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 In this paper, a reconfigurable bandstop to allpass filters using defected 

ground structure (DGS) in K-Band for millimeter-wave communications is 

proposed. Mathematical analysis of the DGS is discussed in this paper for 

the bandstop and allpass responses. The reconfigurable filter is performed by 

using an ideal switch with open circuit and short circuit conditions on DGS 

at several locations. Hence, two filter designs with different DGS are 

investigated for their performance in both simulation and measurement. As a 

result, the ideal switch at location S3 gives the best performance for both 

DGSs with a narrowband bandstop response and a wideband allpass 

response with insertion loss of less than 1 dB and return loss of more than 10 

dB at the 26 GHz band. Hence, the proposed reconfigurable filter is suitable 

for millimeter-wave front-end communications. 
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1. INTRODUCTION  

Complex and dynamic wireless communication systems have resulted from the demand for 

increasing data rates and the allocation of a spectrum band at higher frequencies. This can be seen in the 

implementation of a new fifth-generation (5G) technology in millimeter-wave frequency bands [1]. However, 

this new implementation will interfere with the existing technology as reported in [2], where the simulation 

results show that the fixed-satellite service (FSS) satellite receives interference from many IMT-2020s (5G 

communication standard) in the millimeter-wave (mm-wave) band. Therefore, a cognitive radio (CR) is 

needed in 5G millimeter-wave communications to minimize any possible interference. Hence, there are 

several solutions on the interference mitigation techniques in CR systems, such as spectrum sensing 

algorithms based on energy detection [3], cooperative spectrum sensing for reducing the interference and 

increasing the utilization of the unused frequency spectrum [4], multi-hop multiple input multiple output 

(MIMO) decode-and-forward relaying protocol [5], interference management techniques for device-to-device 

(D2D) applications [6] and ultra-wideband (UWB) receiver architecture with interference mitigation that 

exploits the spatial and spectral diversity for high speed multi-user communication [7]. Besides, in front-end 

systems of CR, there is a need for reconfigurable devices such as filters [8] and antennas [9] to allow multi-

channel, multi-band and multi-functional operations, and thus, at the same time, provide an interference 
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mitigation solution. This is known as an active interference cancellation to physically suppress interference in 

the front-end receiver [7]. Therefore, proper circuit or device control using PIN or varactor diodes is very 

important, as discussed in [8] and [9].  

Islam et al. [8], switchable filters are one of the reconfigurable filter techniques that can be used in a 

CR system. Under this technique, filter mode transformation can be performed between bandpass to bandstop 

[10]–[14] and bandstop to allpass [15]–[19]. By looking at the bandstop to allpass filter mode transformation, 

there are different resonators used in the switchable filter design, such as cascaded substrate integrated 

waveguide (SIW) resonators [15], lumped-element resonators [16], stepped impedance resonators [17], 

evanescent-mode cavity resonators [18], and microstrip line resonators [19].  

From literatures, defected ground structure (DGS) is used in RF and microwave circuit designs such 

as antennas [20], [21], filters [22], [23], power amplifiers [24] and power dividers [25]. The use of the DGS 

in these circuits has different purposes, such as harmonics or frequency suppression [20], [22], [23], [25], 

wideband performance [21], circuit miniaturization [22], [23], [25] and load matching network [24]. 

Therefore, in this paper, a DGS is proposed for the reconfigurable bandstop to allpass filter for mm-wave 

communications such as 5G technology in the 26 or 28 GHz band (K-band). Two different DGSs in [26] and 

[27] are investigated and redesigned to be switchable filters between bandstop and allpass responses. Besides, 

a mathematical analysis is presented and discussed in this paper for the switching between bandstop and 

allpass responses. The proposed designs can be used in in front-end systems of CR systems or in switch 

designs [28], [29] for 5G millimeter-wave communications. 

