
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 28, No. 2, November 2022, pp. 1128~1138

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v28.i2.pp1128-1138  1128

Journal homepage: http://ijeecs.iaescore.com

Data storage model in low-cost mobile applications

I Made Sukarsa1, I Kadek Ari Melinia Antara1, Putu Wira Buana1, I Putu Agung Bayupati1,

Ni Wayan Wisswani2, Dina Wahyuni Puteri1
1Department of Information Technology, Udayana University, Bali, Indonesia

2Department of Informatic Management, Bali State Polytechnic, Bali, Indonesia

Article Info ABSTRACT

Article history:

Received Feb 10, 2022

Revised Aug 26, 2022

Accepted Sep 6, 2022

 Mobile applications that have data transactions between users require a

database relational database management system (RDBMS) and RESTful

API operating on the hosting service so that all users can access the data.

Renting a hosting service is not cheap and creating a RESTful API takes

plenty of time. As an alternative to hosting, a free version of the Cloud

Firestore service gives full access rights to the database and has an

application programming interface (API) to manage data or access data.

However, the free version of Cloud Firestore has limitations in terms of

storage capacity, read, write, and delete processes. Therefore, redesigning

process of the database was carried out into a low-cost version of the

database model consisting of SQLite database and a low-cost version of the

NoSQL database to overcome this problem. The goal is to reduce storage

space usage and read, write, and delete processing on Cloud Firestore. The

low-cost version of the database was tested with 6,030 data. The results

obtained were savings of 47.27% storage usage, 83.08% write usage,

91.26% read process usage, and 83.19% delete process usage compared to

the test results of the relational database model.

Keywords:

Cloud firestore

Database

Hosting

Low cost

NoSQL

SQLite

This is an open access article under the CC BY-SA license.

Corresponding Author:

I Made Sukarsa

Department of Information Technology, Udayana University

UNUD Campus Road, Jimbaran, Badung, Bali, Indonesia

Email: sukarsa@unud.ac.id

1. INTRODUCTION

Mobile applications are software that allows for mobility using mobile devices [1]. Mobile

applications require data transactions to a relational database management system (RDBMS) via a RESTful

application programming interface (API). A good application design must pay attention to database and API

design so that optimally synchronization and integration can be carried out [2]. Efficiency in data processing

is a challenge in application development, synchronization, integration, and concurrency, which is strongly

influenced by processing activities (read, write, delete) [3], [4]. The goal is to produce a light/fast, and

efficient application in database usage.

Database creation and Restful API are key in the data management process in an application [5].

Hosting services are required so all application users can access that data. Creating or renting a hosting

service requires a fee that is not cheap unless you use the free version of the hosting service. Generally, the

free version of the hosting service has several drawbacks; it does not provide full access rights to the

database, and the server used has the potential to collapse [6].

Application programming interface (API) is a software interface used to facilitate the data exchange

between two or more software applications [7]. The RESTful API implements the representational state

transfer (REST) architecture to develop web services [8]. According to its function, RESTful APIs are often

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Data storage model in low-cost mobile applications (I Made Sukarsa)

1129

called RESTful web services or REST web services. The REST architecture is run via hypertext transfer

protocol (HTTP) and reads Extensible Markup Language (XML) or JavaScript Object Notation (JSON) files

on web pages [9], [10]. The performance of REST web services has been studied to work efficiently both on

local services and cloud servers, especially on mobile devices [11]. RESTful APIs can be built using various

frameworks and programming languages, where the implementation process takes a long time depending on

the data transaction processes that occur in an application [12].

The database becomes a data storage container in making mobile and web applications. The popular

database technology used nowadays is the relational database management system (RDBMS). RDBMS has

structured data in tables (rows and columns) and has relations between tables connected through primary and

foreign keys [13]. RDBMS is the right choice when the type of data used is structured, but if the kind of data

used is unstructured and requires high response and speed, the solution that can be used is the NoSQL

database [14].

Not only SQL (NoSQL) is a database system that does not have to use structured query language

(SQL) commands to perform the data manipulation process [15]. NoSQL, in its practice, is an efficient

choice for simplicity, high work analytics, distributed scalability, and good adaptability, which certainly

makes the process of storing and retrieving data easier [15]. Furthermore, the performance of query execution

speed and the use of NoSQL database storage using MongoDB and Redis has been researched to be better

than RDBMS with the percentage of processing time in the range of nanoseconds or milliseconds [16], [17].

RDBMS and NoSQL have their respective advantages based on the type of data that needs to be used.

Combining SQL and NoSQL databases can produce more flexible and scalable database management

because NoSQL can maximize large amounts of data processing more effectively [18].

