

Indonesian Journal of Electrical Engineering and Computer Science

Vol. 25, No. 3, March 2022, pp. 1795~1802

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v25.i3.pp1795-1802  1795

Journal homepage: http://ijeecs.iaescore.com

Parallelized solution to the asymmetric travelling salesman

problem using central processing unit acceleration

Akschat Arya1, Boominathan Perumal2, Santhi Krishnan3
1BTech in Computer Science and Engineering, VIT University, Vellore, India

2Department of Information Security, VIT University, Vellore, India
3Department of Analytics, VIT University, Vellore, India

Article Info ABSTRACT

Article history:

Received Aug 18, 2021

Revised Jan 11, 2022

Accepted Jan 24, 2022

 Travelling salesman problem is a well researched problem in computer

science and has many practical applications. It is classified as a NP-hard

problem as its exact solution can only be obtained in exponential time unless

P = NP. There are different variants of the travelling salesman problem

(TSP) and in this paper, asymmetric travelling salesman problem is

addressed since this variant is quite often observed in real world scenarios.

There are a number of heuristic approaches to this problem which provides

approximate solutions in polynomial time, however this paper proposes an

exact optimal solution which is accelerated with the help of multi-threading-

based parallelization. In order to find the exact optimal solution, we have

used the held-karp algorithm involving dynamic programming and to reduce

the time taken to find the optimal path, we have used a multi-threaded

approach to parallelize the processing of sub-problems by leveraging the

central processing unit cores (CPUs). This method is an extension of a well

researched solution to the TSP; however, this method shows that solutions to

computationally intensive problems involving sub-problems such as the

asymmetic travelling salesman problem (ATSP) can be accelerated with the

help of modern CPUs.

Keywords:

Asymmetric travelling

salesman problem

Dynamic programming

Held-karp algorithm

Multithreading

Parallelization

This is an open access article under the CC BY-SA license.

Corresponding Author:

Akschat Arya

BTech in Computer Science and Engineering, VIT University

Vellore, India

Email: akschatarya1@gmail.com

1. INTRODUCTION

In the simple traveling salesperson problem (TSP), we are given an undirected graph 𝐺 = (𝑉, 𝐸)

and 𝑐𝑜𝑠𝑡 𝑐(𝑒) > 0 for each edge 𝑒 ∈ 𝐸 and the objective is to find a hamiltonian cycle with the minimum

cost. A hamiltonian cycle visits every vertex in 𝑉 exactly once. In this paper we are addressing the

asymmetric travelling salesman problem (ATSP) which frequently has to be dealt with in real world

scenarios. Let 𝑀 = (𝑉, 𝐴) be a given directed graph, with vertex set 𝑉 = {1, . . . , 𝑛} and arc set 𝐴 = {(𝑖, 𝑗) ∶
 𝑖, 𝑗 ∈ 𝑉}. Let 𝑐𝑖𝑗 be the cost for the arc (𝑖, 𝑗) ∈ 𝑉 with 𝑐𝑖𝑖 = +∞ (𝑖 ∈ 𝑉). A hamiltonian circuit (tour) of

𝐺 is a circuit visiting each vertex of 𝑉exactly once. The objective of the ATSP is to find a Hamiltonian circuit

𝑀 ∗ = (𝑉, 𝐴 ∗) of 𝑀 with minimum cost = ∑ 𝑐𝑖𝑗(𝑖,𝑗)∈𝐴∗

There are different variants of the travelling salesman problem which have been addressed by

researchers earlier and both approximate (faster) and exact (slower) solutions have been provided. Some

possible solutions for some of the other variants as per earlier research are as follows: i) symmetric TSP:

GPU accelerated solution provided by Kimura et al. in [1], ii) ATSP: approximation algorithms by

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 3, March 2022: 1795-1802

1796

decomposing directed regular multigraphs provided by Kaplan et al. in [2], iii) ATSP with windows: exact

solution through a graph transformation provided by Albiach et al. in [3], iv) ATSP with replenishment arcs:

polyhedral results provided by Mak and Boland in [4].

