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 This article presents the design control of a tracking problem for a non-

minimum phase bilinear control system containing disturbance. The bilinear 

control system is assumed to have a relative degree one and non-minimum 

phase, which means it has unstable internal dynamics. The disturbance exists 

only in state variables corresponding to the control function in external 

dynamics. The control design was carried out using the backstepping 

method, which was applied to the normal form of the bilinear control 

system. Internal dynamics will be stabilised using virtual control to 
overcome unstable internal dynamics. The last step will stabilise the external 

dynamics and disturbance using the original control function. The simulation 

results show that the proposed control method can rapidly drive the output to 

the given trajectory. Control performance varies depending on the control 
parameter setting. The higher the control parameter, the better the control 

performance, evaluated using integral absolute error. 
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1. INTRODUCTION  

The dynamical system is widely used in modelling and analysing natural phenomena, both physical 

and social behaviour. The accuracy in the analysis process is highly dependent on the modelling process, 

including the selection of the type of model used [1], [2]. Models with nonlinear equations are the best form 

of modelling, but nonlinear systems are complicated to analyse, so approximations are often made to 

interpret them. The bilinear control system is one of the classes and is the best approximation of the nonlinear 

control system [3], [4]. The approximation of a nonlinear control system using a bilinear control system can 

be made using the Carleman transformation [3] or the Jacobian transformation [5]. The advantages of a 

bilinear control system in approaching a nonlinear control system compared to a linear control system in 

terms of performance, optimisation and modelling processes [6]–[8]. Intensive studies on the use of bilinear 

control systems in several fields in economics and chemistry can be referred to [1], [9], [10]. 

Some examples of the use of other bilinear control systems can be seen in the boost converter 

problem in [11], [12], on controlling the spread of disease in [13], [14], on directing ship motion in [15], on 

regulating hot water storage in [16], on the diesel engine fuel collector in [17]. The application of control to 

the Hilbert chamber using finite feedback has also been carried out [18]. The model's accuracy is also 

determined from the modelling process carried out. According to Amato [19] the dynamical system contains 

an uncertainty factor due to simplifying the modelling and parameter estimation processes. The first 

uncertainty factor occurs in the modelling process because the phenomenon's complexity cannot be fully 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 26, No. 3, June 2022: 1315-1327 

1316 

expressed in a mathematical model and natural phenomena contain a constant disturbance function that 

cannot always be modelled [2].  

Inaccurate estimation of model parameters also results in an uncertainty system. The dynamical 

system, which represents the phenomenon, will contain parameters whose values cannot always be 

determined precisely or whose values change at certain time intervals. The uncertainty factor in a 

mathematical model can be expressed in the form of a function that represents a parameter whose value is 

constant but unknown, a time-varying parameter, or a function that defines an external disturbance [21]. One 

of the problems arising from a disturbance function is not achieving asymptotic stability from the system 

output [22]. 

One of the methods used in the nonlinear control system is the backstepping method. This method 

was developed in the 1990s based on the stability of Lyapunov which the process is carried out iteratively 

[23]. Using the backstepping method can be referred to in [24]–[29]. Generally, the backstepping method is 

applied to systems with a strict feedback form [30]–[32], which can be obtained using the transformation in 

[33]. This transformation is a nonlinear transformation that can make the control design more complex. 

This article presents the control design of a non-minimum phase bilinear control system containing a 

disturbance function. The main difference with previous studies in [12]–[14], [16], [18] is in terms of the 

presence of a disturbance function in the system and the type of system and in [15], [34]–[36] is in terms of 

the use of the control design method used. The method used in this article is the backstepping method, which 

develops the previous results in [37]. In [37], it is assumed that the system can be linearised exactly so that it 

has no internal dynamics, and the control design is only a matter of stabilisation. Compared with the work in 

[27]–[29], the system used is not in a non-minimum phase. Even though the system contains uncertainty, the 

absence of internal dynamics makes it possible to design controls directly on the system. We applies 

backstepping to the normal form obtained through the input-output linearisation transformation using the 

procedure in [38], [39]. Since there are internal dynamics, they will be stabilised first using virtual controls. 

The whole system and the disturbance function will be stabilised in the last iterative process using the actual 

control variables. The novelty aspect of this article includes theories and methods in solving a non-minimum 

phase system containing a disturbance function. To solve the non-minimum phase system, it is no longer 

necessary to redefine the system output to become a minimum phase. In addition, the use of backstepping 

ensures that the internal dynamics can be stabilized to zero or bounded using virtual control. 