Mobile application development includes various aspects in the implementation process, which will

undoubtedly require no small expenditure if calculated in terms of costs [19]. Thus, the main focus of this

research is minimizing the costs incurred in the application development process but still focusing on the

efficiency of memory usage and data processing. One of the Firebase services, namely the free version of

Cloud Firestore, can solve development costs, memory, and processing time efficiency problems.

Cloud Firestore is specifically reviewed as being able to be used for non-relational database

implementations on mobile devices because it supports mobile client implementations while also can make

integration into hosted databases relatively easier [20]. The Cloud Firestore service provides full access rights

to the NoSQL database. It has an API to manage data to facilitate data storage, synchronization, and querying

data on mobile applications [21]. Cloud Firestore uses a NoSQL database by storing data in collections

containing a collection of documents containing data containing keys and values [22]. As a result, cloud

Firestore has further complete and faster query features than realtime database services [23]. In addition to

the advantages, the free version of Cloud Firestore also has limitations in storage capacity, read, write, and

delete processes. Referring to the conditions provided by the Cloud Firestore website as of early November

2021, the storage capacity is only 1 GB, the read process is limited to 50,000 requests per day, the write

process is limited to 20,000 requests per day, and the delete process is limited to 20,000 requests per day. If

the process or storage area exceeds the usage limit that has been set, it will be charged according to the

provisions of the Cloud Firestore service [24]. Thus, these problems can be overcome by redesigning the

relational database model into a low-cost version of the database model.

The redesign process in this research uses a low-cost version of the NoSQL database and the SQLite

database. SQLite database is used as a data storage medium that can operate locally [25]. The purpose of

creating a low-cost version of the database model is to reduce the use of storage and processing (read, write

and delete) on the Cloud Firestore service; thereby, it can save on data storage and processing costs.

Denormalization will be involved in the migration process from RDBMS to NoSQL, followed by

Optimization to get an optimal database design on Cloud Firestore [26]. The optimization process is carried

out to eliminate redundancy and ambiguity in the data caused by the denormalization process. In principle,

there is no specific method for denormalizing [27].

2. RESEARCH METHODS

The research was conducted by creating a low-cost version of the database model obtained from

redesigning the relational database model (RDBMS). The research flow started from the creation of the

SQLite database by determining data that can operate locally and not be used for data transactions between

users. In contrast, other data or tables will be converted into a low-cost version of the NoSQL database

model. These two databases will be the low-cost version of the database model. The research continued with

the testing process of the relational database model and the low-cost version of the database on Cloud

Firestore. Furthermore, the test results were analyzed and compared. The research flow in the form of a

flowchart can see in Figure 1.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 28, No. 2, November 2022: 1128-1138

1130

Start

SQL database
normalization

model

Can be operated
locally

Database SQLite

Denormalization of the
relational database model to a

low-cost version database
model

Low-cost version
database model

Testing the relational
database model and the low-
cost version database model

Analyze the test results

End

Yes No

Figure 1. Research flow

2.1. Relational database model

Relational database model is a database structure that has been normalized to a certain level and has

a relationship between tables. Normalization is a technique for forming database structures so that most of

the ambiguity and data redundancy can be eliminated [28]. The existence of non-constant data will

undoubtedly affect the conceptual design of the designed database. Thus the task of normalization becomes

very important in the database design process [29]. The relational database created contains five tables

related to each other and has their respective functions. User’s favorite item data is stored in tb_favorite, user

data is stored in tb_user, item data is stored in tb_barang, sales transaction data is stored in tb_transaksi, and

every detail of the sales amount of goods will be stored in tb_detail_transaksi. The relational database design

in Figure 2 will redesign to a low-cost version of the database model.

2.2. Redesign process for database optimization

The low-cost version of the database model uses two types of databases, namely SQLite databases to

store data that can operate locally and are not used for data transactions between users and a low-cost version

of the NoSQL database to be used on Cloud Firestore. SQLite database is an alternative Relational Database

Management System that does not require an installation process since it is free and supported by many

programming languages [30], [31]. SQLite can define as SQLite database used to store constant data on the

final application, where the stored data is data that rarely changes or is static to avoid frequent interactions

with the server [32]. Database redesign and optimization done on necessary tables as illustrated in Figure 3.

Tb_favorite is built on SQLite database because the data in the table can be processed and operated locally

and not used for data transactions between users which is illustrated in Figure 3(a). Tb_transaksi and

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Data storage model in low-cost mobile applications (I Made Sukarsa)

1131

tb_detail_transaksi are created in the NoSQL database by denormalizing the two tables that have foreign

keys. Denormalization is conducted by modifying the table structure and ignoring (controlled) duplicate data

to improve database performance [33]. Changes that occur in tb_transaksi after denormalization are the

column replacement and addition. The id_user column is removed and replaced with the name, address,

no_telp, and email columns. Additional columns are used to store detailed item information in tb_transaksi,

namely kode_barang, nama_barang, jumlah and harga_jual as illustrated in Figure 3(b).

