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Abstract 
Conjugate gradient methods are an important class of methods for solving unconstrained 

optimization problems, especially for large-scale problems. Recently, they have been studied in depth. In 
this paper, we further study the conjugate gradient method for unconstrained optimization. We focus our 
attention to the descent conjugate gradient method. This paper presents a modified conjugate gradient 
method. An interesting feature of the presented method is that the direction is always a descent direction 
for the objective function. Moreover, the property is independent of the line search used. Under mild 
conditions, we prove that the modified conjugate gradient method with Armijo-type line search is globally 
convergent. We also present some numerical results to show the efficiency of the proposed method. 
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1. Introduction 

Let us consider the following unconstrained optimization problem: 
 
min  ( )

nx R
f x


                                                                                                             (1) 

 
Where : nf R R  is a continuously differentiable function and its gradient is denoted by 

( ) ( )g x f x  . Optimization problems exist in many areas [1-2], such as engineering, 

production management, economy etc. Generally, Optimization problem is solved by converted 
to unconstrained optimization problem. 

Conjugate gradient methods constitute an excellent choice for efficiently solving the 
optimization problem (1), especially when the dimension n  is large due to the simplicity of their 
iteration, convergence properties and their low memory requirements. In fact, conjugate 
gradient methods have played special roles in solving large scale nonlinear optimization 
problems. Although conjugate gradient methods are not the fastest or most robust optimization 
algorithms for nonlinear problems available today, they remain very popular for engineers and 
mathematicians engaged with solving large problems. 

Conjugate gradient methods generate a sequence of points { }kx , starting from an initial 

guess 0
nx R , using the iterative formula 

 

1k k k kx x d   ,                                                                                                   (2) 

  

Where 0k   is obtained by line search, and the direction kd  is generated by: 

1

                      0,

        1,
k

k
k k k

g k
d

g d k 

 
   

                                                                                  (3) 

 

Where ( )k kg g x  and k  is a scalar. Some well-known formulae for k are given in [3-8]. 



                       e-ISSN: 2087-278X 

TELKOMNIKA Vol. 11, No. 11, November 2013:  6373 – 6380 

6374

For a conjugate gradient method in the form (2)-(3), we say that the descent condition 
holds if: 

 
  0,      0.k kg d k                                                                                 (4) 

 

In addition, we say that the sufficient descent condition holds if there exists a constant 1 0c   

such that: 
 

2
1 || || ,      0,k k kg d c g k                                                                                     (5) 

 
Where || || stand for the Euclidean norm of vectors. The descent condition or the sufficient 

descent condition is often used in the literature to analyze the global convergence of conjugate 
gradient method with inexact line search, and may be crucial for conjugate gradient methods. 
But for classical conjugate gradient methods, the descent condition or the sufficient descent 
condition holds depending on the line search used. During the last decade, much effort has 
been devoted to generate descent conjugate gradient methods independent of the line search 
used. Similar to the spectral conjugate gradient method [9],  Zhang, Zhou and Li [10] proposed 
a descent modified FR conjugate gradient method as:  
 

2
1 1

12 2
1 1

|| ||
,

|| || || ||
k k k

k k k
k k

d y g
d g d

g g


 


 

    

 

Where 0 0d g  and 1 1=k k ky g g  . A remarkable property of the method is that it produces 

descent direction,  
 

2|| || ,      0.k k kg d g k      

 
and this property is independent of the line search used. Motivated by this nice descent 
property, Zhang, Xiao and Wei [11] introduced a descent three-term conjugate gradient method 
based on the Dai-Liao method [12] as: 
 

1 1 1
1 1 1

1 1 1 1

( )
( ),k k k k k

k k k k k
k k k k

g y ts g s
d g s y ts

y s y s

 
  

   
   


      

 

Where 0 0d g  , 1 1=k k ks x x  and 0t  . Again, it is easy to see that the sufficient descent 

condition also holds independent by the line search, i.e. for this method 2|| ||k k kg d g    for all

k . Other descent conjugate gradient methods and their global convergence can be found in 
[13-17] etc. 

In this paper, we propose a modified conjugate gradient method. The direction 
generated by the proposed method is always a descent direction of the objective function. This 
property is independent of the line search used. Under mild conditions, we prove that the 
modified conjugate gradient method with Armijo-type line search is globally convergent. 

In the next section, we propose the method. Section 3 is devoted to the global 
convergence of the method. At last, we present some numerical results in section 4. 
 
 
2. Algorithm  
             Recently, Li and Feng [18] proposed a modified Liu-Storey (MLS) method  by letting: 
 

2

1 11
2

1 1 1 1

=
( )

k k kk k
k T T

k k k k

y g dg y
t

d g d g



 

   

  ， 
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Where 1

4
t  . In [18], Li and Feng proved that the MLS method can always generate descent 

directions which satisfy the sufficient descent condition. 
  

21
(1 ) || || .

