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 Teaching lower school mathematic could be easy for everyone. For teaching 

in the situation that cannot speak, using sign language is the answer 

especially someone that have infected with vocal cord infection or critical 

spasmodic dysphonia or maybe disable people. However, the situation could 

be difficult, when the sign language is not understandable by the audience. 

Thus, the purpose of this research is to design a sign language detection 

scheme for teaching and learning activity. In this research, the image of hand 

gestures from teacher or presenter will be taken by using a web camera for 

the system to anticipate and display the image's name. This proposed scheme 

will detects hand movements and convert it be meaningful information. As a 

result, it show the model can be the most consistent in term of accuracy and 

loss compared to others method. Furthermore, the proposed algorithm is 

expected to contribute the body of knowledge and the society.  
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1. INTRODUCTION  

As a result of the disabilities, the persons with hearing disabled and mute find it hard to blend with the 

world [1]-[8]. They are unwillingly viewed unfairly by society [9], [10]. In certain fields of interaction, they 

cannot do well. For instance, the educational system for individuals with disabilities is not like others as they do 

not have any special commodity to buy tools, they have trouble seeking jobs, and much more [11]-[15].  

It establishes a difference between those with disabilities and those without them. This gap is constantly 

growing day by day. Therefore, to close the gap between them, sign language is a very excellent way of 

communicating for people who are deaf and mute [16]-[20]. Sign language is a gesture-based language that 

enables communication between hearing and speech impaired people. It is a non-verbal language that deaf and 

mute people typically utilize to communicate more efficiently with normal people. Sign language has its own 

set of rules and grammar for efficient communication. In this paper, we aim to design a new scheme of sign 

language detection. In this shcme, tt consists of two major steps which are the detection and recognition of 

signs. It detects a particular shape that separates the object from the remaining shapes. The technical aspects of 

sign language communication include its social path and purpose, which are simple to use, technical, and 

technological. In this paper, we structure this paper as shown in: section 2 presents the literature review. Section 

3 presents the proposed design. Section 4 presents the experiment setup. Section 5 presents the result of 

proposed method. Section 6 concludes with a discussion and recommendations for further research.  

https://creativecommons.org/licenses/by-sa/4.0/
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2. PROPOSED METHOD 

The traditional methods of sign language have several issues, particularly creating some problems. 

In this section, we list into three (3). First is, understanding the exact context of the symbolic expressions of 

the deaf and mute is difficult work in real life unless it is correctly specified. Second is, disable people have 

no confidence when they face normal people as they are not always treated as ordinary people. Third is deaf 

and mute people have found it difficult to engage with normal society these days due to a lack of appropriate 

platforms. In order to counteract this problem, we aim to establish a scheme of sign language detection for 

deaf and mute people by applying a convolutional neural network (CNN) to identify sign language using 

hand gestures. This is due to the CNN is a type of multilayer perceptron that is used to accelerate the 

processing of information [21]-[26].  

This section includes the image classification system's design flow, as well as the functions and 

components that will be included. Generally, there are five main stages involved in this project such as data 

acquisition, pre-processing, feature extraction, segmentation, and recognition as shown in Figure 1. The first 

step is image acquisition which the image is obtained from Kaggle and some of it is self-created. The hue, 

saturation, value (HSV) color algorithm is used by this system to identify the hand gesture and change the 

background to black. Then, the images were processed using several computer vision techniques, including 

grayscale conversion, dilatation, and masking. The hand segmentation is performed in the second stage, in 

which the hand is extracted from the captured image and then used to determine the return on investment 

(ROI) in the frame. Lastly, the feature extraction procedure is employed, where are the sign language will be 

predicted. The output of this sign language detection scheme is consisted in 26 alphabetical and the 

numerical between 0 to 10 and some other simple gestures such as like, ‘love’, ‘name’, and ‘you’. As detail, 

the explanation will be described in two part which are image processing and feature extraction.  

 

 

 
 

Figure 1. The overview of entire system 

 

 

2.1.  Image processing 

The image will be start transformed into HSV colorspaces since it is acquired in red, green, and blue 

(RGB) colorspaces. This is due to the difficulty of segmenting hand gestures based on skin color only. The 

approach divides an image color into three components which are hue, saturation, and value. HSV is a 

helpful method for improving image stability by separating brightness from chromaticity. Moreover, the Hue 

element does not affect any type of lighting, shadings, or shadows and can thus be considered for removal of 

the background. A track bar with H values range from 0 to 179, S values range from 0-255, and V values 

range from 0 to 255 which can be seen in Figure 2 and Figure 3. It is used to detect the hand gesture and set 

the background to black. Following that, segmentation of the hand gesture is accomplished by removing all 

unrelated components from the image and then retaining only the most related component. The frame has 

been reduced to 64 by 64 pixels in size. After the segmentation process is accomplished, binary images of 

size 64 by 64 pixels are formed, with the white region representing the hand gesture and the black region 

representing the remaining of the image.  
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Figure 2. The overview of entire system Figure 3. HSV Process 

 

 

2.2.  Feature extraction  

The convolution layers scan the images with a 3 by 3 filter (see Figure 4). The dot product of the 

frame pixel and the filter weights is calculated. Thus, this step captures important features from the input 

image for further processing. After each convolution layer, the pooling layers are applied. One pooling layer 

decrements the activation map of the previous layer. Following that, it incorporates all the activation map 

features identified in the previous layers. Additionally, this assists in the elimination of overfitting and the 

implementation of the network's features. The CNN input layer in this case has 32 feature maps of size 3 by 3 

and the activation function is a rectified linear unit (ReLU). The padding and maximum pool layers are 2 by 

2 filters in size. This combination of convolution and max pool layers is maintained throughout the 

architecture. Additionally, the dropout value for this project is set at 0.5, and the layer is flattened. The last 

layer of the network is a fully connected output layer with 36 units and a SoftMax activation function. 