Optimization of the data structure is carried out to minimize ambiguity and redundancy in the data.

Cloud Firestore has a data type in the form of an array that can be used to store data or transaction detail

information without causing redundancy or ambiguity in the data. Fields used to store user information, and

item information can be made into two different fields/columns with column names data_user and

data_barang using array data types. Cloud Firestore also has a unique code that is automatically generated

for each document to distinguish one document from another. Thus, it can delete the primary key in each

table to optimize storage space. The low-cost version of the NoSQL database that will be implemented in

Cloud Firestore includes three tables, namely tb_barang, tb_transaksi, and User. The data types of the low-

cost version of the NoSQL database model have been adapted to the Cloud Firestore service, where the table

names in the database model are used as collection names. Further, the column name will be used as the field

name in the document where the data is stored, as illustrated in Figure 3(c).

2.3. Test data

The total data used for testing is 6,030 data. The total data consists of 10 item data, 10 user data, 10

favorite data, and 1000 transaction data, with each transaction having five types of goods. Item data will be

inputted into the tb_barang collection, user data into the tb_user collection, favorite data into the tb_favorite

collection, each of which will be stored in the relational database models and low-cost databases. Overall test

data are presented in Tables 1, 2, 3 and 4, 5.

Transaction data will be input into the tb_transaksi collection in the relational database model and

the low-cost version of the database. The storage process in the low-cost version of the database model is

slightly different from the relational database. In the low-cost version of the database model, the user does

not have to input id_user but instead inputs the name, address, no_telp, and email data based on the id_user.

The transaction detail data that will be input into the tb_detail_transaksi collection in the relational database

model includes the transaction id_transaksi, id_barang, jumlah and harga_jual barang fields. Meanwhile, in

the low-cost version of the database, the data will be input into the tb_transaksi collection in the data_barang

field, where the field contains kode_barang, nama_barang, jumlah and harga_jual.

Figure 2. Relational database model

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 28, No. 2, November 2022: 1128-1138

1132

tb_favorite

id_favorite intPK

id_barang int

kode_barang Varchar(10)

nama_barang Varchar(255)

(a)

tb_transaksi

id_transaksi intPK

tanggal datetime

total_harga int

diskon int

kode_barang Varchar(10)

nama_barang Varchar(255)

jumlah int

harga_jual int

nama Varchar(255)

alamat Varchar(255)

email Varchar(255)

no_telp Varchar(20)

(b)

(c)

Figure 3. Database redesign and optimization, (a) tb_favorite as SQLite Database, (b) Denormalization of

tb_transaksi and (c) Low-Cost Version of NoSQL Database Model

Test is done by processing write data or inputting item data, user data, favorite data, transaction data,

and transaction detail data. The test is continued by reading the transaction data along with user information

and item details. Further, do the process of delete user data along with transaction data and details. Tables 1-5

are examples of data in the database structure to be tested.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Data storage model in low-cost mobile applications (I Made Sukarsa)