4k k kg d g
t

     

 
Li and Feng also establish the global convergence of the MLS method with strong Wolfe line 
search. Based on the MLS method, we propose our algorithm as follows. 
Algorithm 1：  

Step 1. Given constants 0  ， 1
1

4
  ， 0 1  ， 0  . Choose an initial point  

0
nx R  Set 0 0d g  , :0k  . 

Step 2.  Calculate the search direction kd  by (3),  where k  is defined by: 

 

             
2

1
1 1 1 1

1
= ( )k T

k k k kT T
k k k k

g
g d g

d g d g
  

   

 .                                                            (6) 

 

Where 1
1

4
  . 

Step 3. Determine  m ax , 0,1, 2, ...j
k j   satisfying 

 
42( ) ( )k k k k k kf x d f x d    .                                                                   (7) 

 

Step 4. Let 1k k k kx x d   . If 
2

1kg   , then stop. Otherwise go to step 5. 

Step 5. Let : 1k k  and go to step 2. 

The following theorem shows that the Algorithm 1 possesses the sufficient condition (4). 

Theorem 1. Let the sequences  kg  and  kd  be generated by the Algorithm 1, then: 

 
21

(1 ) ,       0.
4

T
k k kg d g k


                                                                         (8) 

Proof: Since 0 0d g  , we have
2

0 0 0
Tg d g  , which satisfies (8).  Multiplying the direction 

kd  by kg , we have from (3) and (6) that for all 1k   

 
2

1 1
1 1 1 1

1
+ ( ) .kT T T

k k k k k k k kT T
k k k k

g
g d g g g d g d

d g d g
  

   

 
   

  

 
2 2 2

2 1 1
2

1 1 1 1

( d ) ( d )
= +

( )

T T
k k k k k k

k T T
k k k k

g g g g
g

d g d g
 

   

  .                                             (9) 

 

Applying the inequality 2 21
(|| || || || )

2
u v u v   into

2

1

1 1

( d )T
k k k

T
k k

g g

d g


 

, we obtain: 

2 1 1 1

1
2

1 1 1 1

1
( d ) 2 ( d )

2( d )

( )

T

T T
k k k k k kT

k k k
T T
k k k k

g g g g
g g

d g d g


   



   

 
    

   
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2 22 2
1 1 1

2
1 1

1 1
( ) 2 ( d )

2 2

( )

T T
k k k k k k

T
k k

d g g g g

d g


   

 

 
 

   

2 2
2 1

2
1 1

( d )1

4 ( )

T
k k k

k T
k k

g g
g

d g





 

                                

 
Substituting the inequality into (9), we get: 
 

2 21

4
T

k k k kg d g g


    = 21
(1 )

4 kg


  .                                              

 

From the proof of Theorem 1, we can see that kd  provides a descent direction of f  at kx , and 

this property is independent of the line search used. 
 
 
3. The Properties and the Global Convergence 

In the following, we assume that 0kg   for all k , otherwise a stationary point has 

been found. The following assumptions are often used to prove the convergence of the 
conjugate gradient method. 
Assumption A: 
(1) The level set  0| ( ) ( )nx R f x f x     is bound. 

(2) In some neighborhood N of , ( )f x is continuously differentiable and its gradient ( )g x is 

Lipschitz continuous, namely, there exists a constant 0L  such that: 
 

( ) ( ) , , .g x g y L x y x y N                                                                (10) 

 

Since kd  is a descent direction of f  at kx , Algorithm 1 is well defined. Moreover, it 

follows from (7) that the function value sequence { ( )}kf x  is decreasing. We also have from (7) 

that
42

0
k k

k
d




   , if f  is bounded from below. In particular, we have 

 
2

lim 0k kk
d


                                                                                                     (11) 

 
In addition, we can get from Assumption A that there exists a constant 0  such that: 

 

               , .kg x                                                                                           (12) 

 

Lemma 1. Let the sequences  kx  be generated by Algorithm 1. If there exists a constant 

0   such that: 
 

kg  , k ,                                                                                                        (13) 

 
Then there exists a constant 0Q   such that: 

 

kd Q .                                                                                                              (14) 
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Proof: By the definition of k , we can simplify its expression as: 

 
2

1
1 1 1 1

1
( )k T

k k k kT T
k k k k

g
g d g

g d g d
  

   

 
2

1

1 1 1 1

1
T

k k k
T T
k k k k

g g d

g d g d
 

   

 
  

 
 

 
2

1 1 12
1 1( )

k T T
k k k kT

k k

g
g d g d

g d
  

 

 
 

 
2

1 1 12

1 1

k T T
k k k k

T
k k

g
g d g d

g d
   

 

    

 
 

2

1 12

1 1

Tk
k k k

T
k k

g
g g d

g d


 

 

                                                                          (15) 

  

By (15), (8), (12), (13) and (10), we obtain: 
 

2

1 12 2k k k kg g d

     

2

1 1 12 2 k k k

L
d d

 
      =

2
2

1 12 2 k k

L
d

 
     (16)  

 

Where
1

(1 )
4




  . 

