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 This paper proposes the combination of a preconditioner applied with 

successive over relaxation (SOR) iterative method for solving a sparse and 

huge scale linear system (LS) in which its coefficient matrix is a tridiagonal 

matrix. The purpose for applying the preconditioner is to enhance the 

convergence rate of SOR iterative method. Hence, in order to examine the 

feasibility of the proposed iterative method which is preconditioner SOR 

(PSOR) iterative method, first we need to derive the approximation equation 

of one-dimensional (1D) Burgers’ equation through the discretization process 

in which the second-order implicit finite difference (SIFD) scheme together 

with semi-approximate (SA) approach have been applied to the proposed 

problem. Then, the generated LS is modified into preconditioned linear 

system (PLS) to construct the formulation of PSOR iterative method. 

Furthemore, to analyze the feasibility of PSOR iterative method compared 

with other point iterative methods, three examples of 1D Burgers’ equation 

are considered. In conclusion, the PSOR iterative method is superior than PGS 

iterative method. The simulation results showed that our proposed iterative 

method has low iteration numbers and execution time. 
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1. INTRODUCTION 

One-dimensional Burgers’ equation is a well-known nonlinear partial differential equation (PDE) that 

has been extensively used in a variety field of mathematics, science and engineering [1]. In 1915, Bateman was 

the first one to introduce this nonlinear PDE in the field of fluid dynamics. Later in 1948, Burger’s also 

practiced this equation to illustrate the model of mathematic in turbulence and since then this equation is 

extensively known as Burgers’ equation [2]. In fact, this equation has captivated the attention of many 

researchers to study this equation due to the reason that this equation is actually the simplest form of nonlinear 

advection and dissipation terms for modelling the physical phenomenon of wave motion. Apart from this, 

Burgers’ equation also emerges in other physical phenomenon such as shock waves, fluid waves and sound 

waves [3]. 

In recent years, extensive studies for this equation have been done efficiently to generate the numerical 

solutions in solving 1D Burgers’ equation. There are various numerical approaches that have been presented 

to attain the approximate solution of 1D Burgers’ equation such as finite difference (FD) method, finite element 

(FE) method, collocation method, differential quadrature method (DQM), semi-implicit FD scheme, Adomian 

decomposition method (ADM) and compact difference method (CDM). For instance, Mohamed [4] proposed 

https://creativecommons.org/licenses/by-sa/4.0/
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a new fully implicit FD scheme in solving 1D and 2D Burgers’ equation without using any transformation for 

the linearization. Rahman et. al [5] obtained the numerical results by using the different semi-implicit FD 

scheme. In 2018, Chen and Zhang [6] presented numerical solution which is obtained through the 

implementation of the weak Galerkin FE method. Besides, the collocation method is developed using modified 

cubic B-splines functions to acquire the solution of Burgers’ problem [3]. In addition to deal with Burgers’ 

problem, the application of modified ADM can also be used [2]. Aswin et al. [7] proposed the polynomial 

based DQM (PDQM) to get the approximation equation of Burgers’ and quasilinearization to form a linear 

system. In 2019, Yang et al. [8] studied the high-order CDM for solving Burgers’ problem. 

Thus, this paper considers the second-order IFD scheme with the SA approach to obtain the 

approximation equation of Burgers’ problem. To do this, first we need to derive the formulation of Burgers’ 

equation by using the second-order implicit finite difference (SIFD) scheme in a way to generate an equivalent 

nonlinear system (NLS). To solve this NLS, there are several methods that can be taken into action such as 

newton approach in which it is used to construct an array of the equivalent linear system. To develop linear 

system, Aksan [9] applied the Newton method to transform the NLS of Burgers’ equation into an equivalent 

linear system (LS). Nevertheless, the implementation of Newton approach requires the involvement of inner 

and outer iterations over the NLS which causes in higher computational complexity. For this reason, we avoid 

using such approach in order to attain low computational complexity. Therefore, we consider a method which 

is semi-implicit that is capable to alter any NLS into a sequence of LS [10]–[12].  

From the discretization process of Burgers’ equation, the semi-approximate implicit (SAI) 

approximation equation leads to a generated sparse and huge scale LS. Since the LS has these main features 

for the coefficient matrix, then the iterative methods are the most effective linear solver to seek the approximate 

solution of the proposed problem. Presently, there are many researchers have proposed and applied numerous 

iterative family such as Gauss-Seidel (GS) and successive over relaxation (SOR) iterative methods for solving 

LS [13]–[18]. Actually, these basic iterative methods are low in convergence rate, therefore, several researchers 

have modified a new variant of basic iterative methods such as preconditioned SOR (PSOR) iterative method 

in a way to increase the convergence rate of proposed iterative methods [19]–[21]. There has been a great deal 

of study into preconditioners, 𝑃 = (𝐼 + 𝑆) which can be used in accelerating the convergence rate of basic 

iterative method [22]–[24]. 