Following that, the model is constructed using category cross-entropy as the loss function and SGD as the 

optimizer with a learning rate of 0.01. 

 

 

 
 

Figure 4. Process of image classification using CNN 

 

 

3. RESULT AND DISCUSSION 

This chapter will describe the strategy for evaluating the performance of the models, as well as the 

implementation of the testing and discussion of the results. In this step, we will evaluate our system with 

models other than 2-D CNN. These models include VGG-16, a 16-layer convolutional neural network, and 

VGG-19, a 19-layer convolutional neural network. Apart from that, we will evaluate this system using the 

same dataset for each model. All images in the dataset are captured in portable network graphics (PNG) 

format with a resolution of 64 by 64 pixels. The test data for this project is divided into two folders which are 

labeled as train and test. Apart from that, it will be identified in the application using the PyQt5 module, 

which is retrieved from the model structure stored in a JavaScript object notation (JSON) file and the weights 

recorded in hdf5 format. Furthermore, a different CNN model with a different layer of parameters will be 

utilized to evaluate sign language detection using CNN. These include the layer's size, the image's input size 

in pixels, the convolutional layer's size, the filter's size, the ReLU layer's size, the max-pooling layer's size, 

the optimizer's type (SGD or Adam), the dropout layer's size, and the SoftMax layer's size. However, during 

training, all models are trained with the same number of epochs, which is 50, with 200 steps per epoch, and 

5000 steps for validation. 
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3.1.  Parameter 

This section discusses in detail the parameters used to test the data. Which were specified differently 

for each CNN model to determine whether CNN models can obtain a good result when classifying the data. 

As a result, we can ascertain which CNN model is more effective in detecting sign language through hand 

gestures (see Table 1). 
 

 

Table 1. Parameters in different CNN models 

Layer 
Type of Model in CNN 

2-D VGG-16 VGG-19 

Size of Layer 32 32 32 

Image Input Size (Pixels) 64×64 64×64 64×64 

Convolutional Layer 4 13 16 

Filter Size 32, 64, & 256 32, 64, & 128 64, 128, 256, & 512 

ReLU 3 × 3 3×3 3×3 

Max Pooling 2 × 2 2×2 2×2 

Optimizer 0.01 (SGD) 0.001 (Adam) 0.001 (Adam) 

Drop Out 0.5 0.2 0.2 

SoftMax 1 1 1 

 

 

3.2.  Graphical test 

In the graphicl test, each CNN model is required to be trained in 50 epochs with 200 steps each 

epoch (see Figure 5). After that, the model need to be validated in 5000 steps. As, a result, the 2-D CNN 

model considered as the most consistent model. It can achieves the second-highest test accuracy, 81.59%, 

and the second-lowest validation loss, 0.7214, among all the models on the final epoch.  
 

 

Model Graph 
Accuracy Loss 

2-D CNN 

  

VGG-16 

  

VGG-19 

  
 

Figure 5. Graphical test result 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 28, No. 1, October 2022: 358-364 

362 

Meanwhile, the VGG-16 model achieves the highest test accuracy of 87.83%, it also has the highest 

validation loss of 1.3034 on the 50th epoch, eventhough the model appears to overfit at the 7th. Lastly, the 

VGG-19 model has the lowest test accuracy, 67.78%, and the lowest validation loss, 0.5417 at the 50th 

epoch. The reason behind is, the VGG-16 and VGG-19 model appears to be underfitting (test accuracy > 

train accuracy), because of the implementation of extra dropout layers after the connected layer.  

 

 

4. CONCLUSION  

A person have a disability to speak has difficulty teaching using sign language, especially when the 

sign language is not understandable by the audience. In this paper, we developed a real-time Sign Language 

Detection scheme that uses hand gestures and techniques acquired in computer vision and machine learning 

to assist the deaf and mute in interacting with others. As a result, it show the sign language detection scheme 

can be the most consistent in term of accuracy and loss compared to others method. Although the proposed 

classification technique is suitable, it requires improvement in terms of recognition speed and detection 

efficiency, which are currently lacking. To be more precise, this research is sometimes unable to identify the 

hand gesture used in sign language since some of them have a similar identical shape to the one being 

predicted. In addition, the training period of the hand gesture's image for this project is depending on 

computational power, which indicates that low-end hardware could have a longer training period. Apart than 

that, we also planning to optimize the performance of the VGG-16 and VGG-19 models, by avoiding training 

using Adam optimizer and change it to the SGD optimizer.  
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