Meet in the middle algorithm was used by Kazuro Kimura et al. to accelerate the execution time but

this method can only be used on the symmetric TSP by leveraging the symmetric aspect of the problem and

thus Kimura et al. in [1] achieved an acceleration by a factor of 1.5 and that of 1.7 using man-in-the-middle

(MITM) when n (number of vertices) was odd and even, respectively. Since this paper aims to address the

asymmetric travelling salesman problem, we have not used MITM, instead we make use of the following

techniques to accelerate the processing time: i) multi-threaded program to utilize central processing unit

(CPU) cores, ii) thread-safe hashmap to store results of the dynamic cost function.

CPU parallelization has also been achieved for other algorithms like the ant colony optimization for

the TSP. Ling et al. in [5] have presented an adaptive parallel ant colony optimization (PACO) algorithm

using massively parallel processors (MPPs). A method of adjusting the time interval adaptively for

information exchange according to the diversity of the solutions is also proposed by Chen ling et al. to avoid

early convergence and improve the quality of results [5]. Fejzagić et al. have shown that it is possible to

efficiently parallelize metaheuristic algorithms like ACO using task parallel library [6].

Gizems Ermis et al. have investigated the acceleration from CUDA by using 2-opt and 3-opt local

search heuristics and shared explained some parallelization strategies to utilize GPU resources effectively [7].

Haim Kaplan et al. has provided approximation algorithms for asymmetric TSP by the decomposition of

directed regular multigraphs [2]. Experiments by Saxena et al. in [8] show that parallelization tools like

OpenMP and CUDA can significantly reduce the execution time for genetic algorithms used in solving the

TSP. Rashid in [9] presented a parallel heuristic integrating a greedy approach into a genetic algorithm with

local-search using GPU acceleration.

Most of the previous work have presented an approximate algorithm for the general TSP or an exact

algorithm without CPU parallelization for the ASTP. In this paper we present an exact algorithm for the

asymmetric TSP utilizing CPU parallelization and thread-safe hashmap to accelerate the execution process.

Alrashdan et al. have used enhanced crossover operation using genetic algorithm with their probabilities in

order to create an efficient method to provide a near optimal solution for the ATSP [10]. A Two-way parallel

slime mold algorithm by flow and distance (TPSMA) is proposed by Liu et al. in [11] in order to solve slime

mold algorithm’s problem of poor local optimization. Ascheuer et al. has provided a computational study

which has indicated that most ATSP with time windows instances ranging till 50–70 nodes can be optimally

solved using branch and cut [12]. Kang et al. propose an effective method of constructive crossover such that

large number of genes can be effectively evolved by exploiting the GPUs parallel computing power and an

effective parallel approach to genetic TSP where crossover methods cannot be easily implemented in parallel

fashion [13]. Vasilchikov has shown that the little algorithm also has good potential for recursive-parallel

computations and can be used with a combined approach [14]. Sample instances for the TSP (and related

problems) from various sources and of various types are provided by TSPlib in [15]. We have also made use of

the datasets provided by TSPlib. Svensson et al. have provided a constant factor approximation algorithm by

the reduction to subtour partition cover (an easier problem obtained when the general connevtivity

requirements are relaxed significantly into local connectivity conditions) [16]. Azimi et al. have presented a

new model using simulated annealing with multiple transporters for the TSP [17]. A new hybrid algorithm

for the probabilistic traveling salesman problem (PTSP) is proposed by Marinakis based on greedy

randomized adaptive search procedure (GRASP), particle swarm optimization (PSO) and expanding

neighborhood search (ENS) strategy [18].

