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 In this era, machines can understand human activities and their meanings. 

We can utilize this ability of machines in various fields or applications. One 
specific field of interest is a prediction of churning customers in any 

industry. Prediction of churning customers is the state of art approach which 

predicts which customer is near to leave the services of the specific bank. 

We can use this approach in any big organization that is very conscious 
about their customers. However, this study aims to develop a model that 

offers a meaningful churn prediction for the banking industry. For this 

purpose, we develop a customer churn prediction approach with the three 

intelligent models random forest (RF), AdaBoost, and support vector 
machine (SVM). This approach achieves the best result when the synthetic 

minority oversampling technique (SMOTE) is applied to overcome the 

unbalanced dataset and the combination of undersampling and 

oversampling. The method on SMOTED data has produced excellent results 
with a 91.90 F1 score and overall accuracy of 88.7% using RF. Furthermore, 

the experimental results show that RF yielded good results for the full 

feature-selected datasets. 
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1. INTRODUCTION  

Every day there is much competition growing in the banking industry [1]. Thus, if any bank wants 

to increase its market share by acquiring new customers, it must follow customer retention strategies. It is 

shown that improving the retention rate by up to 5% can increase a bank’s profit by up to 85% [2]. Different 

banks offer attractive plans like internet banking, mobile banking, debit card, credit card, savings accounts 

with nil balance, credit points based on the usage of the customers [3], best plans for various loans like 

education loan, housing loan, agricultural loan, vehicle loan, mortgage loan, and startups loan. In the group of 

all these facilities or plans, crediting a loan to a customer is a critical task because, in this case, each bank has 

to analyze the customer's capacity prior to offering that loan [4]. To complete the crediting loan process to 

customers, there are a number of banks that have decided to incorporate a credit card scheme that will ensure 

that whenever a customer applies for a credit card, his or her ability to avail of the card will be evaluated. 

Many banks initiate the request for providing credit cards to new customers based on their credit points [5]. 

However, there will be multiple opportunities for clients to churn out of a particular bank for every customer 
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who has more than one credit card with more than one bank [4], [6], [7]. Whenever a customer realizes that 

Bank A offers many facilities at a low-interest rate compared to Bank B, the customer churning prediction for 

Bank B is high. Therefore, it is the bank credit card account management system responsibility to ensure that 

the existing customers are maintained through low interest rates. Churn analysis algorithms currently exist, 

but they are limited by the nature of the churn prediction problem. These three features are typically 

associated with this problem: i) The data is imbalanced; for example, the number of churn customers 

represents a tiny fraction of the total samples (usually 2% of the total samples); ii) Data from large learning 

applications will inherently contain noise; and iii) To predict churn, it is necessary to rank subscribers 

according to their likelihood to churn [8], [9]. Nowadays, with the intense machine learning advancement, it 

is beneficial to build a prediction approach that able to predict whether a credit cardholder or a customer will 

churn out from a particular bank or not [4]. This prediction will be possible on previously available data 

collected from the old customers history records. Machine learning (ML) methods like Naive Bayes, decision 

trees, logistic regression, random forest, artificial neural networks, and support vector machines will 

determine the churn [10]. All these ML techniques are implemented not only in the banking field but also 

applied in various sectors like insurance [11], medical systems [12], cyberbullying [13], retail marketing [14], 

automobile industry, gaming industry [12]. Therefore, the contribution of this study summarizes in threefold; 

i) We collect credit card churn customer data of around 10,000 from Kaggle repository; ii) We have 

conducted an exploratory data analysis (EDA) at the first stage based on available data and employ the 

hybridization of SMOTE data sampling and random forest classifier to overcome inherent class imbalance 

problem; iii) At the final stage of model selection and evaluation, we have implemented three models 

(random forest (RF), AdaBoost, support vector machine (SVM)) and we have performed a detailed 

comparison between model results.  

The remainder of this paper is organized as shown in: Section 2 discusses the background of the 

study and its related research. Research methodology is outlined in section 3, while experimental findings are 

presented in section 4. Finally, section 5 concludes the paper by describing future directions.  