This article is structured as: After this sections, a research method explains the input and output 

linearisation transformations applied to a bilinear control system. It also describes the basic backstepping 

procedure to stabilise the bilinear control system and the method for calculating control performance using 

integral absolute error (IAE). In the results section, the control design for the non-minimum-phase bilinear 

control system containing disturbance is described and analysed for its stability. Some examples are provided 

to simulate control design and to see the performance of the proposed method using several different control 

parameters. 

 

 

2. RESEARCH METHOD  

Given a bilinear control system with a single input and output: 

 

{
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝑢(𝑡)𝐵𝑥(𝑡)

𝑦(𝑡) = ℎ(𝑥(𝑡))
 (1) 

 

where A, B ∈ ℝ2×2, x(𝑡) ∈ ℝ2 is the state variable, 𝑢(𝑡) ∈ ℝ is the control variable, and 𝑦(𝑡) is the system 

output. It is assumed that the system output can be expressed as a linear combination of state variables, i.e., 

ℎ(𝑥(𝑡)) = ℎ𝑥(𝑡) for h𝑇 ∈ ℝ2. 

Linearisation of the bilinear control system is done based on input-output feedback using the Lie 

derivative defined by 𝐿𝑓ℎ(𝑥(𝑡)) = ∇ℎ(𝑥(𝑡))𝑓(𝑥(𝑡)). The relative degree of a bilinear control system in (1) 

is the natural number 𝜌 ∈ ℕ that satisfies 𝐿𝑓
𝑖−1ℎ(𝑥(𝑡)) = ℎ𝐴𝑖−1𝐵𝑥(𝑡) = 0 for each 𝑖 = 1,2, … , 𝜌 − 1 and 

𝐿𝑔𝐿𝑓
𝜌−1

ℎ(𝑥(𝑡)) = ℎ𝐴𝜌−1𝐵𝑥(𝑡) ≠ 0. If 𝜌 < 𝑛 , then a bilinear control system has internal dynamics 

independent of the control variables and if 𝜌 = 𝑛 is satisfied, then a bilinear control system in (1) is a system 

that can be linearly exactly. If the system's internal dynamics are unstable, then the system is called a non-

minimum phase system. 

Assuming the bilinear control system in (1) has a relative degree two which satisfies 𝐿𝑔ℎ(𝑥(𝑡)) = 0. 

The input and output linearization transformation (IOFL) transformation are given by (2). 
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𝑧 = 𝑇(𝑥) = [
ℎ(𝑥)

𝐿𝑓ℎ(𝑥)
] (2) 

 

The derivative of (2) with respect to 𝑡 and using its inverse gives: 

 

{
�̇�1(𝑡) = 𝑧2(𝑡)

�̇�2(𝑡) = 𝜈(𝑡)
 (3) 

 

where 𝜈(𝑡) = ℎ𝐴2𝑇−1𝑧(𝑡) + 𝑢(𝑡)ℎ𝐴𝐵𝑇−1𝑧(𝑡) is the new control function that applies to the linear control 

system in (3). Choose Lyapunov function 𝑉(𝑡) =
1

2
𝑧1

2 +
1

2
(𝑧2 + 𝑟1𝑧1)2. The linear control system in (3) can 

be stabilised using the backstepping method with the control function 𝜈(𝑡) = (𝑟1
2 − 1)

𝜕𝑉

𝜕𝑧1
− (𝑟1 + 𝑟2)

𝜕𝑉

𝜕𝑧2
 for 

𝑟1, 𝑟2 ∈ ℝ+. 

It is assumed that the bilinear control system in (1) has a relative degree one to satisfy 𝐿𝑔ℎ(𝑥(𝑡)) ≠

0. Defined coordinate transformation using input and output linearization transformation (IOFL) [38], [39].  

 

𝑧 = 𝑇(𝑥) = [
ℎ(𝑥)
𝜙(𝑥)

] (4) 

 

Where 𝜙(𝑥) is a function that satisfies 𝐿𝑔𝜙(𝑥) = 0 with 𝑔(𝑥) = 𝐵𝑥(𝑡). The derivative of (4) with respect to 

𝑡 and using the inverse transformation of (4) produces: 

 

{
�̇�1(𝑡) = 𝜈(𝑡)

