
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 26, No. 1, April 2022, pp. 587~596 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v26.i1.pp587-596      587  

 

Journal homepage: http://ijeecs.iaescore.com 

Elastic net feature selected multivariate discriminant 

mapreduce classification 
 

 

Arunadevi Nakkiran1, Vidyaa Thulasiraman2 
1Department of Computer Science, Periyar University, Salem, India 

2Department of Computer Science, Govt Arts and Science College for Women, Bargur, India 

 

 

Article Info  ABSTRACT  

Article history: 

Received Sep 4, 2021 

Revised Feb 1, 2022 

Accepted Feb 10, 2022 

 

 Analyzing the big stream data and other valuable information is a significant 

task. Several conventional methods are designed to analyze the big stream 

data. But the scheduling accuracy and time complexity is a significant issue. 

To resolve, an elastic-net kernelized multivariate discriminant map reduce 
classification (EKMDMC) is introduced with the novelty of elastic-net 

regularization-based feature selection and kernelized multivariate fisher 

Discriminant MapReduce classifier. Initially, the EKMDMC technique 

executes the feature selection to improve the prediction accuracy using the 
Elastic-Net regularization method. Elastic-Net regularization method selects 

relevant features such as central processing unit (CPU) time, memory and 

bandwidth, energy based on regression function. After selecting relevant 

features, kernelized multivariate fisher discriminant mapr classifier is used to 
schedule the tasks to optimize the processing unit. Kernel function is used to 

find higher similarity of stream data tasks and mean of available classes. 

Experimental evaluation of proposed EKMDMC technique provides better 

performance in terms of resource aware predictive scheduling efficiency, 
false positive rate, scheduling time and memory consumption. 
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1. INTRODUCTION  

In the era of big data, organizations have started to use big data stream computing as it has several 

advantages and risks from real-time big data. Big data stream computing hence has evolved as a mean in 

several applications including social networks, trading, video surveillance, and fraud identification and so on. 

Several research works have been incepted with both opportunities and challenges. Elastic online scheduling 

framework for big data streaming applications (E-Stream) by Sun et al. [1] with the objective of reducing the 

system response time and application fairness. But less focus was made on predictive scheduling accuracy. A 

novel predictive scheduling framework was designed by Li et al. [2] with the objective of ensuring fast and 

stream data processing. However, the time complexity in predictive scheduling remained unsolved. Given the 

significant nature of big data and big data analytics, critical analysis pertaining to big data challenges was 

presented by Sivarajah et al. [3]. According to Fernandes et al. [4] the finding of analysis from a metallurgic 

company was presented. Multivariate Gaussian function was used by Toit [5] to monitor critical variables. A 

fast and efficient distributed stream processing framework was presented by Choi et al. [6]. Bowden et al. [7] 

the design and prototype implementation of enabling predictive maintenance of industrial equipment was 

designed. Taxonomy, review, and future directions related to scheduling in distributed stream processing 

systems were designed Liu and Buyya [8]. A resource aware dynamic data stream model was designed by 

https://creativecommons.org/licenses/by-sa/4.0/
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Gautam et al. [9]. Yet another work by Usama et al. [10] focused on the problems and challenges in big data. 

To overcome the above issues such as higher predictive scheduling accuracy and minimum the time 

complexity, less false positive rate. In this paper, an efficient technique called elastic-net kernelized 

multivariate discriminant map reduce classification (EKMDMC) is introduced. The novel contributions of the 

proposed method include the following. 

- For pre-processing, Elastic-net regularization is a regression method is introduced to accurately estimate 

the relationship between dependent and independent variables to avoid overfitting of model, according 

to the least absolute shrinkage and selection operator (LASSO) predictive model. Elastic-Net 

Regularization is a regression method applied to not only estimate the relationship among dependent 

and one or more independent variables, but also to avoid overfitting of model on training data. 

- For classification, Elastic-net kernelized multivariate discriminant mapreduce classification is 

presented for reducing scheduling time by using minimum resources. Resource efficient processing unit 

prediction is performed via Kernelized Multivariate fisher discriminant mapreduce classifier 

(KMFDMC) with relevant features such as CPU time, Bandwidth Utilization, Memory Consumption 

and energy for scheduling tasks. 

- The proposed technique is implemented in Python and tested with resource aware predictive scheduling 

efficiency, false positive rate, scheduling time and memory consumption for varying number of stream 

data. 