 

 

2. LITERATURE REVIEW  

Many data mining techniques can research credit card churn prediction systems. Related work of 

available methods is listed out here briefly. For example, according to Dias et al., [15] have predicted in 

advance whether a given customer will end his relationship with an organization or not. They use six 

different methods using machine learning like the random forest, support vector machine, logistic regression, 

multivariate adaptive regression splines, classification and regression techniques, and stochastic boosting 

applied on the retail banking customer churn prediction problem, considering predictions up to 6 months in 

advance. The best results are concluded from the stochastic boosting data mining technique. According to 

Dalmia et al. [16] have used a supervised machine learning technique, a proprietary algorithm has been 

created to predict and inform the bank about the customers at the highest risk of leaving the bank. Different 

classifiers are able to achieve different accuracies with different datasets. K-nearest neighbour (KNN) is a 

groundbreaking new approach based on weighted scales and the XGBooster algorithm for high and improved 

accuracy. The dataset is appropriately grouped into training and testing models based on weighted scales and 

the KNN algorithm. According Gholamiangonabadi et al. [17] proposed a study to find customer churn 

predictions of an Iranian bank; they introduced a new procedural approach. First, they normalize their data 

using data pre-processing. Then, a data cluster is formed by using a k-medoids method. The Davies-Bouldin 

index is used to assess clustering performance. Various neural network (NN) approaches were utilized in 

order to discover patterns within the data, including radial basis function (RBFNN), generalized regression 

(GRNN), multilayer perceptron (MLPNN), and SVM. According to the results, MLPNN and SVM models 

had higher precisions and lower costs. According to Ahmad et al. [18] have proposed three machine learning 

techniques to be applied to predict churn, namely, Decision trees (DT), Naive Bayes, SVM, using two 

benchmark datasets IBM Watson dataset, which contains 7033 observations, 21 attributes, and cell2cell 

dataset that contains 71,047 observations and 57 attributes. Therefore, data unbalanced is one of the key 

drawbacks of the aforementioned works. 

The performance of the models has been measured using the area under the curve (AUC), which 

they scored 0.82, 0.87, 0.77 respectively for the IBM dataset and 0.98, 0.99, 0.98 for the cell2cell dataset. In 

[18], [19] the authors focus on applying data mining techniques in telecommunications to predict the 

churning behaviour of customers. In this research work, they use the CART algorithm to predict customer 

churning. In [20] research, they have built a computer system based on the application of artificial neural 

networks (ANN) and SVM approaches. According to the model, there are three different states of customers: 

active (i.e., those that are fully engaged in business with a positive balance in their account), non-active (i.e., 
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those with low balances in their accounts and those who do not have any investments), and churning (closed 

bank account). They have demonstrated excellent results with their computer software [21].  

 

 

3. RESEARCH METHOD 

3.1.  Data collection and description 

This section describes the methods used to predict customer churning within the banking industry, 

explain the dataset and the proposed approach utilized. The dataset used for the prediction process task is 

publicly available on the Kaggle website [22]. The variables included in the dataset are listed in Table 1. Of 

the 23 variables, the last two columns should be removed since they do not contribute to the classification 

process. Removing the last two columns from the dataset now contains 21 variables, 20 predictor variables, 

and one class variable. It contains 10,127 records, of which 8,496 (83.9%) are non-churners and 1,630 

(16.1%) are churners. Therefore, the dataset is highly unbalanced in terms of the proportion of churners and 

non-churners. Furthermore, we conducted an exploratory data analysis to determine the percentages between 

genders, age groups, and so on. Before inputting the data to the classifier, it is necessary to balance the data 

so that the classifiers do not tend towards the majority class consisting of non-churners while predicting the 

future. A mixture of synthetic minority oversampling techniques (SMOTE), undersampling, and 

oversampling is used to achieve the balancing. 

 

 

Table 1. The Description of the data 
Variable  Description Value 

CLIENTNUM Client number. Unique identifier 

for the customer holding the 

account 

Positive real number 

Attrition_Flag Internal event (customer activity) 

variable 

if the account is closed, then 1 else 0 

Customer_Age Demographic variable Customer's Age in Years 

Gender Demographic variable M=Male, F=Female 

Dependent_count Demographic variable Number of dependents 

Education_Level Demographic variable Educational Qualification of the account holder 

Marital_Status Demographic variable Married, Single, Divorced, Unknown 

Income_Category Demographic variable Annual Income Category of the account holder (< $40K, $40K 

- 60K, $60K - $80K, $80K-$120K, > $120K, Unknown) 

Card_Category Product variable Type of Card (Blue, Silver, Gold, Platinum) 

Months_on_book Timespan Period of relationship with the bank 

Total_Relationship_Count Product variable Total no. of products held by the customer 

Months_Inactive_12_mon Timespan No. of months inactive in the last 12 months 

Contacts_Count_12_mon Contact variable No. of Contacts in the last 12 months 

Credit_Limit Credit variable Credit Limit on the Credit Card 

Total_Revolving_Bal Credit variable Total Revolving Balance on the Credit Card 

Avg_Open_To_Buy Open to Buy Credit Line  Average of last 12 months 

Total_Amt_Chng_Q4_Q1 Change in Transaction Amount  Q4 over Q1 

Total_Trans_Amt Total Transaction Amount Total Transaction Amount (Last 12 months) 