Han et al. Have solved the large-scale colored travelling salesman problem using an improved ant

colony optimization (IACO) algorithm in [19]. Eremeev et al. have verified in [20] the usefulness of a

parallel adaptive ant colony communities for the dynamic travelling salesman problem (DTSP). Eremeev et

al. have proposed a new memetic algorithm for the asymmetric travelling salesman problem (ATSP) with

optimal recombination in [20]. Rashid and Mosteiro have provided a novel solution in [21] that integrates

local-search heuristics, a greedy algorithm and a genetic algorithm. Odili et al. in [22] present a comparative

performance analysis of some of the metaheuristic algorithms like the improved extremal optimization (IEO),

african buffalo optimization algorithm (ABO), max-min ant system (MMAS), the heuristic randomized

insertion algorithm (RAI) and cooperative genetic ant system (CGAS) to solve the ATSP. Fosin et al. have

presented a new parallel iterated local search approach in [23] with 2-opt and 3-opt operators for symmetric

TSP, using GPU acceleration. Li et al. have provided an improved multicore based parallel branch and bound

algorithm to solve classic TSP with its shortcomings in [24]. Rico-Garcia et al. have provided a parallel

implementation of the discrete teaching learning-based optimization algorithm (DTLBO) by utilizing a

multicore GPU environment in order to improve the performance of the algorithm and to obtain suboptimal

or optimal solutions to the traveling salesman problem [25]. However, most of these methods mentioned in

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Parallelized solution to the asymmetric travelling salesman problem using central … (Akschat Arya)

1797

the aforementioned papers provide only an approximate solution or do not consider the asymmetric version

of the TSP with parallelization. Our method has shown that the optimal solution of ATSP and similar

computationally intensive problems with sub-problems can be accelerated with prallelization using modern

CPUs.

2. METHOD

2.1. Theoretical analysis

We have used the Held-Karp algorithm on a dataset of n nodes to find an exact solution to this node

set. Before Parallelizing the algorithm, we need to perform the the theoretical analysis of the standard

algorithm. The time and space complexity can be calculated as follows.

Time complexity: Let the given set of nodes be V ∈ {𝑣1, 𝑣2, … 𝑣𝑛} with 𝑣1 as the initial node. For

every other node 𝑣𝑖 such that 𝑖 ≠ 1, the aim is to find the minimum cost path with 𝑣1 as the starting node, 𝑣𝑖

as the ending node such that all other nodes are visited exactly once. For a set of size k, we consider k-2

subsets each of size k-1 such that all subsets don’t have 𝑘𝑡ℎ in them.

Thus, by evaluating the sum of minimum cost path for each subset of k-1 nodes starting with the

initial node we get the time complexity. This is given by (1):

𝑛 − 1 + ∑ 𝑘(𝑘 − 1)𝑛−1
𝑘=2 × (𝑛−1

𝑘
) (1)

Also the occurrences of computations for the next phase is given by (2):

∑ 𝑘 =
𝑛(𝑛−1)

2

𝑛−1
𝑘=2 − 1 (2)

thus from (1) and (2), (1) reduces to (3):

(𝑛 − 1)(𝑛 − 2)2𝑛−3 + (𝑛 − 1) (3)

on further reduction we get the time complexity as O (2𝑛𝑛2)

Space complexity: The Held-Karp algorithm is executed in exponential time but still offers

relatively faster execution compared to exhaustive enumeration. This is compensated by using a lot more

space than exhaustive enumeration. The space complexity is given by (4):

𝑛 − 1 + ∑ 𝑘𝑛−1
𝑘=2 × (𝑛−1

𝑘
) (4)

= (𝑛 − 1)2𝑛−2

on reduction we get the space complexity as O(2𝑛𝑛).