The rest of paper is organized as shown in: A related work is presented in section 2. Design and 

implementation details of proposed technique are presented in section 3. A detailed discussion is presented in 

section 4 and concludes in section 4. 

 

 

2. RESEARCH METHOD 

According to Dehkordi and Zamanifar [11] a deadline aware scheduling framework was designed 

for minimizing latency and utilization cost. Yet another graphic processing units (GPU) enabled online 

stream data processing was designed by Chen et al. [12]. Modified first-fit based run time aware data stream 

scheduling strategy was designed by Sun et al. [13]. Dual channel pipeline parallel data processing model 

was designed in [14]. Yet another method based on double level hybrid genetic algorithm and ant colony 

optimization was presented by Xu et al. [15] to address dynamic simultaneous scheduling problem. A 

relatively novel intelligent model was designed in [16]. A review of complexity of managing bit data was 

presented in [17]. However, the scheduling process was not considered. To address this issue, by Gil et al. 

[18] a flexible resource-constrained project scheduling issue with competency differences was presented. A 

comprehensive approach based on novel deep learning models was presented in  [19]. A novel priority-aware 

streaming media multi path data scheduler mechanism was designed in [20] for multimedia Multipathing 

services. Integrated support for similarity queries in a parallel Big Data management system was introduced 

in [21]. Haery based query system called Hadoop query (Haery) was developed in [22] to process the high 

dimensional data. Machine learning approach was introduced in [23]  for reality awareness and optimization 

in cloud. Two decision tree classification methods were introduced in [24] for automatically find priority 

rules to solve the resource constrained project scheduling problem (RCPSP). A [25], [26] centralized 3-

dimensional radio resources (namely, time, frequency, and power) allocation and scheduling approach for 

control-plane and [27] user-plane (C-/U-plane) separation architectures for fifth generation mobile networks. 

 

 

3. RESULTS AND DISCUSSION 

This big data stream refers to term used in representing huge amounts of data where continuous data 

stream is processed for extracting real-time insights. Such large voluminous data appears in different formats 

that cannot be processed with traditional methods. In this work, elastic-net kernelized multivariate 

discriminant MapReduce classification (EKMDMC) is presented to perform feature selection and resource 

aware predictive scheduling for big data stream. 

Figure 1 shows architecture diagram of proposed EKMDMC technique. The input is obtained from 

the big dataset ‘𝐷𝑏’. Consider ‘m’ number of processing units ‘𝑝1, 𝑝2,𝑝3, … 𝑝𝑚’ that process ‘𝑛’ number of 

data streams ‘sd1, sd2, sd3, … sdn’. Initially, Elastic-net regularization is applied to perform feature selection 

for selecting relevant features such as central processing unit (CPU), bandwidth, memory and energy. After 

selecting relevant features, resource efficient processing unit is determined by applying kernelized 

multivariate fisher discriminant MapReduce classifier. Finally, stream data task scheduling is carried out with 

higher accuracy. The different processes involved in design of the EKMDMC technique are described in the 

forthcoming sections. 
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Figure 1. Architecture diagram of proposed EKMDMC technique 

 

 

3.1.  Elastic-net regularization based feature selection 

The first process of Feature selection is performed here by applying Elastic-Net regularization. 

Elastic-Net regularization is a regression method applied to check the overfit present in the training data. 

EKMDMC technique uses the Elastic-Net regularization method to solve the issue based on LASSO 

Predictive model. Here, single variable from a group of highly relevant variables, and rejecting highly 

irrelevant variables. This is performed by adding regularization term to given equation. Besides, Elastic-Net 

Regularization is applied for both parameter estimation (i.e. prediction of average data processing time) and 

feature selection, where more relevant features are selected among group of features for performing 

predictive scheduling. The elastic-net method is defined as (1), 

 

𝜌 = arg min(‖𝑦 − 𝛼𝐹‖2 + 𝖯2‖𝛼‖2 + 𝖯1‖𝛼‖1) (1) 

 

From (1), ‘𝐹’ representing a feature set ‘{𝐹1, 𝐹2, 𝐹3, … . 𝐹𝑛}’ and regularization term of ‘‖𝛼‖’, ‘𝖯1’ 

and ‘𝖯2’ parameters controlling the importance of regularization term with value between ‘0’ and ‘1’, 

apredicted output ‘𝑦’ is determined using regression coefficient ‘𝜌’. The regression coefficient returns with 

zero for irrelevant features and one for relevant features. Using (1), relevant features such as central 

processing unit (CPU) time, memory and bandwidth, energy are selected for predicting average processing 

time of stream data. CPU time here, refers to time consumed in accomplishing task and as shown in (2). 