For instance, Milaszewicz [25] introduced a new preconditioner 𝑃 = (𝐼 + 𝑆′) to enhance the 

convergence rate in which: 

 

𝑆′ = [

0 0 ⋯ 0
−𝑎21 0 ⋯ 0

⋮ ⋮ ⋮ ⋮
−𝑎𝑛1 0 ⋯ 0

]. 

 

Gunawerdana et al. [26] consider the classic preconditioner 𝑃 = (𝐼 + 𝑆) in solving the LS 𝐴𝑥 = 𝑏. The authors 

attempted to apply this preconditioner, 𝑃 into the M-matrix in which it can increase the rate of convergence 

for Jacobi and GS iterations with: 

 

𝑆 =

[
 
 
 
 
0 −𝑎12 0 ⋯ 0
0 0 −𝑎23 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ −𝑎𝑛−1𝑛

0 0 0 ⋯ 0 ]
 
 
 
 

.  

 

in addition, Cheng et al. [27] also presented the new preconditioner 𝑃 = (𝐼 + 𝛽𝑆) in which 𝛽 is a real number 

for solving the Z-matrix LS as: 

 

𝑆 = [

0 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮

𝑎𝑛1 0 ⋯ 0

]. 

 

later, Sunarto and Sulaiman [28] applied the classic preconditioner 𝑃 = (𝐼 + 𝑆) into the approximate time-

fractional equation with: 
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𝑆 =

[
 
 
 
 
 
0 −𝑟1𝑎12 0 0 0 0
0 0 −𝑟2𝑎23 0 0 0
0 0 0 −𝑟3𝑎34 0 0
0 0 ⋱ ⋱ ⋱ 0
0 0 0 0 0 −𝑟𝑚−1𝑎𝑚−1𝑚

0 0 0 0 0 0 ]
 
 
 
 
 

(𝑚−1)(𝑚−1)

.  

  

Therefore, to enhance the convergence rate of basic iterative method, we propose this preconditioner, 

𝑃 = (𝐼 + 𝑆) together with SOR iterative method to acquire approximate solution of proposed problem. Then, 

the primary concept in this research is to evaluate the feasibility of PSOR iterative method where it is among 

the preconditioned iterative method to resolving LS generated via discretization process using SIFD scheme 

and SAI approach to obtain the SAI approximation equation of 1D Burgers’ equation. The following general 

equation of 1D Burgers’ equation are considered to examine the feasibility of PSOR iterative method together 

with SAI approximation: 

 
𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑤
= 𝛾

𝜕2𝑣

𝜕𝑤2, (1) 

 

with initial condition 𝑣(𝑤, 0) = 𝑣(𝑤), 𝑘 ≤ 𝑤 ≤ 𝑙 and boundary conditions 𝑣(𝑘, 𝑡) = 𝑓𝑎(𝑡), 𝑣(𝑙, 𝑡) =

𝑓𝑏(𝑡), 𝑡 > 0 where 𝛾 is viscosity and 𝑣
𝜕𝑣

𝜕𝑤
 is the term of nonlinear.  

 

 

2. APPROXIMATION OF BURGERS’ EQUATION 

As mentioned in the previous section, in an effort to attain the corresponding NL approximation 

equation of problem (1), the SIFD scheme is imposed into the proposed problem (1). Then, the SA approach 

is imposed to derive the NL approximation equation to develop a LS. Before we proceed to discretization 

process, let problem (1) be defined which is used to: 

 
𝜕𝑣

𝜕𝑡
+ 𝐹(𝑧, 𝑡, 𝑣)

𝜕𝑣

𝜕𝑤
= 𝛾

𝜕2𝑣

𝜕𝑤2. (2) 

 

then, we consider the segmentation of solution domain pointed out as 𝑦𝑖 , 𝑖 = 0,1,2, … ,𝑚 − 1,𝑚 and 𝑡𝑗 =

0,1,2, …. Then, the SIFD scheme is used to discretize over (2) to get the equivalent NL approximation equation 

expressed as [29], [30]: 