2.2. Processing architecture

We have utilized CPU parallelization to achieve faster execution time. The architecture of a CPU

with multiple cores is represented by Figure 1. A multi-core processor is a type of processor that contains

multiple cores or processing unites on the same chip. This kind of processor is different from

a superscalar processor, which can issue multiple instructions per clock cycle from one instruction stream

(thread) and contains multiple execution units. However, multiple instructions per clock cycle from multiple

instruction streams is issued by a multi-core processor. Every core in a multi-core processor potentially can

be superscalar too, implying that on each clock cycle, multiple instructions can be issued from a single thread

by each core. Simultaneous multithreading (Intel’s hyperthreading technology is an example) was an early

form of pseudo-multi-core architecture. A processor capable of concurrent multithreading includes multiple

execution units in the same processing unit, thus it can be said that it has a superscalar architecture and can

issue more than one instruction per clock cycle from multiple threads. However, temporal multithreading can

issue one instruction at a time form multiple thread where a single execution unit in the same processing unit

is included.

2.3. Parallelization

Parallelization is achieved by mapping sub-problems created by the first recursive call to threads

which will be running in parallel. This is illustrated in Figure 2 where 𝑐𝑜𝑠𝑡(𝑖, 𝑁) is the cost to optimally visit

all vertices in a set with N nodes starting from node i and 𝑎𝑑𝑗(𝑖, 𝑗) is the cost to travel from node i to node j.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 3, March 2022: 1795-1802

1798

If there are k sub-problems created by the first recursive call and t threads mapped to them then each

thread i will run 𝑥𝑖 sub-problems such that,

𝑥𝑖 = {

𝑘

𝑡

⌊
𝑘

𝑡
⌋

𝑘 − 𝑡

𝑖𝑓 𝑘 𝑖𝑠 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 𝑡

𝑖𝑓 𝑘 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 𝑡 𝑎𝑛𝑑 𝑖 𝜖 (0, 𝑡 − 1)

𝑖𝑓 𝑘 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 𝑡 𝑎𝑛𝑑 𝑖 = 𝑡

Figure 1. Multi core CPU architecture

Figure 2. Thread mapping to recursive call

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Parallelized solution to the asymmetric travelling salesman problem using central … (Akschat Arya)

1799

The challenge was to create a common thread-safe strucure to cache the intermediary results from

the recursive calls. This data structure should be shared with all the threads. For this purpose, we have used

Java’s ConcurrentHashMap with Java threads to achieve thread-safe parallelization. The hashmap creates an

empty, new map with the specified initial capacity, concurrency and load factor level. The implementation of

initial capacity performs internal sizing to accommodate these many elements whereas the implementation of

concurrency tries to do the same. Initial concurrency level parameters and capacity parameter of

ConcurrentHashMap constructor (or Object) in Java are set to 16 by default. As we are parallelizing the

process with 9 threads we do not need to change the parameters. Thus, instead of using a map wide lock,

ConcurrentHashMap maintains a list of locks by default such that the initial capacity is equal to the number

of locks. Each lock is used to lock on a single bucket of the Map. This indicates that the number of threads

which is set equal to the concurrency level specified in the parameter can modify the collection at the same

time only if each thread works on different bucket. Hence, unlike hashtable, the operations like delete, create,

update and read are done without locking on the entire map. Retrieval operations are usually not blocked, so

they may overlap with operations involving updates. The entire architecture is illustrated by Figure 3.

Figure 3. ConcurrentHashMap internal structure

Concurrency level constructor argument(optional) guides the allowed concurrency among

operations involving updates, which is used as a hint for internal sizing. In order to permit the indicated

number of concurrent updates without contention the table is partitioned internally. The actual concurrency

will vary since hashtables in placements are random in nature. Algorithmically the process can be represented

as the following Figure 4.

Figure 4. Parallelized held-karp Algorithm

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 3, March 2022: 1795-1802

1800

3. RESULTS AND DISCUSSION

Testing the algorithm with 17 nodes produces the shortest and the most optimal path with total

distance = 39 as verified from TSPlib. Figure 5 captures the time of execution for solving the problem with

the nodes 𝑛 ranging from 18 to 22 from the 34-node dataset of TSPlib considering 𝑡 threads(x-axis) running

in parallel at a time.