Total_Trans_Ct Total Transaction Count Total Transaction Count (Last 12 months) 

 

 

3.2.  Exploratory data analysis 

In machine learning, exploratory data analysis (EDA) is the process of analysing datasets in order to 

summarize their main characteristics. Data analysis is used to determine what can be learned from the data 

before modelling is performed [23]. It is very difficult to determine important data characteristics by 

reviewing a column of numbers or a whole spreadsheet. Figure 1 illustrates the distribution of customer ages 

as shown in Figure 1(a), and illustrates the distribution of customers for a given month as shown in Figure 

1(b). Figure 2 shows the distribution of credit limits as shown in Figure 2(a), Figure 2(b) shows the 

distribution of total transaction amounts in the last year. Lastly, Figures 3 represent the percentage of churned 

and non-churned customers as shown in Figure 3(a) and the number of inactive months in Figure 3(b). The 

following steps will use SMOTE to up sample the churn samples in order to make them comparable with the 

regular customer sample size so the later selected models have a better chance of detecting small details that 

would be lost otherwise.  
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(a) 

 

 
(b) 

 

Figure 1. Illustration of (a) distribution of customer age and (b) Distribution of months the customer is part of 

the bank 

 

 

3.3.  Data pre-processing 

This section pre-processed the data before introducing it to our proposed model. In the first instance, 

we modified the values of our class variable (Attrition_Flag). This column contains two values. The 

"Attrition Customer" value is changed from "1" to "0" while the "Existing Customer" value remains 

unchanged. The gender column is then modified. Female is replaced with 1, and male is replaced with 0. 

Finally, there are some Unknown values in Education_Level, Income_Category, and Marital_Status. These 

values have been eliminated from our dataset. 
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3.4.  Data upsampling using SMOTE 

The synthetic minority oversampling technique (SMOTE) can be described as a statistical 

technique. This technique aims to increase the number of cases in our dataset in a balanced manner. We 

generate new instances from our existing minority cases to feed our model. In this way, new instances are not 

simply copies of existing minority cases; instead, the algorithm takes a sample of the feature space for each 

target class and its nearest neighbours and creates new examples that combine features of the target case and 

those of its neighbours. The new approach increases the number of features available to each class and makes 

the samples more general. In order to increase the percentage of minority cases that are not attrited customers 

to twice the rate of majority cases, we use SMOTE. 

 

 

 
(a) 

 

 
(b) 

 

Figure 2. Illustration of (a) Distribution of the credit limit and (b) Distribution of total transaction amount 
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3.5.  Proposed models employed in the prediction 

The Random Forest method developed by Breiman and Cutler creates several classification trees. In 

order to classify a new object from an input vector, it must put the input vector down each tree in the forest. 

Every tree has a classification, and we say that its 'votes' for that classification. A forest selects the 

classification that has received the most votes (over all the trees in the forest). 
The SVM classifies data by creating an N-dimensional hyperplane that divides it into two groups. 

The fundamental goal of SVM modelling is to find an ideal hyperplane that divides data in such a way that 

samples belonging to one category of the target variable are on one side of the plane and samples belonging 

to the other category are on the other side [13]. AdaBoost is one of the first boosting algorithms to be adapted 

to solver practices. Adaboost combines multiple "weak classifiers" into a single "strong classifier" [13]. 

 

 

 
(a) 

 

 
(b) 

 

Figure 3. The results of (a) Proportion of churn vs does not churn customers and  

(b) Number of inactive months 

 

 

4. RESULTS AND DISCUSSION  

In the following section, we discuss the results obtained from the experiments conducted in this 

study. Firstly, we introduce a well-known evaluation measure to evaluate the performance and effectiveness 
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of the proposed classifiers. Secondly, we show the 5-corss validation and then we described the experimental 

results obtained in this study. Finally, the comparative analysis was provided to provide the readers a clear 

comparison between the proposed classifiers in this study and the state of the art.  

 

4.1.  Evaluation measures 

To evaluate the effectiveness of our classifier, we used four well-known evaluation matrices since our 

data is balanced. These mectrics with their mathematical represntaion and difnation are discussed in this 

section. These metrics are as given in the follows; 

 

4.1.1. Accuracy  

Accuracy is a ratio of the true detected cases to the total cases, and it has been utilized to evaluate 

models on a balanced dataset [24]. Accordingly, it can be calculated as (1): 

 

Accuracy =
(𝑡𝑝+𝑡𝑛)

(𝑡𝑝+𝑓𝑝+𝑡𝑛+𝑓𝑛)
 (1) 

 

where tp means true positive, tn is true negative, fp denotes false positive, and fn is a false negative. 

