents to control instead of just one. On a space vector
diagram, those three currents combine to form a currentvector with a specific angle and magnitude. We can
generate a currentvector with any angle and magnitude by manipulating those 3-phase currents to the exact
required values. The question is what is the requested angle in this case? The topvalue of torque on a given value of
current is obtained by plotting the torque created using a permanentmagnet 3-phase motor for a current
mycophenolate mofetil (MMF) angle and rotor-flux as the torque reaches either + 90 or - 90 degrees, which is also
referred to as the maximum Torque per amp angle. Therefore, it is necessary to navigate the MMF vector
statorcurrent to be 90 degree related to the rotorflux, which enables the equation of torque (1) to be applied [5]:

3P
Torque = Z;[Adrlqs] 1

Where P and A4, are constant, and I is adjustable, which means that the 3-phase permanentmagnet
motor torque is proportional to the product of the component of the stator-current vectorat 90 degreesrotor-
flux vector. To manage the machine's torque, we keep the angle of the stator-current-vector with respect to
the rotor-flux at 90 degrees to achieve maximum torque per amp, rather than regulating the stator-
currentvector's amplitude. Therefore, a digital processor is employed to do this process by measuring the
rotor-flux angle to calculate the right values for phase A, B, and C currents to generate a stated vector of 90
degrees related to the rotor-flux angle. The voltages are then supplied to the machine's windings in an attempt
to regulate the current to the values | just determined. We perform another interrupt after this interrupt
service routine and maybe 100 microcircuits later. The rotor has been changed to a different angle by this
time, and it is necessary to read that new angle and then compute the present values. This is done in a
sequence to illustrate the field-oriented control procedure. It is required to convertthe 3-phase currentvectors
to two orthogonal vectors that provide a currentvector of the same net [6]. To put it another way, turn the 3-
phase motor into a two-phase motor. Then, instead of having to manage three current values, we simply have
to rule two. The forward Clark transition is a term used to describe this process, which is given by (2).

.3
lg =Ela
g ===l )

To jump upon the rotating reference frame, whose x-axis is the rotor-flux axis, the following are used (3).

g = iqc080, + igsing,
g = —ligSinb, + igcosby (3)

The closed-loop speed regulation and field-oriented control (FOC) modeling of a 3-phase
permanentmagnet synchronous machine (PMSM) powered through the corresponding matrix converter (MC) [7].
To increase the input currentquality, the model analyzes a collection of a few input filters of cable influence
or supply impedances. A comparison oftwo kinds of motor speed controllers, namely a proportional/integral
(PI), was provided for improvingthe drive system's performance in both transient and stable settings. In
comparison to the PI classic controller, the IP controllerswere shown to produce greater performancesfor
motor speed control loops, without or with load torque [8].
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An adaptive integral sliding mode manage (SMC) is used as an AC drive system to control the
speed of a 3-phase induction motor using field-oriented control [9]. The SMC was used to determine the
frequency at which the space vector pulse width modulation (SVPWM) inverter was needed to generate 3-
phase electricity. When compared to the classical PI controller, the simulation results of employing the SMC
revealed that a good dynamic response may be produced under load disturbances.

The FOC of 3-phase induction motorswasregulated utilizing (PI) and (PI) in the study [10]. In this
research, the particle swarm optimization (PSO) technique was employed to design I-P controllers that
perform better. The two proposed controller systems' operation performances were evaluated in terms of
momentary responses, current ripples, and motor torque, to load toque variations. The research [11]
compared the performances of indirect field oriented control (IFOC) for controlling the speed of a 3-phase
induction motor. The Ziegler-Nichols approach was used to tune the PI controller. The IFOC technique was
used in the study [12] to improve indirect field-oriented control (IFOC) to increase the efficiency and
performance of 3-phase induction motor (TIM) drives' variable speed control. To improve the variable speed
control of IFOC in TIM, a technique based on the PSO algorithm was developed. All of the tests confirmed
the controller's speed response resilience under various mechanical stress and speed situations. The research
[13] discussed an adaptive fuzzy logic control (AFLC) technique for TIM to provide robustness and quick
dynamic responses for low and high-speed variations, as well as good torque and efficiency. The AFLC and
Pl based on the levenberg marquart (LM) approach were simulated,examined, and developedfor the indirect
FOC (IFOC) LM drive system. The results showed that the ALFC based on LM gives the IFOC IM drive
system better, more effective, and faster reactions, with reduced overshoot, rise, and settling time. Induction
motors have some drawbacks, one of which is the non-linear characteristics of non-linear parameters,
particularly rotor resistance, which varies depending on operating conditions, causing it to lose speed if the
load changes. Of course, this has an impact on the performance of an induction motor. A controller is
required to maintain a consistent speed and improve system performance as the load changes. The FOC
approach with the PI controller to describe direct-quadrate parameters (D-Q) was used by [3].