 

 

2. MATHEMATICAL ANALYSIS OF RECONFIGURABLE DGS MODEL 

This section discusses a reconfigurable DSG model by referring to a mathematical analysis. The 

analysis is based on two conditions which are bandstop dan allpass responses. Figure 1 shows an equivalent 

circuit of the reconfigurable DGS whereby a PIN diode (ideal switch) is used as a switching element between 

bandstop and allpass responses. 

 

 

 
 

Figure 1. Equivalent circuit model of reconfigurable DGS 

 

 

A simple parallel L and C is the equivalent circuit of DGS as reported in [30]. Therefore, the 

impedance of DGS is given as (1). 
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Now consider the OFF state of the PIN diode, where ideally it will be an open circuited of the DGS. Thus, 

the DGS responses as a bandstop. Then, the transmission matrix (ABCD) of the DGS is (2). 
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From (2), by using conversion between ABCD to S-parameter, the bandstop response of S21 is derived as (3): 
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where Z0 is the characteristic impedance of the transmission line of the DGS. It can be seen that from (3), if 

Z0=1, which is a normalized impedance, the notch of the bandstop is due to the L and C components. Then, 

the resonant frequency of the DGS can be determined when; 
 

𝑗𝜔𝐿 −
𝑗

𝜔𝑐
= 0 . (4) 

 

Thus,  
 

𝑓𝑜 =
1

2𝜋𝐿𝐶
 (5) 

 

where f0 is the resonant frequency in Hertz. 

The next analysis is considering an ON state of the PIN diode where ideally it will be a short 

circuited of the DGS. Thus, the DGS responses as an allpass. Referring to [30], the rectangular parts of the 

dumbbell DGS increase the route length of current and the effective inductance. Meanwhile, the slot part 

accumulates charge and increases the effective capacitor of the microstrip line. Therefore, theoretically, the 

allpass response can be obtained if at least one or both of the components of L and C are zero. Considering 

the case where the rectangular parts of DGS are short circuited by the ON state of the PIN diode, thus L is 

zero and let Z0 = 1, which is a normalized impedance, then, S21 of (3) becomes (4); 
 

𝑆21 =
2

2+
𝑗𝜔(0)

(1−𝜔2(0)𝐶)
+1

=  
2

3
 ≈ 1  (6) 

 

or in decibel in (7). 

 

|𝑆21|2𝑑𝐵 = 20 log10(1) = 0 𝑑𝐵 . (7) 

 

From (7), it can be seen that an ideal zero insertion loss can be achieved, where an allpass response is 

produced. Based on the mathematical analyses, further investigation in any electronic design automation 

(EDA) software (for example, CST software) needs to be carried out for any type of DGS in order to make it 

switchable between bandstop and allpass responses. Different types of DGS have different locations of the 

effective capacitance and inductance that could be put into one or more PIN diodes for the switching 

operation. 

 

 

3. RECONFIGURABLE DGS DESIGNS 

3.1.  DGS designs 

The concept of an ideal switch is used to produce the reconfigurable DGS design. Each DGS is 

presented by two layouts, which are open circuit condition (active DGS) and short circuit condition (inactive 

DGS). Uneven U-shape Dumbbell layout DGS as shown in Figure 2. Figure 2(a) shows the Uneven U-shape 

Dumbbell from [26], which is ideally in open circuit condition. Then, a short circuit conductor is applied to 

the DGS as shown in Figure 2(b) and becomes a short circuit condition. The same holds true for the T-shape 

Loaded DGS from as shown in Figure 3 [27] as shown in Figure 3(a) and Figure 3(b) respectively. A 

summary of their dimensions is shown in Table 1.  
 