 

𝑡𝑐𝑝𝑢 = 𝑡𝑐𝑡( sdi) (2) 

 

From (2), the CPU time of processing unit ‘𝑡𝑐𝑝𝑢’ refers to stream data ‘sdi’ task completion time 

‘𝑡𝑐𝑡’. One of the main characteristics of processing unit is memory that refers to storage space utilized by 

processing unit to complete certain task. The memory utilization of processing unit is expressed as (3). 

 

𝑚𝑢𝑡 = 𝑚𝑡 − 𝑚𝑢𝑑 (3) 

 

From (3), the memory utilization of processing unit ‘𝑚𝑢𝑡’ is the difference between total memory 

‘𝑚𝑡’ and unused space of processing unit ‘𝑚𝑢𝑑’. Besides CPU time and memory utilization, energy 

consumption of processing unit is considered for processing stream data. The energy consumption ‘𝐸𝑐’ refers 

to difference between the total energy ‘𝐸𝑇’ and remaining energy ‘𝐸𝑇’ of processing unit and given as (4). 

 

𝐸𝑐 = 𝐸𝑇 – 𝐸𝑅 (4) 

 

Finally, bandwidth utilization ‘𝑏𝑤𝑢’ is average rate of data transfer speed of processing unit, that is 

difference between available bandwidth ‘𝑏𝑤𝑡’ and unused bandwidth ‘𝑏𝑤𝑢𝑑’. The bandwidth utilization of 

processing unit is computed as shown in (5). 
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𝑏𝑤𝑢 = 𝑏𝑤𝑡 − 𝑏𝑤𝑢𝑑 (5) 

 

The elastic-net regression method predicts the processing time of unit. The stream data tasks with 

lower CPU time and lower task size (i.e. memory) take less processing time. The elastic-net regression 

method increases the scheduling accuracy by selecting the relevant features of the processing unit. 

 

3.2.  Kernelized multivariate fisher discriminant mapreduce classifier 

After selecting relevant features, resource efficient processing unit prediction is performed via 

kernelized multivariate fisher discriminant mapreduce classifier (KMFDMC) with relevant features. 

MapReduce function includes two phases namely map phase and reduce phase. Here, the streams data are 

mapped to appropriate processing unit using kernelized multivariate fisher discriminant with relevant 

features. Next, a summary operation is carried out by providing final output results. Figure 2 illustrates 

KMFDMC for efficient prediction as well as resource aware scheduling. Let us consider a number of stream 

data tasks ‘sd1, sd2, sd3, … sdn’ as input. Initially, a number of classes (i.e. processing unit) ‘ p1, p2, p3, … . 

pn’ are initialized. 

 

 

 
 

Figure 2. Flow process of kernelized multivariate fisher discriminant mapreduce classifier (KMFDMC) 

 

 

Map Phase takes an input and transforms the content into Key-Value pair in which the key forms 

distinctive keywords combination. Based on combination of keywords, the Kernelized Multivariate Fisher 

Discriminant predicts the processing unit and performs scheduling process. The KMFDMC uses discriminant 

vector maps to map different incoming stream data into different classes. Fisher defined as the separation 

function which is ratio of variance between classes to variance within class is defined as shown in (6). 

 

𝑠𝑛 =
𝜎𝑏

𝜎𝑤
=

𝑤𝑠𝑟 (𝑏)𝑑

𝑤𝑠𝑏(𝑏)𝑑
 (6) 

 

From (6), the separation function ‘𝑠𝑛’ refers to ratio of variance between class ‘𝜎𝑏’ and variance 

within the class ‘
𝜎𝑏

𝜎𝑤
’. This is obtained using a linear discriminant vector ‘𝑤’ into class based on optimal 

projection direction ‘𝑑’ with aid of scatter matrix between ‘𝑠𝑟  (𝑏)’ and within ‘𝑠𝑟  (𝑤)’classes. Scatter matrix 

is applied to find whether the processing unit is suitable to handle stream data. Besides scatter matrix, a mean 

value is initialized for each class. In KMFDMC, a kernel function finds the similarity between the mean of 

the class and stream data tasks. Here the distance similarity is measured to find the resource efficient 

processing unit. 