�̇�2(𝑡) = 𝐿𝑓𝜙(𝑥) = 𝑐1𝑧1(𝑡) + 𝑐2𝑧2(𝑡) (5) 

 

where 𝜈(𝑡) = ℎ𝐴𝑇−1𝑧(𝑡) + 𝑢(𝑡)ℎ𝐵𝑇−1𝑧(𝑡) is the new control function that applies to the linear control 

system in (5). In contrast to the system that can be exactly linearised in (3), the control value does not affect 

internal dynamics. If the controlled output value reaches the path, then the dynamic zero on the internal 

dynamic is �̇�2(𝑡) = 𝑐2𝑧2(𝑡). If 𝑐2 ∈ ℝ+, then dynamic zero is unstable so that the system in (1) is the non-

minimum phase. 

The control function parameter {𝑟1, 𝑟2} in the backstepping method determines the control 

performance to bring the system output to follow the given path. Performance values are evaluated using the 

integral absolute error (IAE), which is defined by (6).  

 

IAE = ∫ |𝑦(𝑡) − 𝑦𝑑(𝑡)| 𝑑𝑡
𝑡𝑓

0
 (6) 

 

The integral in (6) needs the numerical solution of the system of (1) so that the value of (6) is evaluated using 

Simpson's method given by; 

 

𝑆𝑛 =
ℎ

3
(𝑓0 + 𝑓𝑛 + 4 ∑ 𝑓2𝑖+1

𝑛

2
𝑖=0

+ 2 ∑ 𝑓2𝑖+2

𝑛

2
𝑖=0

)  

 

where 𝑛 is the number of partitions used, ℎ =
𝑡𝑓−𝑡0

𝑛
 is the width of the partition, 𝑡𝑖 = 𝑡0 + 𝑖ℎ is the partition 

point for the 𝑡 domain and 𝑓𝑖 = |𝑦(𝑡𝑖) − 𝑦𝑑(𝑡𝑖)| for 𝑖 = 0,1,2, … , 𝑛 . 
 

 

3. RESULTS AND DISCUSSION 

This section presents a control design for tracking problems in a bilinear control system with a 

disturbance function using the backstepping method for a non-minimum phase system. Simulation examples 

are also given to see the performance of the control in bringing the output along the given trajectory. 

Consider a planar bilinear control system with a disturbance function.  

 

{
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝑢(𝑡)𝐵𝑥(𝑡) + 𝑁𝜔(𝑡)

𝑦(𝑡) = ℎ(𝑥(𝑡))
 (7) 
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where A, B ∈ ℝ2×2, x(𝑡) ∈ ℝ2 is the state variable, 𝑢(𝑡) ∈ ℝ is the control variable, and 𝑦(𝑡) = ℎ(𝑥(𝑡)) is 

the system output assumed to be expressed as a linear combination of the state variables, so that 𝑦(𝑡) =
ℎ𝑥(𝑡) and 𝜔(𝑡) ∈ ℝ are disturbance functions. 

- Assumption 1. The tracking path 𝑦𝑑(𝑡) and its derivatives are smooth and bounded. 

- Assumption 2. The disturbance function 𝜔(𝑡) is unknown but bounded. 

 

3.1.  Control design for the system with exact linearisation 

Theorem 1, given a bilinear system with disturbance in (7). If the system has a relative degree of 

two, the control function that stabilises the system globally is 𝑢(𝑡) =
𝜈(𝑡)−ℎ𝐴2𝑥(𝑡)

ℎ𝐴𝐵𝑥(𝑡)
, where 𝜈(𝑡) is given by: 

 

𝜈(𝑡) = �̈�𝑑(𝑡) − (1 − 𝑟1
2)𝑒1(𝑡) − (𝑟1 + 𝑟𝑤)𝑤(𝑡) − sign(𝑤) max(𝑑)  

 

Proof, it is known that the system has a relative degree of two to be linearised exactly. Using the 

transformation of (2), we get (8): 

 

{
�̇�1(𝑡) = 𝑧2(𝑡)

�̇�2(𝑡) = 𝜈(𝑡) + 𝑑(𝑡)
 (8) 

 

defined the difference between the output and the given path (9), 

 

{
𝑒1(𝑡) = 𝑧1(𝑡) − 𝑦𝑑(𝑡)

𝑒2(𝑡) = 𝑧2(𝑡) − �̇�𝑑(𝑡)
 (9) 

 

the derivative of (9) with respect to t and by using (8) gives (10), 

 