 
𝑣𝑖.𝑗+1−𝑣𝑖.𝑗

𝛥𝑡
+ 𝑓𝑖.𝑗(𝑣1.𝑗+1, 𝑣2.𝑗+1, . . . , 𝑣𝑚−1.𝑗+1) =

𝛾

(𝛥ℎ)2
(𝑣𝑖−1.𝑗+1 − 2𝑣𝑖.𝑗+1 + 𝑣𝑖+1.𝑗+1), (3) 

where, 

 

𝑓𝑖.𝑗(𝑦1.𝑗+1, 𝑦2.𝑗+1, . . . , 𝑦𝑚−1.𝑗+1) = 𝑑 (𝑤𝑖 , 𝑡𝑗+1, 𝑣𝑖.𝑗+1,
𝑣𝑖+1.𝑗+1+𝑣𝑖−1.𝑗+1

2
) (4) 

 

Since there is NL term in (4), we require to get rid the NL term by using the SA approach [10]–[12] for the 

sake of developing a LS of Burgers’ problem (1). To do this, the term 𝑦𝑖.𝑗+1 in (4) is approximated by 𝑦𝑖.𝑗 since 

the value of ∆𝑡 is significantly low value. Thus, (4) can be converted to (5). 

 

𝑓𝑖.𝑗(𝑣1.𝑗+1, 𝑣2.𝑗+1, . . . , 𝑣𝑚−1.𝑗+1) = 𝑑 (𝑤𝑖 , 𝑡𝑗+1, 𝑣𝑖.𝑗 ,
𝑣𝑖+1.𝑗+1−𝑣𝑖−1.𝑗+1

2𝛥ℎ
) (5) 

 

For the simplicity purpose, we get the second-order SAI approximation equation for problem (1) expressed as: 

 

−𝑝𝑖𝑣𝑖−1.𝑗+1 + 𝑠𝑖𝑣𝑖.𝑗+1 − 𝑣𝑖+1.𝑗+1 = 𝐻𝑖.𝑗 ,  𝑖 = 1,2,3, … ,𝑚 − 1, (6) 

 

where, 

 

𝑝𝑖 =
(

1

2(𝛥ℎ)
)𝐷𝑖.𝑗+

𝛾

(𝛥ℎ)2

𝛽𝑖
,   𝑠𝑖 =

1+
2𝛾𝛥𝑡

(𝛥ℎ)2

𝛽𝑖
,  𝛽𝑖 =

𝛾

(𝛥ℎ)2
− (

1

2(𝛥ℎ)
)𝐷𝑖.𝑗 ,   𝐻𝑖.𝑗 =

𝑣𝑖.𝑗

𝛥𝑡.𝛽𝑖
.  

 

Next, based on the SAI approximation (6), it is clear that a series of LS at each time level (𝑗 + 1) can be 

expressed in the form of matrix as (7): 
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𝐿𝑣𝑗+1 = 𝐻𝑗 , (7) 

 

where: 

 

𝐿 =

[
 
 
 
 
 
 

𝑠1 −1

−𝑝2 𝑠2 −1

−𝑝3 𝑠3 −1

⋱ ⋱ ⋱
−𝑝𝑚−2 𝑠𝑚−2 −1

−𝑝𝑚−1 𝑠𝑚−1]
 
 
 
 
 
 

,  

 

𝑣𝑗+1 = [𝑣1.𝑗+1, 𝑣2.𝑗+1, 𝑣3.𝑗+1, … , 𝑣𝑚−1.𝑗+1]
𝑇
,  

 

𝐻𝑗 = [𝐻1.𝑗 + 𝑝𝑖𝑣0.𝑗+1, 𝐻2.𝑗 , 𝐻3.𝑗, … , 𝐻𝑚−2.𝑗 , 𝐻𝑚−1.𝑗+1 + 𝑣𝑚.𝑗+1]
𝑇
 

 

 

3. NUMERICAL METHODS 

For instance, referring to the generated LS (7) which constructed through the combination of SIFD 

scheme and the SA approach in the section 2, indicates that the primary features of the coefficient tridiagonal 

matrix of the LS can be identified as sparse and huge scale. Previously, the first section describe that iteration 

families are the most effective linear solver for LS (7). PSOR iterative method is among the most effective 

point iterative methods that can be applied to enhance the convergence rate in obtaining the approximate 

solution compared with PGS iterative method [31]–[33]. Considering the benefit of PSOR iterative method, 

this paper proposes the PSOR iterative method by imposing the SA approach to solve the LS (7). Before 

applying the PSOR iterative method, let us reconstruct the original LS (7) into this PLS as follows [34], [35]: 

 

𝐿∗𝑣𝑗+1 = 𝐻𝑗
∗, (8) 

 

where: 

 

𝐿∗ = 𝑃𝐿, 𝐻𝑗
∗ = 𝑃𝐻𝑗 .  