 

𝑘(sdi, 𝜇𝑗) = ‖sdi − 𝜇𝑗‖2 (7) 
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From (7), distance similarity is obtained via kernel function ‘𝑘(sdi, 𝜇𝑗)’. With resultant value, fisher 

discriminant analysis identifies the minimum distance between the stream data task ‘sdi’ and mean of classes 

‘𝜇𝑗’ (i.e. processing unit). 

 

𝑓(𝑥) = arg min ‖sdi − 𝜇𝑗‖
2

 (8) 

 

From (8), 𝑓(𝑥) denotes an output of fisher discriminant analysis, arg 𝑚𝑖𝑛 denotes an argument of 

minimum function. The minimum distance represents higher similarity between mean and stream data task. It 

means that specific processing unit is suitable for completing certain stream data task with less resource 

utilization. Fisher discriminant analysis predicts efficient processing unit for all incoming tasks. After 

predicting resource efficient processing unit, the stream data tasks are scheduled with corresponding unit. 

 

Algorithm 1 Elastic-Net Kernelized Multivariate Discriminant Map Reduce Classification 
Input: Number of stream data task sd1, sd2, sd3, … sdn, processing unit (𝑝1, 𝑝2, 𝑝3, … . . 𝑝𝑛) 

Output: Improve resource aware predictive scheduling efficiency  

Begin  

\\ feature selection  

1. Apply regression 𝜌 to select the features Central Processing Unit (CPU) 
time, memory, bandwidth, energy 

2.  For each processing unit 𝑝𝑖 

3.  Calculate 𝑡𝑐𝑝𝑢, 𝑚𝑢𝑡, 𝐸𝑐, 𝑏𝑤𝑢 

4. End for 

\\prediction and scheduling  

5.  Initialize number of classes 𝑐𝑗 

6. Define class separability function 𝑠𝑛 

7.  Define the mean of the class 𝜇𝑗 

8. For each stream data task sdi 

9. For each mean of the class 𝜇𝑗 

10.  Measure similarity 𝑘(sdi, 𝜇𝑗) 

11.  Find minimum distance arg min ‖sdi − 𝜇𝑗‖
2
 

12.  Predict resource efficient 𝑝𝑖 

13.  Schedule sd𝑖 to 𝑝𝑖 

14. End for 
15. End for 

 End 

 

Algorithm 1 describes the Elastic-Net kernelized multivariate discriminant MapReduce 

classification  (EKMDMC) to improve scheduling efficiency by utilizing minimum resources. 

 

 

4. FIGURES AND TABLES 

The experimental evaluation is performed with epileptic seizure recognition dataset 

https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition. Epileptic seizure recognition dataset is 

high dimensional dataset includes 11500 instances and 179 attributes. Comparative analysis and discussion is 

made four different parameters, resource aware predictive scheduling efficiency, false positive rate, 

scheduling time and memory consumption with number of stream data tasks. Associated tasks are 

classification and clustering. The dataset characteristics are multivariate and time series. Experimental 

configuration as shown in Table 1. 

 

 

Table 1. Tabulation for experimental configuration 
Requirements Specification 

Software Python 3.5 

Processor Intel i3-4130 3.40GHz 

RAM 2 GB and above 

Operating System Windows 7, 10 

 

 

4.1.  Impact of resource aware predictive scheduling efficiency 

Resource aware predictive scheduling efficiency measures percentage ratio of number of tasks 

correctly scheduled to resource aware optimized processing unit ‘𝑅𝐴𝑂𝑃𝑈𝑖 ’ to number of data task ‘𝑁’. As 

shown in (9). 

 

file://///prediction
https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition.
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𝑅𝑃𝑆𝐸 =  
𝑅𝐴𝑂𝑃𝑈𝑖

𝑁
∗ 100 (9) 

 

From (9), resource aware predictive scheduling efficiency ‘N’ is measured in percentage. Table 2 

illustrates the convergence graph of resource aware scheduling efficiency using three different methods, 

EKMDMC, E-Stream [1] and predictive scheduling framework [2]. With the increase in the number of 

data tasks from 100 to 1000, the convergence graph shows a decreasing trend and then increasing trend is 

found. Hence, the graph of resource aware scheduling efficiency is neither inversely nor directly proportional 

to number of tasks. With 100 number of data tasks considered for experimentation. Resource aware 

predictive scheduling efficiency using EKMDMC, E-Stream [1], and predictive scheduling framework [2] 

was ‘83.71%’, ‘77.57%’and ‘70.42%’. 