A position and speed controls of PMSM using a genetic algorithm controller and hall effect sensors
were performed by [14]. The results obtained from this study reveal that the proposed control system was
effective, reliable, and robust. Many industrial variable speed applications [15] and [16] necessitate speed
and position control. However, the PMSMs' performances are extremely sensitive to changes in parameters
and load. To address these issues, numerous current control strategies for speed control have been presented,
including PI or proportional-integral-derivative (PID) control, fuzzy logic control [17], genetic algorithm
[18], and neural network control approaches [19], [20]. In PMSMs, determining the rotor position and
performing commutation at the exact time is critical. The information on location and speed is received
through the rotor using Hall Effect sensors and encoders. Although position and speed data can be obtained
without the use of sensors, the microprocessor must have a large memory capacity and a fast processing
speed. Sensors with higher resolution, such as optical encoders or resolvers, are usually required for applying
sinusoidal commutation to such a motor [21]. These sensors, however, are expensive and cannot be used for
low-cost operations. The hall effect sensors in PMSM also discussed by [22]. The proposed approach for
sinusoidal commutation applies sine PWM pulses for inverter switching based on rotor position information
provided by Hall sensors. In this method, the modulation index is altered using a PI controller for PMSM
speed control. Using a texas instruments (T1) digital signal processor (DSP) TMS320F2812 [23], the method
was successfully tested on a 400W PMSM motor configuration. The results revealed that using FOC can
improve the output response while also reducing the time it takes to achieve the reference value.

2. METHOD

For 3-phase induction motors, a stator-current in the stator windings creates a magnetic field that
rotates at a single speed causing the rotor to move at a slightly slower speed, which is necessary for torque
production [24]. In field oriented control, the motor torque and the motor flux are controlled independently.
This requires that the three sinusoidal stator-currents are first converted into a DC component on a
synchronized rotaryreference frame using Clark and Park formation [25]. By turning the time domain
components of a 3-phase system into abc frame components in a stationary alpha beta 0 reference frame or a
revolving dgO reference frame attached to the router, mathematical transformations define the most
fundamental notion in field-oriented management of AC machines. It is also possible to utilize the inverse
transform to travel from dq to alpha-beta and then back to abc frame, but knowing the rotor location is
required; otherwise, the values in the rotor reference frame cannot be obtained. Figure 2 shows the 3-phase
current representation and the abc-dq axis frame representation.

The D-axis current of the new frame allows controlling the rotorflux and provides a way to adjust
the motor frequency and power factor. The gate driver is implemented using the six poles gate multiplexer as
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an interface between the controller and the plant. As in any physical system, some sensors are used to
measure the relevant signals such as currents and voltages. The mechanical part and the mechanical load are
represented by a machine inertia block and the torque source, which allows adjusting the load torque in the
system. The design of the controller is done by using field-oriented control based on PI controllers including
the inverse parke transform, and the PWM generation. The Q-axis control is orthogonal on the D-axis and
allows controlling of the motor torque. In this work, the model under consideration can be shown in Figure 3.
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Figure 3. The considered model and the developed control algorithm

In this model, the 3-phase voltage from the grid is converted to DC through a transformer and a grid-
side rectifier. The DC voltage is converted back into AC through a machine-side inverter, which drives an
induction motor with time-varying loud. The objective of FOC in this work is to control the semiconductor
switches in the machine-side power inverter to achieve the desired torque and flux. The control loops contain
four PI controllers. The stator-currents are measured and fed into the flux observer to obtain the direct-
quadrature-zero (DQ-axis) current, the rotor magnetizing current, and the angle of the synchronously rotating
reference frame. The rotating frame angle is used at a later stage to perform inverse Clarke and Park
transformation. The machine-side of the converter control is shown in Figure 4, where the original plant PID-
controller is shown in Figure 4(a), and the PID-controller with adding Auto-tuner block is shown in Figure 4(b).

Figure 5 demonstrates the controller of the grid stage converter. The measured rotor speed,
magnetizing current, and the provided references are used by the flux and the rotor speed controllers in the
outer loop to calculate references for the DQ-axis currents. Based on these, the current controllers in the inner
control loop determine the required stator voltage in DQ-frame. After applying inverse Park and Clarke
transformations, the required stator voltage is used by a PWM generator to generate the control signals for
the semiconductor switches in the machine side inverter.
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de converter control

Closed-loop tuning has the advantage of keeping the plant close to its normal operating point while
maintaining safe operation during the tuning process. The inputs of the closed-loop online PID autotuner
include the plant output, the Pl controlleroutput, and the time window when the tune happens. The outputs
include the tuned PID gains and the estimated frequency response. The flowchart shown in Figure 6 provides

a general overview of the PID auto-tuning method.