Figure 5. Time vs number of threads

From Figure 5 we can clearly see parallelization with more number of threads running in parallel

has helped in reducing the execution time in each of the cases considering nodes n such that 18 ≤ 𝑛 ≤ 22.

The same information from Figure 5 is represented in Table 1. For each node set of 𝑛 nodes from the 34-node

dataset the speed-up ratio such that 18 ≤ 𝑛 ≤ 22 is represented in Table 2.

Table 1. Performance in terms of time taken in seconds
 Threads

Nodes

1 2 3 4 5 6 7 8 9

18 14.151 7.375 5.392 4.72 4.327 3.929 3.844 3.643 3.526

19 35.468 18.996 14.222 12.629 11.912 10.594 10.496 9.76 9.516
20 86.207 46.732 35.457 30.829 28.06 27.388 26.471 26.391 24.601

21 211.379 115.009 87.717 78.567 70.265 71.04 66.224 67.849 65.61
22 501.693 279.428 218.44 200.299 182.02 187.85 180.67 182.016 172.911

Table 2. Speed-up ratio
Nodes Speed-up Ratio

18 4.013
19 3.727

20 3.504

21 3.22
22 2.9

4. CONCLUSION

The experiment has successfully demonstrated that the proposed parallelized algorithm for solving

the ATSP optimally helps in reducing the execution time compared to traditional Held karp algorithm and is

a viable method to compute the optimal path for the ATSP. Although the computation time is higher than

suboptimal methods, the proposed methodology gives the exact solution to the ATSP, which justifies the

high computational time. Other optimal and suboptimal methods can incorporate CPU parallelization like the

proposed methodology to produce even better results. In the future, hybrid algorithms can be used along with

parallelization using GPU and CPU both to solve computationally instensive problems such as the ATSP.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Parallelized solution to the asymmetric travelling salesman problem using central … (Akschat Arya)

1801

REFERENCES
[1] K. Kimura, S. Higa, M. Okita, and F. Ino, “Accelerating the held-KARP algorithm for the symmetric traveling salesman

problem,” IEICE Transactions on Information and Systems, vol. E102D, no. 12, pp. 2329–2340, Dec. 2019, doi:

10.1587/transinf.2019PAP0008.

[2] H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko, “Approximation algorithms for asymmetric TSP by decomposing
directed regular multigraphs,” in Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS, vol. 2003-

January, pp. 56–65, 2003, doi: 10.1109/SFCS.2003.1238181.

[3] J. Albiach, J. M. Sanchis, and D. Soler, “An asymmetric TSP with time windows and with time-dependent travel times and costs:
An exact solution through a graph transformation,” European Journal of Operational Research, vol. 189, no. 3, pp. 789–802,

Sep. 2008, doi: 10.1016/j.ejor.2006.09.099.

[4] V. Mak and N. Boland, “Polyhedral results and exact algorithms for the asymmetric travelling salesman problem with
replenishment arcs,” Discrete Applied Mathematics, vol. 155, no. 16, pp. 2093–2110, Oct. 2007, doi: 10.1016/j.dam.2007.05.014.

[5] L. Chen, H. Y. Sun, and S. Wang, “A parallel ant colony algorithm on massively parallel processors and its convergence analysis

for the travelling salesman problem,” Information Sciences, vol. 199, pp. 31–42, Sep. 2012, doi: 10.1016/j.ins.2012.02.055.
[6] E. Fejzagic and A. Oputic, “Performance comparison of sequential and parallel execution of the Ant Colony Optimization

algorithm for solving the traveling salesman problem,” in 2013 36th International Convention on Information and

Communication Technology, Electronics and Microelectronics, MIPRO 2013 - Proceedings, 2013, pp. 1301–1305.
[7] G. Ermiş and B. Çatay, “Accelerating local search algorithms for the travelling salesman problem through the effective use of

GPU,” Transportation Research Procedia, vol. 22, pp. 409–418, 2017, doi: 10.1016/j.trpro.2017.03.012.