 

 

Table 2. Tabulation for resource aware scheduling efficiency 
Number of  

Data  task 

 Resource aware scheduling efficiency (%) 

EKMDMC E-Stream Predictive Scheduling framework 3D radio 

100 83.71 77.57 70.42 63.38 

200 79.25 76.35 67.55 56.75 

300 78.55 74.25 63.35 52.45 

400 76.35 71.15 61.15 51.15 

500 74.25 67.55 64.55 61.55 

600 77.15 64.35 60.35 56.35 

700 78.35 67.25 63.33 59.41 

800 80.45 69.35 61.55 53.75 

900 78.15 71.15 64.55 57.95 

1000 77.55 69.45 67.35 65.25 

 

 

Figure 3 shows the comparison of impact of resource aware predictive scheduling efficiency. The 

resource aware predictive scheduling efficiency using EKMDMC was improved due to the application of 

Elastic-Net kernelized multivariate discriminant MapReduce classification algorithm. This improved the 

resource aware scheduling efficiency using EKMDMC by 10% compared to [1], 21% compared to [2] and 

36% compared to [25], [26]. 

 

 

 
 

Figure 3. Comparison of resource aware predictive scheduling efficiency 

 

 

4.2.  Impact of false positive rate 

False positive rate refers to the percentage ratio of number of tasks incorrectly scheduled to resource 

aware processing unit ‘𝑅𝐴𝑂𝑃𝑈𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡’ to number of data task ‘𝑁’, as shown in (10). 

 

𝐹𝑃𝑅 =  
𝑅𝐴𝑂𝑃𝑈𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁
∗ 100 (10) 

 

From (10), false positive rate (𝐹𝑃𝑅) is measured in percentage (%). Lower false positive rate 

ensures the efficiency of the method. Table 3 illustrates the convergence graph of resource aware scheduling 

efficiency using three different methods, EKMDMC, E-Stream [1] and predictive scheduling framework 
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[2]. With the increase in the number of data tasks from 100 to 1000, the convergence graph shows a 

decreasing trend and then increasing trend is found. FPR using EKMDMC, E-Stream [1], and predictive 

scheduling framework [2] was ’13.28%’, ‘20.42’ and ‘27.57’. 

 

 

Table 3. Tabulation for false positive rate 
Number of  

Data Tasks 

 False positive rate (%) 

EKMDMC E-Stream Predictive Scheduling framework 3D radio 

100 13.28 20.42 27.57 34.72 

200 14.35 22.25 28.55 34.85 

300 16.2 24.55 30.35 36.15 

400 18.35 28.15 32.25 36.35 

500 20.45 31.35 34.55 37.75 

600 22.55 34.55 38.15 42.25 

700 29.25 36.25 40.25 44.25 

800 32.15 38.35 42.25 46.15 

900 34.44 40.25 43.55 47.85 

1000 38.25 42.35 44.55 48.75 

 

 

Figure 4 shows the false positive rate with 1000 different numbers of tasks. With the increase in 

number of data tasks, the FPR is found to be in the increasing trend. The FPR using EKMDMC, E-Stream [1] 

and Predictive Scheduling framework [2] was ’13.28%’, ‘20.42’ and ‘27.57’. From that, the false positive 

rate was reduced in EKMDMC. This is because of application of Kernelized Multivariate Fishe Discriminant. 

The FPR using EKMDMC is reduced by 26% compared to [1] 35% compared to [2] and 43% when 

compared to [25], [26]. 

 

 

 
 

Figure 4. Graphical representations for false positive rate 

 

 

Impact of scheduling time scheduling time refers to time consumed in scheduling resource aware for 

single data. It is formulated as shown in (11). 

 

𝑆𝑇 = 𝑁 ∗ 𝑇𝑖𝑚𝑒[𝑅𝐴𝑃𝑆] (11) 

 

From (11), scheduling time ‘𝑆𝑇’ is measured based on number of data tasks given as input ‘𝑁’ and 

time consumed in scheduling data tasks ‘𝑇𝑖𝑚𝑒[𝑅𝐴𝑃𝑆]’ for single data in a resource aware manner. It is 

measured in milliseconds (ms). Table 4 shows the convergence graph of scheduling time measured for 1000 

different numbers of data tasks. With increase in the number of data tasks, the time consumed in scheduling 

also increases due to the increase in the size of data tasks. Therefore, the overall scheduling time using 

EKMDMC, E-Stream [1] and Predictive Scheduling framework [2] were observed to be ‘0.148𝑚𝑠’, 

‘0.242𝑚𝑠’ and ‘0.27𝑚𝑠’. 