1133

Table 1. Tb_barang
Id Kode_brg Nama_brg Jml Satuan Harga_brg Harga_jual

1 B001 CPU 100 Pcs 3.500.000 4.000.000

2 B002 Monitor 150 Pcs 1.200.000 1.500.000

3 B003 Laptop Asus 200 Pcs 5.700.000 6.500.000

4 B004 Laptop Acer 100 Pcs 6.200.000 7.000.000

5 B005 Mouse 150 Pcs 120.000 150.000

6 B006 Keyboard 150 Pcs 200.000 250.000

7 B007 Printer 50 Pcs 1.250.000 1.750.000

8 B008 Kabel USB 150 Pcs 50.000 75.000

9 B009 Flashdisk 75 Pcs 300.000 350.000

10 B010 HDD 50 Pcs 512.000 600.000

Table 2. Tb_user
Id Nama Alamat No_telp email

1 Aprilia Jln. Mangga 5 blok D 62 RT 001 RW 003 Perumahan

Klodran Indah, Klodran, Colomadu, Karanganyar

082122365943 Aprilia@gmail.com

2 Sri Astuti Jl. Meran No.88 Cilodong 081202365976 Sri.Astuti@gmail.com

3 Annisa Dk. Ceper RT 01/06, Ds. Ceper, Kec. Ceper, Kab.

Klaten

085322365943 Annisa@gmail.com

4 Bella Blulukan II rt01/06 Colomadu, Karanganyar 087865759393 Bella@gmail.com

5 Dina Desa Kelet Rt 23 Rw 4 Kecamatan Keling Kabupaten

Jepara Provinsi Jawa Tengah

087765570027 Dina@gmail.com

6 Fahdilla jl tarmidi samarinda kaltim 087765691216 Fahdilla@gmail.com

7 Fitri Ayu Jajar RT 02/04 Laweyan, Surakarta 081933125331 Fitri.Ayu@gmail.com

8 Putri Ayu Jalan raya Kedondong desa Cimanuk kecamatan way

Lima kab.pesawaran

087864727201 Putri.Ayu@gmail.com

9 Hendra Banjarsari Nusukan prawit RT 06 RW 03 087864411708 Hendra@gmail.com

10 Indra Batur citrosono Grabag Magelang Jawa tengah 081907986555 Indra@gmail.com

Table 3. Tb_favorite
Id Id_user Id_barang Kode_barang Nama_barang

1 1 1 B001 CPU

2 2 2 B002 Monitor

3 3 3 B003 Laptop Asus

4 4 4 B004 Laptop Acer

5 5 5 B005 Mouse

6 6 6 B006 Keyboard

7 7 7 B007 Printer

8 8 8 B008 USB Cable

9 9 9 B009 Flashdisk

10 10 10 B010 HDD

Table 4. Tb_transaksi
Id Id_user Tanggal Diskon Total_harga

1 1 2021-11-04 20:25:40 0 19.150.000

2 2 2021-11-04 19:50:04 0 15.400.000

3 3 2021-11-04 18:00:32 0 15.650.000

4 4 2021-11-04 17:40:53 0 9.225.000

5 5 2021-11-04 16:55:32 0 2.575.000

6 6 2021-11-04 16:04:45 0 3.025.000

7 7 2021-11-04 15:55:44 0 19.150.000

8 8 2021-11-04 15:40:33 0 15.400.000

9 9 2021-11-04 15:05:00 0 15.650.000

10 10 2021-11-04 14:34:05 0 9.225.000

11 1 2021-11-03 13:00:54 0 2.575.000

12 2 2021-11-03 12:04:00 0 3.025.000

dst dst Dst dst dst

1000 10 2021-07-28 22:11:41 0 9.225.000

Tests are carried out using the Python programming language and the firebase_admin library.

Python is a programming language that is widely used for the analysis process because it is dynamic, object-

oriented, and has good modularity [34]. Python also claims to be a language that combines capabilities,

abilities, and an obvious code syntax and is equipped with automatic memory management [35], [36]. Python

programming language also has advantages in developing a software product with a large and extensive

mailto:Aprilia@gmail.com
mailto:Sri.Astuti@gmail.com
mailto:Annisa@gmail.com
mailto:Bella@gmail.com
mailto:Dina@gmail.com
mailto:Fahdilla@gmail.com
mailto:Fitri.Ayu@gmail.com
mailto:Putri.Ayu@gmail.com
mailto:Hendra@gmail.com
mailto:Indra@gmail.com

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 28, No. 2, November 2022: 1128-1138

1134

library [37]. Test conducts for relational databases and a low-cost version in the Python programming

language, as illustrated in Figure 4.

Table 5. Tb_detail_transaksi
Id Id_transaksi Id_barang Jumlah Harga_jual

1 1 1 1 4.000.000

2 1 2 1 1.500.000

3 1 3 1 6.500.000

4 1 4 1 7.000.000

5 1 5 1 150.000

6 2 2 1 1.500.000

7 2 3 1 6.500.000

8 2 4 1 7.000.000

9 2 5 1 150.000

10 2 6 1 250.000

dst dst dst dst dst

5000 1000 8 1 75.000

Low-Cost Version of Database Testing

Program Code

docUser = db.collection('tb_user')

docBarang = db.collection('tb_barang')

docTrx = db.collection('tb_transaksi')

i = 0

#write data

while i<10 :

 docUser.add({

 'nama': item,

 'alamat': listAlamat[i],

 'no_telp': listNoHp[i],

 'email': listEmail[i],

 })

 docBarang.add({

 'kode_barang':listKodeBrg[i],

 'nama_barang':listNamaBrg[i],

 'jumlah':listJml[i],

 'satuan':'Pcs',

 'harga_barang':listHargaBrg[i],

 'harga_jual':listHargaJual[i],

 })

 i += 1

i = 0

while i < 1000:

 j=0

 dataBarang = []

 while j<5:

 dataBarang.append({

 "kode_barang":listKodeBrg[index],

 "nama_barang":listNamaBrg[index],

 "jumlah":1,

 "harga_jual":listHargaJual[index],

 })

 j+=1

Low-Cost Version of Database Testing

Program Code

 docTrx.add({

 'data_user':[

 listNama[idUser],

 listAlamat[idUser],

 listNoHp[idUser],

 listEmail[idUser],],

 'data_barang':dataBarang,

 'tanggal':tanggalStr,

 'diskon':0,

 'total_harga': listTotalHarga[i]