[8] R. Saxena, M. Jain, S. Bhadri, and S. Khemka, “Parallelizing GA based heuristic approach for TSP over CUDA and OpenMP,” in
2017 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2017, Sep. 2017,

vol. 2017-January, pp. 1934–1939, doi: 10.1109/ICACCI.2017.8126128.
[9] M. H. Rashid, “A GPU Accelerated parallel heuristic for travelling salesman problem,” in Proceedings - 2018 IEEE/ACIS 19th

International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing,

SNPD 2018, Jun. 2018, pp. 82–86, doi: 10.1109/SNPD.2018.8441139.
[10] W. K. Alrashdan, S. Abu_Owida, and W. Alsharafat, “Solving Asymmetric Travelling Salesman Problem Using Group

Constructive Crossover,” IJCSNS International Journal of Computer Science and Network Security, vol. 17, no. 9, 2017.

[11] M. Liu et al., “A Slime Mold-Ant Colony Fusion Algorithm for Solving Traveling Salesman Problem,” IEEE Access, vol. 8,
pp. 202508–202521, 2020, doi: 10.1109/ACCESS.2020.3035584.

[12] N. Ascheuer, M. Fischetti, and M. Grötschel, “Solving the Asymmetric Travelling Salesman Problem with Time Windows by

branch-and-cut,” Mathematical Programming, Series B, vol. 90, no. 3, pp. 475–506, May 2001, doi: 10.1007/PL00011432.
[13] S. Kang, S. S. Kim, J. Won, and Y. M. Kang, “GPU-based parallel genetic approach to large-scale travelling salesman problem,”

Journal of Supercomputing, vol. 72, no. 11, pp. 4399–4414, May 2016, doi: 10.1007/s11227-016-1748-1.

[14] V. V. Vasilchikov, “On Optimization and Parallelization of the Little Algorithm for Solving the Travelling Salesman Problem,”
Automatic Control and Computer Sciences, vol. 51, no. 7, pp. 551–557, Dec. 2017, doi: 10.3103/S0146411617070215.

[15] G. Reinelt, “TSPLIB,” Universität Heidelberg Institut für Informatik, 2013. http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/.
[16] O. Svensson, J. Tarnawski, and L. A. Végh, “A Constant-factor Approximation Algorithm for the Asymmetric Traveling

Salesman Problem,” Journal of the ACM, vol. 67, no. 6, pp. 1–53, Nov. 2020, doi: 10.1145/3424306.

[17] P. Azimi, R. Rooeinfar, and H. Pourvaziri, “A new hybrid paralle simulated annealing algorithm for travelling salesman problem
with multiple transporters,” Journal of Optimization in Industrial Engineering, vol. 15, pp. 1–13, 2014, Accessed: Jan. 24, 2022.

[Online]. Available: www.SID.ir.

[18] Y. Marinakis and M. Marinaki, “A Hybrid Multi-Swarm Particle Swarm Optimization algorithm for the Probabilistic Traveling
Salesman Problem,” Computers and Operations Research, vol. 37, no. 3, pp. 432–442, Mar. 2010, doi:

10.1016/j.cor.2009.03.004.

[19] S. Han, M. Xu, Q. Lin, Q. Li, and Q. Guo, “An Improved Ant Colony Optimization for Large Scale Colored Traveling Salesman
Problem,” in Proceedings - 2020 International Conference on Intelligent Computing, Automation and Systems, ICICAS 2020,

Dec. 2020, pp. 400–405, doi: 10.1109/ICICAS51530.2020.00090.

[20] A. V. Eremeev and Y. V. Kovalenko, “A memetic algorithm with optimal recombination for the asymmetric travelling salesman
problem,” Memetic Computing, vol. 12, no. 1, pp. 23–36, Jul. 2019, doi: 10.1007/s12293-019-00291-4.