{
�̇�1(𝑡) = 𝑒2(𝑡)

�̇�2(𝑡) = 𝜈(𝑡) + 𝑑(𝑡) − �̈�𝑑(𝑡)
 (10) 

 

where 𝑑(𝑡) = ℎ𝑁𝜔(𝑡) is the disturbance function and 𝜈(𝑡) is the new control variable used in the linearised 

system of (10), and its relationship to the control variable 𝑢(𝑡) is: 

 

𝜈(𝑡) = ℎ𝐴2𝑥(𝑡) + 𝑢(𝑡)ℎ𝐴𝐵𝑥(𝑡) (11) 

 

The first step is to stabilise the state variable 𝑒1(𝑡) using 𝑒2(𝑡) as a virtual control. Define the 

Lyapunov function 𝑉1(𝑡) =
1

2
𝑒1

2(𝑡). The derivative of 𝑉1(𝑡) with respect to 𝑡 gives: 

 

�̇�1(𝑡) = 𝑒1(𝑡)𝑒2(𝑡)  

 

For the state variable 𝑒1(𝑡) to be asymptotically stable, �̇�1(𝑡) < 0 must be valid for every 𝑡. Select virtual 

control 𝑒2(𝑡) = −𝑟1𝑒1(𝑡) with 𝑟1 ∈ ℝ+. Define a new state variable (12): 

 

𝑤(𝑡) = 𝑟1𝑒1(𝑡) + 𝑒2(𝑡) (12) 

 

based on (12), we get 𝑒2(𝑡) = 𝑤(𝑡) − 𝑟1𝑒1(𝑡), and by substituting in (10), we get (13). 

 

{
�̇�1(𝑡) = 𝑤(𝑡) − 𝑟1𝑒1(𝑡)

�̇�(𝑡) = 𝑟1(𝑤(𝑡) − 𝑟1𝑒1(𝑡)) + 𝜈(𝑡) + 𝑑(𝑡) − �̈�𝑑(𝑡)
 (13) 

 

The final step is to stabilise the entire system in (13) using the variable control 𝜈(𝑡). Define the 

Lyapunov function 𝑉2(𝑡) =
1

2
[𝑒1

2(𝑡) + 𝑤2(𝑡)]. The derivative of 𝑉2(𝑡) with respect to 𝑡 will results, 

 

�̇�2(𝑡) = −𝑟1𝑒1
2(𝑡) + 𝑤(𝑡)[𝑟1𝑤(𝑡) + (1 − 𝑟1

2)𝑒1(𝑡) + 𝜈(𝑡) − �̈�𝑑(𝑡)] + 𝑤(𝑡)𝑑(𝑡) (14) 

 

It is assumed that there are 𝑟𝑤 ∈ ℝ+ and Φ ∈ ℝ− such that �̇�2(𝑡) = −𝑟1𝑒1
2(𝑡) − 𝑟𝑤𝑤2(𝑡) − Φ. Using this 

assumption and using (14), it obtained in (15): 
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𝑟1𝑤(𝑡) + (1 − 𝑟1
2)𝑒1(𝑡) + 𝜈(𝑡) − �̈�𝑑(𝑡) = −𝑟𝑤𝑤(𝑡) + 𝜃. (15) 

 

Substitute (15) into the Lyapunov function in (14) to get (16). 

 

�̇�2(𝑡) = −𝑟1𝑒1
2(𝑡) − 𝑟𝑤𝑤2(𝑡) + 𝑤(𝑡)(𝜃 + 𝑑(𝑡)) (16) 

 

To satisfy �̇�2(𝑡) < 0, select 𝜃 = −sign(𝑤) max (𝑑). Substitute 𝜃 = −sign(𝑤) max(𝑑) into (16) so that the 

final form of the derivative of the Lyapunov function is obtained that is (17). 

 

�̇�2(𝑡) = −𝑟1𝑒1
2(𝑡) − 𝑟𝑤𝑤2(𝑡) + |𝑤|(sign(𝑤)𝑑(𝑡) − max(𝑑)) (17) 

 

Because max(𝑑) > 𝑑(𝑡) then sign(𝑤)𝑑(𝑡) − max (𝑑) < 0 and �̇�2(𝑡) < 0 apply to every 𝑡 ≥ 0. 
Furthermore, the variable control 𝜈(𝑡) is obtained from (15) and using the relation between the state variables 
{𝑒1(𝑡) , 𝑒2(𝑡) , 𝑤(𝑡)} in (12), the following control function is obtained (18).  