 

  
(a) (b) 

 

Figure 2. Uneven U-shape Dumbbell layout DGS, (a) active DGS and (b) inactive DGS 
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(a) (b) 

 

Figure 3. T-shape Loaded layout DGS, (a) active DGS and (b) inactive DGS 

 

 

Table 1. Uneven U-shape Dumbbell and T-shape Loaded DGS dimensions 
Uneven U-shape Dumbbell T-shape Loaded 

Parameter Dimension (mm) Parameter Dimension (mm) 

L1 2.25 L1 14.03 

L2 0.80 L2 2.09 

G 0.20 L3 13.35 

G1 0.10 L4 1.41 
G2 0.30 L5 0.15 

G3 0.10 W1 0.89 

G4 0.20 W2 0.34 
G5 0.15 W3 0.22 

  W4 0.34 

 

 

3.2.  The ideal switch locations on DGS for allpass response 

To implement the best position for the ideal switch, the switch in short circuit condition is placed in 

three different locations for both DGSs to get the best performance of allpass responses for the switchable 

filter. These different locations have the effect of altering the propagation of EM waves and radiation 

characteristics and hence produce different responses for S-parameteras shown in Figure 4. Figure 4(a), 

Figure 4(b) and Figure 4(c) show the S1, S2 and S3 locations of the short circuit ideal switch on the Uneven 

U-shape Dumbbell DGS. The same labelling is also applied on T-shape Loaded DGS as shown in Figure 5, 

Figure 5(a), Figure 5(b) and Figure 5(c) respectively. 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 4. Short circuit ideal switches placement on Uneven U-shape Dumbbell DGS, (a) S1, (b) S2 and  

(c) S3 locations 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 5. Short circuit ideal switches placement on T-shape Loaded DGS, (a) S1, (b) S2, and (c) S3 locations  

 

 

3.3.  DGS prototypes 

Prototype of ideal switchable DGS filters as shown in Figure 6. Figure 6(a) and Figure 6(b) show the 

top and bottom views of an ideal switchable DGS filter prototype made with the Uneven U-shape Dumbbell 

and the T-shape Loaded layouts respectively. All filters were fabricated on a Rogers RT/Duroid 5880 

substrate with a 0.254 mm thickness and a relative dielectric constant, εr of 2.2. The prototypes were 

measured using the N5234B PNA-L Microwave Network Analyzer. The network analyzer, with the 

combination of high precision cables, was used to measure insertion loss and return loss of the prototypes and 

validated with simulation results. 

 

 

  
(a) (b) 

 

Figure 6. Prototype of ideal switchable DGS filters, (a) with Uneven U-shape Dumbbell DGS and  

(b) with T-shape Loaded DGS 

 

 

4. RESULTS AND DISCUSSION 

Figure 7 shows simulation results of an ideal switchable DGS filter using the Uneven U-shape 

Dumbbell with locations S1, S2 and S3 as discussed in Section 3. It is clearly shown as the ideal switch 

moves towards the slot of the dumbbell (from S1 to S3), the insertion loss and return loss become better with 

a wider bandwidth of allpass response and the bandstop resonance magnitude at higher frequency was 

reduced to help produce a better wideband allpass response. As a result, the S3 location shows the best result 

compared to S1 and S2. 

Figure 8 shows simulation results of the ideal switchable DGS filter using the T-shape Loaded 

layout with locations S1, S2 and S3 as discussed in Section 3. Although it showed a wideband allpass 

response, S1 location does not offer good return loss. This is due to S1 location produce the asymmetrical 

structure for the DGS. The S2 location has slightly improved the return loss result in the 26 GHz band but 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Reconfigurable bandstop to allpass filter using defected ground structure in k-band for … (Adib Othman) 

825 

does not offer wideband allpass response. This is due to S2 location does not produce enough short circuit 

conditions to decouple the DGS effect, which can be seen by the appearance of bandstop resonance at 25.5 

GHz. Lastly, the S3 location gave the best wide bandwidth of allpass response with insertion loss of 

approximately at 1 dB and return loss below 10 dB in the 26 GHz band. Table 2 summarizes the insertion 

loss and return loss performances for both types of DGS. 