 

In fact, the tridiagonal matrix 𝑃 is recognized as the preconditioned matrix that can be represented as [26]. 

 

𝑃 = 𝐼 + 𝑆, (9) 

 

Where: 

 

𝑆 =

[
 
 
 
 
 
 
 
 0

1

𝑠2
0 0 0 0

0 0
1

𝑠2
0 0 0

0 0 0
1

𝑠3
0 0

0 0 ⋱ ⋱ ⋱ 0

0 0 0 0 0
1

𝑠𝑚−1

0 0 0 0 0 0 ]
 
 
 
 
 
 
 
 

(𝑚−1)×(𝑚−1)

,  

 

and 𝐼 is known as identical matrix of order (𝑚 − 1). To start in deriving the formulation of PSOR iterative 

method, let the coefficient matrix 𝑃𝐿 in (7) be rewritten into the summation of three matrices as: 

 

𝐿∗ = 𝑋 − 𝑇 − 𝐺, (10) 

 

where 𝐶 is lower triangular,𝑊 is diagonal and 𝐻 is upper triangular matrices. Then, we consider (8) and (10) 

to construct the formulation of PSOR iterative method as [28]: 

 

𝑣𝑗+1
(𝑘+1)

= (𝑋 − 𝜔𝑇)−1[(1 − 𝜔)𝑋 + 𝐺𝜔]𝑣𝑗+1
(𝑘)

+ (𝑋 − 𝜔𝑇)−1𝐻𝑗
∗. (11) 
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Algorithm 1. Depicts the execution of PSOR iterative method 
Algorithm 1: PSOR iterative method 

i. Set the starting value 𝑃, 𝐵, 𝐹𝑗 , 𝑣0
(0)
 and 𝜀 ← 10−10. 

ii.  For 𝑗 = 0, 1, 2, … , 𝑛 − 1, execute 

a) Set 𝑣𝑗+1
(0)

= 0and boundary conditions. 

b) Compute vector 𝐵∗ = 𝑃𝐵 and 𝐹𝑗
∗ = 𝑃𝐹𝑗. 

c) Compute new value of 𝑣𝑗+1
(𝑘+1)

 by applying 

i. 𝑖 = 1: 

 𝑣1 = (1 − 𝜔)𝑣𝑖.𝑗+1
(𝑘)

+
𝜔

𝐿1,1
(𝐻1

∗ − 𝐿1,3
∗ 𝑣3). 

ii. For 𝑖 =  2, 3, … ,𝑚 − 3, 

 𝑣𝑖 = (1 − 𝜔)𝑣𝑖.𝑗+1
(𝑘)

+
𝜔

𝐿𝑖,𝑖
∗ (𝐻𝑖

∗ − 𝐿𝑖,𝑖−1
∗ 𝑣𝑖−1 − 𝐿𝑖,𝑖+2

∗ 𝑣𝑖+2). 

iii. 𝑖 = 𝑚 − 2,𝑚 − 1: 

 𝑣1 = (1 − 𝜔)𝑣𝑖.𝑗+1
(𝑘)

+
𝜔

𝐿𝑖,𝑖
∗ (𝐻𝑖

∗ − 𝐿𝑖,𝑖−1
∗ 𝑣𝑖−1). 

d) Execute the test of convergence, |𝑣𝑖.𝑗+1
(𝑘+1)

− 𝑣𝑖.𝑗+1
(𝑘)

| ≤ 𝜀 = 10−10. If satisfied, move to step 

e. If not return to step c. 

e) Obtain the recent value, 𝑣𝑗
(𝑘+1)

. 

iii. Present the approximate solution. 

 

 

4. NUMERICAL EXPERIMENTS 

By referring to the second-order SAI approximation equation (6), we deal with three examples of the 

proposed problem (1) to test the efficiency of PGS and PSOR iterative methods. To do this, we conducted the 

comparative analysis among the proposed iterations and PGS iterative method is appointed as a control method. 