 

𝜈(𝑡) = �̈�𝑑(𝑡) − (1 − 𝑟1
2)𝑒1(𝑡) − (𝑟1 + 𝑟𝑤)𝑤(𝑡) − sign(𝑤) max(𝑑) (18) 

 

Using the Lyapunov function 𝑉(𝑒1, 𝑤) and its derivatives in (17), we found that the value {𝑒1(𝑡), 𝑤(𝑡)} is 

bounded. Use Assumption 1, and because the value of 𝑦𝑑(𝑡) is bounded, based on (9), the value of 𝑧1(𝑡) is 

also bounded. Because {𝑒1(𝑡), 𝑤(𝑡)} are bounded, from (12), the value of 𝑒2(𝑡) is bounded. As a result, from 

(9), we obtained 𝑧2(𝑡) is also bounded. Based on the LaSalle-Yoshizawa theorem, we get lim
𝑡→∞

(𝑒(𝑡)) = 0, so 

lim
𝑡→∞

(𝑦(𝑡) − 𝑦𝑑(𝑡)) = 0 applies. 

 

3.2.  Control design for non-minimum phase system 

Theorem 2. Consider a bilinear control system in (7) with relative degree 𝜌 = 1 and satisfies 

Assumption 1 and 2. Let [𝑘1 𝑘2] = 𝑐𝐴𝑇−1 with 𝑇 = 〈ℎ, 𝑐〉 and 𝑐 is an internal dynamic equation matrix 

that satisfies 𝑐𝐵𝑥(𝑡) = 0. The control function that takes the output to the path 𝑦𝑑(𝑡) is 𝑢(𝑡) =
𝜈(𝑡)−ℎ𝐴𝑥(𝑡)

ℎ𝐵𝑥(𝑡)
, 

where the value of 𝜈(𝑡) is given by: 
 

𝜈(𝑡) = �̇�𝑑(𝑡) + (𝑘2 + 𝑟2 + 𝑟𝑤)𝑦𝑑(𝑡) −
𝑀𝑇𝑇𝑥(𝑡)

𝑘1
+

1

𝑘1
𝑀𝜙(𝑡) −

|𝑘1|

𝑘1
sign(𝑤) max(𝑑)  

 

where 𝑀 = [
𝑘1(𝑘2 + 𝑟2 + 𝑟𝑤)

1 + (𝑘2 + 𝑟𝑤)(𝑘2 + 𝑟2)
] and the function 𝜙(𝑡) are bounded solutions of the first-order 

differential: 
 

�̇�(𝑡) − 𝑘2𝜙(𝑡) − 𝑘1𝑦𝑑(𝑡) = 0  
 

Proof, it is known that the bilinear control system of (7) has a relative degree 𝜌 = 1 so that it has 

internal dynamic and internal dynamic stabilisation will be performed first. Using the transformation in (4), 

we get (19). 
 

{
�̇�1(𝑡) = 𝜈(𝑡) + 𝑑(𝑡)

�̇�2(𝑡) = 𝑘1𝑧1(𝑡) + 𝑘2𝑧2(𝑡)
 (19) 

 

Define the difference between the output and the given path, 
 

{
𝑒1(𝑡) = 𝑧1(𝑡) − 𝑦𝑑(𝑡)

𝑒2(𝑡) = 𝑧2(𝑡) − 𝜙(𝑡)
 (20) 

 

where 𝜙(𝑡) is a function to be defined later. The derivative of (20) with respect to 𝑡 and using (19) produces 

(21). 
 

{
�̇�2(𝑡) = 𝑘1(𝑒1(𝑡) + 𝑦𝑑(𝑡)) + 𝑘2(𝑒2(𝑡) + 𝜙(𝑡)) − �̇�(𝑡) 

�̇�1(𝑡) = 𝜈(𝑡) + 𝑑(𝑡) − �̇�𝑑(𝑡)
 (21) 

 

The first step is to stabilise the state variable 𝑒2(𝑡) using 𝑒1(𝑡) as a virtual control. Define the 

Lyapunov function 𝑉(𝑒2) =
1

2
𝑒2

2(𝑡). The derivative of 𝑉(𝑒2) with respect to 𝑡 produce: 
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�̇�(𝑒2) = 𝑒2(𝑡)(𝑘1(𝑒1(𝑡) + 𝑦𝑑(𝑡)) + 𝑘2(𝑒2(𝑡) + 𝜙(𝑡)) − 𝜙(𝑡)̇ )  

 

the state variable 𝑒2(𝑡) is asymptotically stable if it satisfies �̇�(𝑒2) < 0 for every 𝑡 ≥ 0. Choose virtual 

control 𝑘1(𝑒1(𝑡) + 𝑦𝑑(𝑡)) + 𝑘2(𝑒2(𝑡) + 𝜙(𝑡)) − �̇�(𝑡) = −𝑟2𝑒2(𝑡) with 𝑟1 ∈ ℝ+. Define a new state 

variable (22). 
 