 

 

  
 

Figure 7. Simulation results of return loss (S11) and insertion loss (S21) of the ideal switchable DGS filter 

using Uneven U-shape Dumbbell layout in the short circuit condition with S1, S2 and S3 

 

 

 
 

Figure 8. Simulation results of return loss (S11) and insertion loss (S21) of the ideal switchable DGS filter 

using T-shape Loaded layout in the short circuit condition with S1, S2 and S3 locations 

 

 

According to Table 2, the ideal switch location on S3 gave the best result in insertion loss and return 

loss for both DGS layouts compared to S1 and S2 locations. Furthermore, the S3 location manages to 

decouple both the transmission line and the DGS and hence let the EM waves pass to the output port. This 

phenomenon is theoretically the same as short circuiting the inductance and capacitance of DGS as shown in 

mathematical modelling and the DGS equivalent circuit as discussed in Section 2. As a result, DGS layouts 

with the ideal switch location on S3 were chosen as fabricated prototypes for validation. 

 

 

Table 2. Return loss and Insertion Loss performance at 26 GHz 

Ideal Switch 
Location 

Uneven U-shape Dumbbell T-shape Loaded 

Insertion Loss 

(S21 in dB) 

Return Loss 

(S11 in dB) 

Insertion Loss 

(S21 in dB) 

Return Loss 

(S11 in dB) 

S1 0.85 9.46 3.39 5.88 
S2 0.72 10.72 2.16 10.50 

S3 0.31 18.64 1.33 18.71 

 

 

Figure 9 shows simulation and measurement results of ideal switchable DGS filter using the Uneven 

U-shape Dumbbell. It can be observed that the open circuit condition filter with the bandwidth of attenuation 

response was approximately 1.65 GHz at 10 dB level and a more compact DGS circuit size than compared to 

in [26]. The narrow bandwidth result with high attenuation magnitude has the potential to aid in improving 
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the frequency selectivity of the filter significantly. Meanwhile, a short circuit condition has nullified the DGS 

effect of the filter and hence produces a wideband allpass response with an insertion loss of approximately 1 

dB and a return loss of less than 10 dB. As a whole, the simulation and measurement results are slightly 

different because of the tolerance in the fabrication process. Some of the measurements have ripple effects 

that might be from a loose connection between connectors and cables during the measurement process. As 

the substrate used is thin, over applying force during tightening up the connection might damage the circuit 

and hence might lead to improper connection. 

 

 

 
 

Figure 9. Simulation and measurement results of return loss (S11) and attenuation/insertion loss (S21) of the 

ideal switchable DGS filter using Uneven U-shape Dumbbell with open circuit (o/c) and short circuit (s/c) 

conditions 

 

 

Figure 10 shows simulation and measurement results of ideal switchable DGS filter using the  

T-shape Loaded layout. Observed result of the open circuit condition filter shows similar results as the 

previous DGS layout, but with narrower bandwidth of attenuation response approximately 0.21 GHz at 10 dB 

level.  

 

 

 
 

Figure 10. Simulation and measurement results of return loss (S11) and attenuation/insertion loss (S21) of the 

ideal switchable DGS filter using T-shape Loaded with open circuit (o/c) and short circuit (s/c) conditions 

 

 

Meanwhile, short circuit condition filter also produces a wideband allpass response with an insertion 

loss of approximately 1.8 dB and a return loss less than 10 dB. Measurement results also have a slight shift 

from the simulation due to fabrication tolerance development. There is less ripple in the measurement result, 

which indicates good practice of measurement setup has been done. 

 

 

5. CONCLUSION 

The experimental work has successfully proved that the reconfigurable filter with DGS can 

interchange between bandstop and allpass responses by using open circuit and short circuit conditions of 

ideal switch. A good agreement between simulated and measured results was obtained for both DGSs during 

bandstop response with narrowband properties and also for allpass response with wideband properties in the 
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26 GHz band. Hence, a next future work is needed by replacing the ideal switch on the DGS with actual 

switching elements such as PIN diode for the actual circuit design. 
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