The numerical results obtained by implementing both iterations in which PGS and PSOR have been evaluated 

according to three aspects seek as iteration number, computation time and maximum norm. Based on (12), we 

used this maximum norm as a stopping criterion and defined as: 

 

Max-norm = max
𝑖=1
𝑛−1

|𝑆(𝑥𝑖 , 𝑡𝑗+1) − 𝑣(𝑥𝑖 , 𝑡𝑗+1)|. (12) 

 

the three numerical examples of proposed problem (1) with their exact solutions are presented here. Example 

1 [36], for this problem, we consider the initial value (IV) equation of proposed problem (1) as: 

 

𝑣(𝑤, 0) = 2𝑤,  for  𝑡 > 0, (13) 

 

and the analytical solution of equation (13) is provided as: 

 

𝑣(𝑤, 𝑡) =
2𝑤

1+2𝑡
. (14) 

 

Example 2 [37], let us consider proposed problem (1) with IV equation are taken from the analytical solution 

[38]: 

 

𝒗(𝒘, 𝒕) =
𝜸

𝟏+𝜸𝒕
(𝒘 + 𝒕𝒂𝒏(

𝒘

𝟐+𝟐𝜸𝒕
)) ,  𝒕 ≥ 𝟎. (15) 

 

Example 3 [39], for this problem, we consider the IV equation of proposed problem (1) as: 

 

𝑣(𝑤, 0) =
1

2
−

1

2
𝑡𝑎𝑛ℎ (

1

4
[𝑤 −

1

2
] 𝑡) ,  for  𝑡 > 0, (16) 

 

and the analytical solution of (16) is provided as: 

 

𝑣(𝑤, 𝑡) =
1

2
−

1

2
𝑡𝑎𝑛ℎ (

𝑤

4
). (17) 

 

 

5. DISCUSSION 

This section is intended to describe the approximate solutions resulting through the implementation 

of PGS and PSOR iterative method via SA approach for all proposed examples 1, 2 and 3 differing in grid 
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sizes, m=256, 512, 1024, 2048, and 4096. All the numerical results for PGS and PSOR iterative methods for 

all examples are recorded in Table 1 which represent the iteration number, computation time and maximum 

norm respectively. Based on the numerical results by implementing PGS and PSOR iterative methods as in 

Table 1, it indicates that PSOR iterative method have declined tremendously in aspect of iteration number. 

Meanwhile, PSOR iterative method required less computation time than PGS iterative method. The maximum 

norm for PGS and PSOR iterative methods are in a good agreement and the value for each proposed examples 

is proximate to its exact solution. 

 

 

Table 1. Numerical results for all examples 

Example M 
Iteration number Computation time (second) Maximum norm 

PGS PSOR PGS PSOR PGS PSOR 

1 256 

512 

1024 

2048 

4096 

3372 

12354 

449510 

162056 

577420 

239 

472 

878 

1724 

3763 

3.35 

24.29 

175.79 

1279.47 

9274.96 

0.30 

1.06 

3.91 

14.72 

64.76 

2.12E-07 

8.51E-07 

3.41E-06 

1.36E-05 

5.43E-05 

5.32E-09 

8.34E-09 

8.83E-09 

9.59E-09 

3.03E-08 

2 256 

512 

1024 

2048 

4096 

14 

36 

113 

393 

1399 

12 

23 

46 

92 

182 

0.13 

0.14 

0.48 

3.12 

21.70 

0.11 

0.12 

0.26 

0.86 

3.21 

1.55E-09 

9.62E-09 

5.73E-08 

2.50E-05 

1.10E-06 

4.61E-10 

4.90E-09 

1.17E-08 

2.11E-08 

3.58E-08 

3 256 

512 

1024 

2048 

4096 

3436 

12633 

46126 

166895 

597125 

236 

422 

855 

1702 

3695 

3.39 

24.50 

178.68 

1283.47 

9176.99 

0.29 

0.95 

3.66 

14.43 

62.57 

9.86E-06 

1.05E-06 

1.32E-05 

2.38E-05 

6.64E-05 

9.64E-06 

9.63E-06 

9.64E-06 

9.64E-06 

9.65E-06 

 

 

6. CONCLUSION 

In this paper, we considered a preconditioned matrix of the type 𝑃 = 𝐼 + 𝑆 and we applied it into the 

LS (7) to transform into the PLS (8). Then, by considering the PLS (8), we successfully constructed the 

formulation of PSOR iterative method which derived by using the second-order SAI approximation equation. 

The comparative analysis between the PGS and PSOR iterative methods have been illustrated to examine the 

feasibility of PSOR iterative method. Based on the numerical result obtained by solving three examples of 

proposed problem (1), it clearly shows that the PSOR iterative method is more superior than PGS iterative 

method in terms of iteration numbers and computation time. Meanwhile, the accuracy for proposed iterative 

method is in a good agreement with PGS iterative method. In the future, this paper should be extended by 

implementing the same discretization scheme to solve the nonlinear problem (1) via the block iteration families. 
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