Figure 5 show the graphical representation for scheduling time. However, with the sample of ‘100’ 

number of data tasks. Therefore, the overall scheduling time using EKMDMC, E-Stream [1] and Predictive 

Scheduling framework [2] were observed to be ‘0.148𝑚𝑠’, ‘0.242𝑚𝑠’ and ‘0.27𝑚𝑠’. From this analysis, the 

scheduling time using EKMDMC were lesser than [1], [2]. This is because of reason that with the application 

of Elastic-net Regularization. The scheduling time using EKMDMC was lesser than 30%, 47%, 52% 

compared to [1], [2], [25], [26]. 
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Table 4. Tabulation for scheduling time 
Number of  

Data Tasks 

 Scheduling time (ms) 

EKMDMC E-Stream Predictive Scheduling framework 3D Radio 

100 0.148 0.242 0.27 0.35 

200 0.185 0.255 0.345 0.435 

300 0.203 0.305 0.405 0.505 

400 0.275 0.325 0.475 0.525 

500 0.305 0.375 0.515 0.545 

600 0.31 0.405 0.575 0.605 

700 0.318 0.465 0.625 0.658 

800 0.325 0.525 0.676 0.694 

900 0.341 0.574 0.705 0.715 

1000 0.375 0.604 0.725 0.760 

 

 

 
 

Figure 5. Graphical representations for scheduling time 

 

 

4.3.  Impact of memory consumption 

Memory consumption refers to memory consumed in scheduling resource aware for single data. As 

shown in (12). From (12), memory consumption ‘𝑀𝐶’ is measured based on number of data tasks given as 

input ‘𝑁’ and memory consumed in scheduling data tasks ‘𝑆𝑝𝑎𝑐𝑒[𝑅𝐴𝑃𝑆]’ for single data in resource aware 

manner. It is measured in kilobytes (KB). Table 5 shows the convergence graph of scheduling time measured 

for 1000 different numbers of data tasks. With increase in the number of data tasks, the time consumed in 

scheduling also increases due to the increase in the size of data tasks. Hence, from the table it is inferred that 

the scheduling time is directly proportional to number of data tasks. However, with the sample of ‘100’ 

number of data tasks. Therefore, the overall scheduling time using EKMDMC, E-Stream [1] and Predictive 

Scheduling framework [2] were observed to be ‘69𝐾𝐵’, ’97 KB’ and ‘124 𝐾𝐵’. 

 

𝑀𝐶 = 𝑁 ∗ 𝑆𝑝𝑎𝑐𝑒[𝑅𝐴𝑃𝑆] (12) 
 

 

Table 5. Tabulation for memory consumption 

Number of  

Data Tasks 

 Memory consumption (KB) 

EKMDMC E-Stream 
Predictive Scheduling 

framework 
3D radio 

100 69 97 124 151 

200 110 133 164 178 

300 113 154 188 203 

400 117 183 214 220 

500 122 194 223 29 

600 130 213 239 27 

700 143 224 254 29 

800 154 233 284 26 

900 173 254 288 310 

1000 188 288 319 328 

 

 

Figure 6 shows the results of memory consumed in scheduling data. From the figure, it is illustrative 

that the memory consumption is reduced using EKMDMC technique as compared to [1] and [2]. This is 

because of application of regression method. Therefore, memory consumed in resource aware predictive 

scheduling using EKMDMC technique is reduced by 32% compared to [1], 42% compared to [2] and 45% 

compared to [25], [26]. 
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Figure 6. Graphical representations for memory consumption 

 

 

5. CONCLUSION 

This paper presents elastic-net kernelized multivariate discriminate map reduce classification 

(EKMDMC) technique, which is a resource aware predictive scheduler for big stream data. It selects more 

relevant feature using KMFDMC to perform resource aware predictive scheduling and ensure that incoming 

stream data tasks are scheduled. EKMDMC technique reduces the false positive rate by utilizing the Fisher 

discriminant analysis. Simulation results show that EKMDMC technique provides better performance in 

terms of false positive rate, scheduling time, Memory consumption and resource aware predictive scheduling 

efficiency. However, EKMDMC technique considers only limited number of stream data task. In future 

work, number of data task further increased to evaluate performance of EKMDMC technique. Hence, future 

work of EKMDMC technique can be proceeded to solve multi-mode resource constrained project scheduling 

problem (MRCPSP). 
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