 })

#read data

doc_trxData = docTrx.stream()

for doc in doc_trxData:

 print(f'{doc.id} => {doc.to_dict()}')

#delete data

doc_userData = docUser.where('nama', '==',

'Bella').get()

for doc in doc_userData:

 key = doc.id

 docUser.document(key).delete()

 doc_trxData = docTrx.where('data_user',

'array_contains', 'Bella').get()

 for docTrx in doc_trxData:

 keyTrx = docTrx.id

 docTrx.document(keyTrx).delete()

Figure 4. Program Code Implementation in Python

3. RESULTS AND DISCUSSION

3.1. Test results on the relational database model

The write data process is carried out by inputting user data, item data, favorite data, transaction data,

and transaction detail data. The request used for the write data process is 6,030 requests. The use of storage

space to accommodate all the data is 0.0011 GB. The read data process is carried out by reading/retrieving

transaction data along with user and item information. The request used is 12,000 request read. Finally, the

delete process is carried out by deleting user data along with transactions and transaction details. The request

used is 601 request read and 601 request delete. The test results are shown in Table 6.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Data storage model in low-cost mobile applications (I Made Sukarsa)

1135

3.2. Test results on the low-cost version of the database model

The write data process is carried out by inputting user data, item data, and transaction data. The

request used is 1020 request write. The use of storage space to accommodate all the data is 0.00058 GB. The

read data process is carried out by reading/retrieving transaction data along with user and item information.

The request used is 1000 requests. The delete process is carried out by deleting user data along with

transactions and transaction details. The request used is 101 request read and 101 request delete. The test

results are shown in Table 7.

Table 6. Test results on the normalized database model
Testing Result

Storage Usage 0.0011GB

Write Data 6030 request write

Read Data 12000 request read

Delete Data 601 request read & 601 request delete

Table 7. Test results on the low-cost version of the database model
Testing Result

Storage Usage 0.00058GB

Write Data 1020 request write

Read Data 1000 request read

Delete Data 101 request read & 101 request delete

3.3. Test result analysis

The test results show that the use of storage, write processes, read processes, and delete processes in

the low-cost version of the database model is smaller than the relational database model. The percentage

value of comparison obtained in storage savings of 47.27%, write process of 83.08%, read process of

91.26%, and delete process of 83.19% compared to the relational database model. The percentages generated

in Table 8 show that the low-cost version of the database with the Cloud Firestore implementation provides

the advantage/savings compared to the relational database. The percentage value generated from the test

results obtains using (1).

𝑃 = (𝑁𝑉𝐻 − 𝑁𝑁) ÷ 𝑁𝑁 𝑥 100% (1)

The variables description in (1) is as follows. NP is the percentage value wanted to find, and NVH is

the value obtained from the test results on the low-cost version of the database model. Besides, NN is the

value obtained from the test results on the relational database model. The test results are shown in Table 8.

Table 8. Results comparison

Testing
Model Database

Percentage
Normalized Version Low-Cost Version

Storage Usage 0.0011GB 0.00058GB 47,27%

Write Data 6030 request write 1020 request write 83,08%

Read Data 12000 request read 1000 request read 91,26%

Delete Data 601 request read & 601 request delete 101 request read & 101 request delete 83,19%

The low cost version model in this study is not only suitable for use on transaction-based (OLTP) as

in the example above, but also need to be applied to various services such as data exchange between

applications and chatbots [38]-[40].

4. CONCLUSION

The process of redesigning the database to produce a low-cost version of the database model was

obtained from breaking the relational database into SQLite and NoSQL databases, followed by a

denormalization process. An optimization process will be carried out in the NoSQL database by changing the

table structure and data type to become a low-cost version of the NoSQL database. The purpose of making

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 28, No. 2, November 2022: 1128-1138

1136

this database model is to save the cost of storing and processing data transactions (write, read and delete) on

Cloud Firestore. The database model test was carried out with 6,030 data consisting of 10 item data; 10 user

data; 10 favorite data; 1,000 transaction data; and 5,000 transaction detail data. The test results obtained from

the low-cost version of the database model were the storage usage of 0.00058GB, the write process usage of

1,020 requests, the read process usage of 1,101 requests, and the delete process usage of 101 requests. In

addition, savings in storage usage of 47.27%, the write process usage of 83.08%, the read process usage of

91.26%, and the delete process usage of 83.19% compared to the test results of the relational database model.