By the definition of kd , we get from (16) and (12) that: 

 

1k k k kd g d     
22

1 1
12 2

k k
k

L d
d

 


 
 

  . 

 

Since
2

lim 0k kk
d


 , there exists a constant  0,1c and an integer 0k ，such that the 

following inequality holds for all 0k k . 

 
2

2

1 12 2 k k

L
d c

a

 
     

 

Hence，we have for all 0k k . 

 

1k kd c d   0 0

0

12(1 )k k k k
kc c c c d        

01 kd
c


 


 

 

Let 
0 01 2m ax , , , ,

1k kQ d d d d
c

    
 ，we have

0,  kd Q k k   .    

Theorem 2. Let the sequences  kx  be generated by Algorithm 1， then: 

                                                                                                                                                                                       
              lim inf 0kk

g
 

                                                                               (17) 

                                                                                                                               
Proof. We prove the result of this theorem by contradiction. Assume that the theorem is not 
true, there exists a constant 0  such that:  
 

kg  ， 0,1, 2,...k  .                                                                                     (18) 
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If lim inf 0k
k




 ，we get from (8) and (11) that lim inf 0k
k

g


 ，This contradicts 

assumption (18). 

If lim in f 0k
k


 

 ， there exists an infinite index set K  such that: 

 

,
lim 0kk K k


 

 .                                                                                                  (19) 

 
By the step 3 of Algorithm 1，we have: 
 

41 1 2( ) ( ) ( )k k k k k kf x d f x d                                                                   (20) 

 
By the mean-value theorem, (10) and (8), there is a constant (0,1)  such that: 

 
1 1 1( ) ( ) ( )T

k k k k k k k kf x d f x g x d d         

 1 1 1[ ( ) ( )]T T
k k k k k k k k kg d g x d g x d            

21 2 2T
k k k k kg d L d      2 21 2 21

(1 )
4 k k k kg L d   


          

     
Substituting the inequality into (20), we get for all k K  sufficiently large, 
 

2 2 41 11
(1 )

4 k k k k kg L d d   


     

 
With (14), we get: 
 

2 2 21 1 21
(1 )

4 k k k k kg L d Q d   


     

 

Dividing both sides of this inequality by 1
(1 ) 0

4
  , we get: 

1 2
2 2( )

1
1

4

k k k

L Q
g d

  



 




. 

Since 2
lim 0k k
k

d
 

 , the last inequality implies that
,

lim inf 0kk K k
g

 
 . This also 

contradicts assumption (18). The contradiction shows that (17) is true. 
 
 
4. Numerical Experiments  

In this section, we report some results of the numerical experiments. We test Algorithm 
1 and compare its performance with those of PRP method whose results be given by [19]. The 

problem that we tested are from [20]. Our line search subroutine computes k such that the 

Armojo type line search condition (7) holds with 0.5   and 0.01  . 

The termination condition is 5|| || 10kg  or the iteration number exceeds 42 10 or the 

function evaluation number exceeds 53 10 . In the following tables, each column has the 
following meanings: 

Problem: the name of the problem; 
Dim: the dimension of the problem; 
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NI: the number of iterations; 
NF: the total number of function evaluations; 
From the numerical results, we can see that the proposed method performs better than 

the PRP method for some problems. For some test problems, although the number of iterations 
of Algorithm 1 is more than the PRP method, the total number of function evaluations of 
Algorithm 1 is less than the PRP method. In summary, the numerical results show that 
Algorithm 1 is more efficient than the PRP method and provides an efficient method for solving 
uncontrained optimizaiton problems. 

 
 

Table 1. Numerical Results 

Problem Dim Algorithm 1 PRPSWP 
NI/NF NI/NF 

rose 2 36/118 29/502 
helix 3 41/207 49/255 
bard 3 26/89 23/98 
Gulf 3 1/2 1/2 

kowosb 4 77/251 62/361 
biggs 6 125/350 121/495 
osb2 11 141/528 293/1372 

watson 20 616/1307 990/2773 

vardim 50 8/51 10/52 
Trig 100 68/241 46/342 
Ie 500 4/9 6/13 
Lin 1000 1/3 1/3 

 
 
5. Conclusion 

Different conjugate gradient algorithms correspond to different choices for the scalar 

parameter k . For classic conjugate gradient methods, the parameter k is selected so that 

when applied to minimize a strongly quadratic convex function, the directions kd  and 1kd  are 

conjugate subject to the Hessian of the quadratic function. Therefore, to minimize a convex 
quadratic function in a subspace spanned by a set of mutually conjugate directions is equivalent 
to minimize this function along each conjugate direction in turn. This is a very good idea. 

However, the directions in which the parameter k is computed by (6) does not satisfy the 

conjugacy condition in this pape. 
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