 

4.1.2. Recall and F1-score 

Recall: calculates the ratio of retrieved relevant churns over the total number of a relevant customer 

churning [25]. F1-score allows combining both precisions and recall into a single measure that captures both 

properties. 

 

Recall=
𝑡𝑝 

(𝑡𝑝 + 𝑓𝑛)
 (2) 

 

F-measure=
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 
  (3) 

 

4.2. 5-Fold cross-validation 

We have conducted a 5-fold cross-validation of our three models. The F1 validation score for the 

random forest is higher than that of the Adaboost and SVM models. Figure 3 shows the performance 

evaluation using F1.  

 

 

 
 

Figure 3. Performance evaluation for three proposed models using F1-score metrics 
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4.3.  Proposed models experimental results  

Table 2 presents the results of the three models proposed in this research. The results shown in 

Table 2 are based on upsampling the original data (SMOTE). Random forest outperforms both AdaBoost and 

SVM classifiers with an F1-score of 0.91 and an accuracy of 88.7. The SVM classifier has achieved the 

highest recall (1.00), whereas AdaBoost has achieved the lowest recall (0.87). Additionally, the proposed 

models were tested and evaluated using the original data before applying the SMOTE technique. These 

results are presented in Table 3. 

 

 

Table 2. The performance of proposed three models with SMOTE technique  
Proposed Model Recall F1 Score  Accuracy 

Random Forest 0.89 0.91 0.887% 

AdaBoost 0.87 0.88 0.872% 

SVM 1.00 0.89 0.776% 

 
 

Table 3. The performance of proposed three models on original data before applying SMOTE 
Model Recall F1 Score  Accuracy  

Random Forest 0.64 0.63 0.637% 

AdaBoost 0.62 0.57 0.622% 

SVM 0.75 0.55 0.562% 

 

 

Table 2 and Table 3 show that the results based on random forest models are significantly higher 

than those based on other models. As a result, we selected the random forest model to forecast customer 

churning in the banking industry. The results of this prediction are presented in Figure 4.  

 

 

 
 

Figure 4. Confusion matrix for random forest prediction on the original data 

 

 

4.4.  Comparison with literature 

This section compares the proposed three classifiers with the state-of-the-art methods. Several 

methods have been used to predict customer churn in the banking industry, including KNN, XGBoost, SVM, 

Naive Bayes, Decision Trees, ANN, and RF. In Table 4, we compare three proposed models with related 

literature contributions. The comparison is limited to the available metrics, but it essentially provides the 

reader with the promising results of the proposed RF predictor. Our results demonstrate that the proposed 

method surpasses the previous six methods for predicting customer churning in the banking industry. 
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Table 4. Comparison of the proposed models with related literature contributions 
Prediction Model Recall F1 Score  Accuracy % 

Proposed RF Predictor 0.89 0.91 88.7 

Proposed AdaBoost Predictor 0.87 0.88 87.2 

Proposed SVM Predictor 1.00 0.89 77.6 

KNN [16] Not Reported  Not Reported  83.85 

XGBoost [16] Not Reported  Not Reported  86.85 

Naïve Bayes [26] 0.280 0.394 82.4 

Decision Trees [26] 0.423 0.561 86.5 

Random Forest [26] 0.474 0.588 86.4 

ANN [26] 0.464 0.587 86.7 

 

 
5. CONCLUSION 

The proposed study conducted the most comprehensive investigation of the credit card churn 

prediction problem in banks using machine learning techniques. We proposed a customer churn prediction 

system with Random Forest, AdaBoost, and SVM intelligent models. The best results are achieved when the 

unbalanced original data is SMOTED and undersampling is combined with oversampling. When the SMOTE 

technique was applied to overcome the class imbalances in the data, the results revealed that RF 

outperformed the other two predictors with an accuracy of 88.7% and an F1 score of 0.91. The experimental 

results also demonstrated that RF performed well for the full feature-selected datasets. Accordingly, the 

proposed RF predictor can be used to calculate customer churn periodically from various perspectives. 

Churning can be measured in terms of the number of customers lost, the ratio of customers lost, or the 

percentage of customers lost compared to the total number of customers in the bank. This churning can be 

measured quarterly or annually. An accurate forecast provides insight into the future, which allows for 

developing a strategy. Lastly, in future work, we seek to implement a deep learning model in order to 

improve the accuracy of the proposed study. 
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