Furthermore, it is necessary to test database stress with various transactions both in terms of query variations,

volume and user redundancy so that a critical point is obtained related to key matters in the application of

design in non relational databases.

ACKNOWLEDGEMENTS

Thank you to Indonesia's Ministry of Education, Culture, Research and Technology who has funded

this research through the PTUPT scheme with contract number B/107-8/UN14.4.A/PT.01.03/2022. Thanks

also to Institute for Research and Community Service (Udayana University) who has facilitated the

implementation of this research.

REFERENCES
[1] A. A. G. Singh, E. J. Leavline, and J. Selvam, “Mobile application for m-learning,” International Journal of Advance Research in

Computer Science, vol. 8, no. 3, pp. 313–317, 2017.

[2] R. C. Dinatha, I. M. Sukarsa, and A. A. K. Cahyawan, “Data exchange service using google drive API,” International Journal of

Computer Applications, vol. 154, no. 7, pp. 12–16, 2016.

[3] G. H. Surya, I. M. Sukarsa, and I. G. M. A. Sasmita, “Two-ways database synchronization in homogenous database management

system with binary log approach,” Journal of Theoretical and Applied Information Technology, vol. 65, no. 1, pp. 76–82, 2014.

[4] R. Gudakesa, I. M. Sukarsa, and I. G. M. A. Sasmita, “Two-ways database synchronization in homogeneous DBMS using audit

log approach,” Journal of Theoretical and Applied Information Technology, vol. 65, no. 3, pp. 854–859, 2014.

[5] M. A. Belfedhal and M. Malki, “MASHUP of linked data and Web API,” International Journal of Information Technology and

Computer Science, vol. 10, no. 6, pp. 64–71, 2018, doi: 10.5815/ijitcs.2018.06.07.

[6] C. Louw and C. Nieuwenhuizen, “Digitalization strategies for SMEs: A cost vs. skill approach for website development,” African

Journal of Science, Technology, Innovation and Development, vol. 12, no. 2, pp. 195–202, 2020, doi:

10.1080/20421338.2019.1625591.

[7] A. Agocs and J. M. Le Goff, “A web service based on RESTful API and JSON Schema/JSON Meta Schema to construct

knowledge graphs,” CITS 2018 - 2018 International Conference on Computer, Information and Telecommunication Systems, pp.

1–5, 2018, doi: 10.1109/CITS.2018.8440193.

[8] A. Soni and V. Ranga, “API features individualizing of web services: REST and SOAP,” International Journal of Innovative

Technology and Exploring Engineering, vol. 8, no. 9 Special Issue, pp. 664–671, 2019, doi: 10.35940/ijitee.I1107.0789S19.

[9] A. Belkhir, M. Abdellatif, R. Tighilt, N. Moha, Y. G. Gueheneuc, and E. Beaudry, “An observational study on the state of REST

API uses in android mobile applications,” Proceedings - 2019 IEEE/ACM 6th International Conference on Mobile Software

Engineering and Systems, MOBILESoft 2019, pp. 66–75, 2019, doi: 10.1109/MOBILESoft.2019.00020.

[10] D. Rathod, “Performance Evaluation of Restful Web Services and Soap / Wsdl Web Services,” International Journal of Advanced

Research in Computer Science, vol. 8, no. 7, pp. 415–420, 2017, doi: 10.26483/ijarcs.v8i7.4349.

[11] A. Dudhe and S. S. Sherekar, “Performance analysis of SOAP and RESTful Mobile web services in cloud environment,”

International Journal of Computer Applications, pp. 975–8887, 2014.

[12] I M. Sukarsa, I N. Piarsa, and I G. B. P. Putra, “Application of MVP architecture in developing android-based seminar ticket

booking applications,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 4, no. 3, pp. 513–520, 2020, doi:

10.29207/resti.v4i3.1396.

[13] T. Aziz, E. Haq, and D. Muhammad, “Performance based comparison between RDBMS and OODBMS,” International Journal of

Computer Applications, vol. 180, no. 17, pp. 42–46, 2018, doi: 10.5120/ijca2018916410.

[14] S. Palanisamy and P. Suvithavani, “A survey on RDBMS and NoSQL Databases MySQL vs MongoDB,” 2020 International

Conference on Computer Communication and Informatics, ICCCI 2020, 2020, doi: 10.1109/ICCCI48352.2020.9104047.

[15] S. Venkatraman, K. F. S. Kaspi, and R. Venkatraman, “SQL versus NoSQL movement with big data analytics,” International

Journal of Information Technology and Computer Science, vol. 8, no. 12, pp. 59–66, 2016, doi: 10.5815/ijitcs.2016.12.07.