[21] M. H. Rashid and M. A. Mosteiro, “A greedy-genetic local-search heuristic for the traveling salesman problem,” in Proceedings -

15th IEEE International Symposium on Parallel and Distributed Processing with Applications and 16th IEEE International
Conference on Ubiquitous Computing and Communications, ISPA/IUCC 2017, Dec. 2018, pp. 868–872, doi:

10.1109/ISPA/IUCC.2017.00132.

[22] J. B. Odili, A. Noraziah, and M. Zarina, “A Comparative Performance Analysis of Computational Intelligence Techniques to
Solve the Asymmetric Travelling Salesman Problem,” Computational Intelligence and Neuroscience, vol. 2021, pp. 1–13,

Apr. 2021, doi: 10.1155/2021/6625438.

[23] J. Fosin, D. Davidović, and T. Carić, “GPU implementacija operatora lokalnog pretraživanja za simetričan Problem Trgovačkog
Putnika,” Promet - Traffic - Traffico, vol. 25, no. 3, pp. 225–234, Jun. 2013, doi: 10.7307/ptt.v25i3.300.

[24] Y. Li, K. Ma, and J. Zhang, “An efficient multicore based parallel computing approach for TSP problems,” in Proceedings - 2013

9th International Conference on Semantics, Knowledge and Grids, SKG 2013, Oct. 2013, pp. 98–104, doi: 10.1109/SKG.2013.41.
[25] H. Rico-Garcia, J. L. Sanchez-Romero, A. Jimeno-Morenilla, and H. Migallon-Gomis, “A parallel meta-heuristic approach to

reduce vehicle travel time in smart cities,” Applied Sciences (Switzerland), vol. 11, no. 2, pp. 1–17, Jan. 2021, doi:

10.3390/app11020818.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 3, March 2022: 1795-1802

1802

BIOGRAPHIES OF AUTHORS

Mr. Akschat Arya has obtained his BTech in Computer Science and Engineering

from Vellore Institiute of Technology, Vellore. He has received scholarship from VIT, Vellore

for his performance in VITEEE exam. Currently, he is working as a Data Engineer and his

research interest includes Machine learning and High-performance Computing. He can be

contacted at email: akschatarya1@gmail.com.

Dr. Boominathan Perumal has obtained his Ph.D. from Vellore Institute of

Technology. He is currently designated as Associate Professor Grade 1 in School of Computer

Science and Engineering, VIT Vellore, India. He is having a total of 16 years of teaching

experience in computer science. His research interest includes cloud computing, optimization

techniques and machine learning. Currently he holds a position of faculty coordinator for

IEEE Computer society student chapter in VIT. He is a lifetime member of IEEE and

Computer society of India. He can be contacted at email: boominathan.p@vit.ac.in.

Prof. Santhi Krishnan has received her Ph.D. in Computer Science and

Engineering from Pondicherry University, Puducherry, India. She has pursued her M.E in

Computer Science and Engineering from Anna University, Chennai. She has received her

M.Sc, in Computer Science from Bharathidasan University, Trichy, India. Currently, she is

working as Associate Professor in the School of Computing Science and Engineering, VIT

University, Vellore, India. She has authored many national and international journal papers

and one book. Also, she has published many chapters in different books published by

International publishers. She is a member of IEEE and she is holding membership in many

professional bodies like CSI, ISTE, IEEE and IAENG. Her areas of research include Big data

Analytics, Data Mining and Computational Intelligence. She can be contacted at email:

santhikrishnan@vit.ac.in.

https://orcid.org/0000-0002-5631-6624
https://publons.com/researcher/4917845/akschat-arya/
https://orcid.org/0000-0002-6220-0353
https://scholar.google.com/citations?user=76Oa7PMAAAAJ&hl=en
https://publons.com/researcher/1893213/boominathan-perumal/
https://orcid.org/0000-0001-7078-5198
https://scholar.google.co.in/citations?user=2293934245&user=-eWNzNAAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57196448032
https://publons.com/researcher/1487647/santhi-k/