Because the tuning is allowed for one controller at a time, we place the PI block after all 4 controllers
to be able to tune them in a single simulation. The PI controller will be tuned sequentially with between t= 3.5
seconds and t= 5.8 seconds starting with the D-axis current loop and followed by the Q-axis current loop, the
rotor-flux loop, and finally the rotor speed loop. We set the appropriate values to the target bandwidth and target
phase margin as a block configuration. We also specify the amplitude of the excitation signal in the experiment
to 0.01. The rotating frame angle is used at a later stage to perform inverse Clarke and Park transformation.
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Figure 6. The flowchart provides a general overview of the PID auto-tuning method

3. RESULTS AND DISCUSSION

For the simulation, the gains in the PI blocks are set at initial values. The measurements of the
magnetizing stator-current, comparison of the torques of the motor with the required load torque, and the
rotor speed before tuning compared with reference are shown in Figure 7. On the grid-side, the waveforms of
each grid voltage, current, DC-link voltage, and the active power delivered by the grid are shown in Figure 8.

L—*/\/\f\’\J\/\/\/\/\/\/\/

Figure 7. (1) The magnetizing stator-current, (2)
comparison of the torques of the motor with the
required load torque, and (3) the rotor speed before
tuning compared with the reference

Figure 8. Grid-side waveforms of grid voltage,
current, DC-link voltage, and the active power
delivered by the grid

Hall sensor-based speed control of a 3-phase permanent-magnet synchronous ... (Abidaoun H. Shallal)



1372 O ISSN: 2502-4752

The results indicate that the initial P gains do not provide the best performance and the response is
under-damped with significant overshoot. To get better reference performance, we tune the PI gains by using
a closed-loop PID Auto-Tune block. This block injects an excitation signal during closed-loop operation to
estimate the plant frequency response and uses this estimate to automatically tune PID gains. After running
the model, we can see that before the tuning begins the response is identical to the original model. The four
controllers were tuned separately in the FOC model since the autotuner of the closed-loop PID only adjustsa
single PI controller at a time. Following the timing in Table 1, we tuned the controllers of the inner-loop first,
then that for the outerloop.

The data store memory block is used to update the controller gains after each PI controller has been
tuned. MATLAB/Simulink is used to create the FOC model. In one simulation, all four controllers are tuned.
Furthermore, speed dynamics are examined after and before the controllers are tuned. Scenarios of these
experiments include the torque load changes (magnitude of 1 p.u.) and acceleration process. The current and
speed responses during tuning are shown in gray in the previous figure, ranging from 3.51 to 5.81 seconds. The
changes in motor speed and current are very low. The speed of the motor approaches a nominal value of (1600)
rpm before the auto-tuning process starts. The gain values of the four PI controllers before and after the tuning
process are listed in Table 2.

The measurements of the magnetizing stator-current, comparison of the torques of the motor with the
required load torque, and the rotor speed before tuning compared with reference are shown in Figure 9. On the
grid-side, the waveforms of each grid voltage, current, DC-link voltage, and the active power delivered by the
grid are shown in Figure 10. The tune gains will be saved and updated once the tuning is finished. These gain
values are used to create fresh values from which the auto-tuning blocks can be deleted. Before and after the
auto-tuning process, the same torque loads and rotor speed references are used. Figure 11 shows the plot of rotor
speed errors against the nominal (1,600) rpm after and before tuning the controllers with the Auto-tuner PID
closed-loop function. In order to compare controllers’ performance side-by-side, the error curves of the speed
were aligned in time. The asynchronous motor's speed response has an earlier transient response and a less
steady-state inaccuracy after tuning the controllers during acceleration and torque load adjustments.

Table 1. Timing table of the controllers’ tuning intervals
Timing interval Description
3.51 > t;q = 3.55 The time tuning of the current controllerd-axis
3.6 2 tjg = 3.65  The time tuning of the current controllerg-axis
372t 247 The time tuning of the flux controller
48 >t, =581  Thetime tuning of the speed controller

Table 2. The gain values of the four PI controllers before and after the tuning process
Description Gains before tuning ~ Gains after tuning
K, K; K, K;
D-axis Pl controller 1.08 207.58 1.611 627.6
Q-axis PI controller 1.08 210.02 2.029 829.9
Flux PI controller 52.22 2790.51 129.3 1732
Speed PI controller  65.47 3134.24 158.8 2110

Figure 9. The measurements after tuning the gains of  Figure 10. The measurements after tuning the gains

the PI controllers of (1) The magnetizing stator- of the PI controllers of grid-side waveforms of grid
current, (2) comparison of the torques of the motor voltage, current, DC-link voltage, and the active
with the required load torque, and (3) the rotor speed power delivered by the grid

before tuning compared with the reference
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Figure 11. The error waveforms of the rotor speed before and after the tuning

4. CONCLUSION

The tuning technique seeks to achieve the phase margin and control bandwidth we specify while
balancing resilience and performance. We can set up logic to send the tuned gains from the tuner to the PID
controller in real-time, allowing us to test closed-loop performance. The obtained results indicate that the
initial PI gains do not provide acceptable performance and the response was under-damped with significant
overshoot. To get better reference performance, we tuned the Pl gains by using a closed-loop PID Auto-Tune
block, which injects an excitation signal during closed-loop operation to estimate the plant frequency
response and using these estimated values to automatically tune PID gains. The results also show that the
asynchronous motor's speed response has earlier transient responses and a less steady-state inaccuracy after
tuning the controllers during acceleration and torque load adjustments.
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