[16] S. Singh, “Security Analysis of MongoDB,” International Journal for Digital Society, vol. 10, no. 4, pp. 1556–1561, 2019, doi:

10.20533/ijds.2040.2570.2019.0193.

[17] G. Kaur and J. Kaur, “In-memory data processing using redis database,” International Journal of Computer Applications, vol.

180, no. 25, pp. 26–31, 2018, doi: 10.5120/ijca2018916589.

[18] M. Potey, M. Digrase, G. Deshmukh, and M. Nerkar, “Database migration from structured database to non- structured database,”

International Journal of Computer Applications, no. Icrtaet, pp. 975–8887, 2015.

[19] I. M. Sukarsa, I. K. G. D. Putra, N. P. Sastra, and L. Jasa, “A new framework for information system development on instant

messaging for low cost solution,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 16, no. 6, pp. 2799–

2808, 2018, doi: 10.12928/TELKOMNIKA.v16i6.8614.

[20] F. M. Dahunsi, A. J. Joseph, O. A. Sarumi, and O. O. Obe, “Database management system for mobile crowdsourcing

applications,” Nigerian Journal of Technology, vol. 40, no. 4, pp. 713–727, 2021, doi: 10.4314/njt.v40i4.18.

[21] R. B. S. Mathavan, V. Rohitram, C. Ashhwath, and P. Sasikumar, “Drowsiness detection and rest stop suggestion,” Journal of

Physics: Conference Series, vol. 2115, no. 1, p. 012028, 2021, doi: 10.1088/1742-6596/2115/1/012028.

[22] M. Srivastava, V. Yadav, and S. Singh, “Implementation of Web application for disease prediction using AI,” BOHR

International Journal of Data Mining and Big Data, vol. 1, no. 1, pp. 5–9, 2020, doi: 10.54646/bijdmbd.002.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Data storage model in low-cost mobile applications (I Made Sukarsa)

1137

[23] R. A. M. Razid, A. F. Ibrahim, M. N. F. Jamaluddin, and R. A. J. M. Gining, “My-Wakaf: A Waqf of Property Management

Application,” Journal of Computing Research and Innovation, vol. 6, no. 2, pp. 128–141, 2021, doi: 10.24191/jcrinn.v6i2.213.

[24] K.-K. R. Choo, “Mobile Cloud Storage Users,” IEEE Cloud Computing, vol. 1, no. 3, pp. 20–23, Sep. 2014, doi:

10.1109/MCC.2014.61.

[25] D. Bibicu, L. Moraru, and S. Moldovanu, “Local or external databases in android programming. a practical comparative study,”

Annals of Dunarea de Jos University. Fascicle I : Economics and Applied Informatics, vol. 24, no. 1, pp. 28–32, 2018.

[26] H. J. Kim, E. J. Ko, Y. H. Jeon, and K. H. Lee, “Migration from RDBMS to column-oriented NoSQL: lessons learned and open

problems,” Lecture Notes in Electrical Engineering, vol. 461, pp. 25–33, 2018, doi: 10.1007/978-981-10-6520-0_3.

[27] H. J. Kim, E. J. Ko, Y. H. Jeon, and K. H. Lee, “Techniques and guidelines for effective migration from RDBMS to NoSQL,”

Journal of Supercomputing, vol. 76, no. 10, pp. 7936–7950, 2020, doi: 10.1007/s11227-018-2361-2.

[28] M. S. Vighio, T. J. Khanzada, and M. Kumar, “A tool for query normalization and elimination of redundancy,” Sindh University

Research Journal (Science Series), vol. 50, pp. 143–147, 2018.

[29] K. Kumar and S. Kumar, “Relational database design: a review,” International Journal of Computer Applications, vol. 176, no. 6,

pp. 14–18, 2017, doi: 10.5120/ijca2017915626.

[30] S. T. Bhosale, T. Patil, and P. Patil, “SQLite: light database system,” International Journal of Computer Science and Mobile

Computing, vol. 44, no. 4, pp. 882–885, 2015.

[31] Y. Wang, Y. Shen, C. Su, J. Ma, L. Liu, and X. Dong, “CryptSQLite: SQLite with high data security,” IEEE Transactions on

Computers, vol. 69, no. 5, pp. 666–678, 2020, doi: 10.1109/TC.2019.2963303.

[32] B. Smitha and K. Shirisha, “Implementation of business register record application on android platform,” International Journal of

Computer Applications, vol. 156, no. 7, pp. 21–26, 2016, doi: 10.5120/ijca2016912464.

[33] N. Kojic and D. Milicev, “Equilibrium of redundancy in relational model for optimized data retrieval,” IEEE Transactions on

Knowledge and Data Engineering, vol. 32, no. 9, pp. 1707–1721, 2020, doi: 10.1109/TKDE.2019.2911580.

[34] S. Amghar, S. Cherdal, and S. Mouline, “Storing, preprocessing and analyzing tweets: finding the suitable noSQL system,”

International Journal of Computers and Applications, 2020, doi: 10.1080/1206212X.2020.1846946.

[35] J. Blank and K. Deb, “Pymoo: Multi-objective optimization in python,” IEEE Access, vol. 8, pp. 89497–89509, 2020, doi:

10.1109/ACCESS.2020.2990567.

[36] A. Javed, M. Zaman, M. M. Uddin, and T. Nusrat, “An analysis on python programming language demand and its recent trend in

bangladesh,” ACM International Conference Proceeding Series, pp. 458–465, 2019, doi: 10.1145/3373509.3373540.

[37] K. R. Srinath, “Python -The Fastest Growing Programming Language,” International Research Journal of Engineering and

Technology, vol. 4, no. 12, pp. 354–357, 2017, [Online]. Available: www.irjet.net.

[38] N. W. Wisswani and I. W. K. Wijaya, “Message oriented middleware for library’s metadata exchange,” TELKOMNIKA

(Telecommunication Computing Electronics and Control), vol. 16, no. 6, p. 2756, Dec. 2018, doi:

10.12928/telkomnika.v16i6.9475.

[39] I. M. Sukarsa, P. W. Buana, and U. Yogantara, “Multi parameter design in AIML framework for balinese calendar knowledge

access,” KSII Transactions on Internet and Information Systems, vol. 14, no. 1, pp. 114–130, Jan. 2020, doi:

10.3837/tiis.2020.01.007.

[40] I. Made Sukarsa, N. W. Wisswani, and P. Wirabuana, “Data exchange delivery between information system at low bandwidth

quality using messaging,” Journal of Theoretical and Applied Information Technology, vol. 60, no. 2, pp. 417–422, 2014.

BIOGRAPHIES OF AUTHORS

I Made Sukarsa he obtained his Doctoral Degree in Udayana University in 2019.

He currently works as a lecturer in the Department of Information Technology University of

Udayana. His research interests are Natural Language Processing, Integration System, Data

Warehouse, Middleware, and Information Technology Governance. Until now, He has written

several studies in dozens of international journals indexed scopus. He can be contacted at

email: sukarsa@unud.ac.id.

I Kadek Ari Melinia Antara he obtained his Bachelor Degree in Departement of

Information Technology at Udayana University, Bali, Indonesia. He has the ability as a web

developer, mobile application developer and data management. His research interests are

Industry Application. He can be contacted at email: kadek_ari@gmail.com.

https://orcid.org/0000-0002-6396-4048
https://www.scopus.com/authid/detail.uri?authorId=56009093600
https://orcid.org/0000-0003-0355-946X

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 28, No. 2, November 2022: 1128-1138

1138

Putu Wira Buana he obtained his Master Degree in The Science of Applied

Electronics at Brawijaya University in 2007. He currently works as a lecturer in the

Department of Information Technology University of Udayana. His research interests are

Emerging Technology, And Industry Application. Until now, He has written several studies in

dozens of international journals indexed scopus. He can be contacted at email:

wbhuana@gmail.com.

I Putu Agung Bayupati received the Bachelor of Engineering degree in

Electrical Engineering from Udayana University, and Master of Engineering degree in

Information Technology from Bandung Institute of Technology and Ph.D degree in Electrical

Engineering and Computer Science from Kanazawa University in 2001, 2006 and 2012

respectively. He joined to Udayana University in 2003 as a lecturer. His research interest are

in intelegent signal processsing, computer vision and Business analytics. He can be contacted

at email: bayupati@unud.ac.id.

Ni Wayan Wisswani she obtained her Master Degree in Fac. of Electrical

Engineering at Udayana University. She currently works as a lecturer in the Department of

Informatics Management of Bali. She can be contacted at email: wisswani@pnb.ac.id.

Dina Wahyuni Puteri she graduated from SMAN 1 Melaya in 2018. She is

currently in the process of studies at the Department of Information Technology, Udayana

University for Bachelors Degree. During in college, she actively participates in student

organization, both within in study program, faculty, and university. She can be contacted at

email: wahyuni_d@gmail.com.

https://orcid.org/0000-0001-8554-3722
https://www.scopus.com/authid/detail.uri?authorId=56026370400
https://orcid.org/0000-0003-0638-0756
https://www.scopus.com/authid/detail.uri?authorId=55443157000
https://orcid.org/0000-0003-0318-4178
https://orcid.org/0000-0002-5610-8681