𝑤(𝑡) = 𝑘1𝑒1(𝑡) + (𝑘2 + 𝑟2)𝑒2(𝑡) +  𝑘1𝑦𝑑(𝑡) + 𝑘2𝜙(𝑡) − 𝜙(𝑡)̇  (22) 
 

Substitute new state variable in (22) and its derivative into (21) to produce (23). 

 

{
�̇�2(𝑡) = 𝑤(𝑡) − 𝑟2𝑒2(𝑡)

�̇�(𝑡) = 𝑘1(𝜈(𝑡) + 𝑑(𝑡) − �̇�𝑑(𝑡)) + (𝑘2 + 𝑟2)(𝑤(𝑡) − 𝑟2𝑒2(𝑡)) + 𝑘1�̇�𝑑(𝑡) + 𝑘2�̇�(𝑡) − 𝜙(𝑡)̈  (23) 

 

The final step is stabilising the entire system in (23) using the variable control 𝜈(𝑡). Define the 

Lyapunov function 𝑉(𝑒2, 𝑤) =
1

2
(𝑒2

2(𝑡) + 𝑤2(𝑡)). The derivative of 𝑉(𝑒2, 𝑤) with respect to 𝑡 will results 

(24). 
 

�̇�(𝑒2, 𝑤) = −𝑟2𝑒2
2(𝑡) + 𝑤(𝑡)(𝑒2(𝑡) + �̇�(𝑡)) (24) 

 

Substituting (23) into (24) and assuming there are 𝑟𝑤 ∈ ℝ+ and Φ ∈ ℝ− such that �̇�(𝑒2, 𝑤) = −𝑟2𝑒2
2(𝑡) −

𝑟𝑤𝑤2(𝑡) − Φ to get (25). 
 

𝑒2(𝑡) + 𝑘1(𝜈(𝑡) − �̇�𝑑(𝑡)) + (𝑘2 + 𝑟2)(𝑤(𝑡) − 𝑟2𝑒2(𝑡)) + 𝑘1�̇�𝑑(𝑡) + 𝑘2�̇�(𝑡) − �̈�(𝑡)  

= −𝑟𝑤𝑤(𝑡) + 𝜃 (25) 

 

Using (25), (24) became (26): 
 

�̇�(𝑒2, 𝑤) = −𝑟2𝑒2
2(𝑡) − 𝑟2𝑤2(𝑡) + 𝑤(𝑡)(𝑘1𝑑(𝑡) + 𝜃) (26) 

 

To satisfy �̇�(𝑒2, 𝑤) < 0, choose the value 𝜃 = −sign(𝑤)|𝑘1| max(𝑑). Substitute this value into (26), and we 

obtain the final form of the derivative of the Lyapunov function, that is: 

 

�̇�(𝑒2, 𝑤) = −𝑟2𝑒2
2(𝑡) − 𝑟2𝑤2(𝑡) + |𝑤(𝑡)𝑘1|(sign(𝑘1)sign(𝑤)𝑑(𝑡) − max(𝑑)) (27) 

 

Because max(𝑑) > 𝑑(𝑡), then sign(𝑘1)sign(𝑤)𝑑 − max(𝑑) < 0 and �̇�(𝑒2, 𝑤) < 0 apply to every 𝑡 ≥ 0. 

The control function 𝜈(𝑡) is obtained from (25). 

 

𝜈(𝑡) = −
1

𝑘1
  

[(1 − 𝑟2(𝑘2 + 𝑟2))𝑒2(𝑡) + (𝑘2 + 𝑟2 + 𝑟𝑤)𝑤(𝑡) − �̈�(𝑡) + 𝑘2�̇�(𝑡) + sign(𝑤)|𝑘1| max(𝑑)] (28) 

 

Using the value of {𝑒1(𝑡), 𝑒2(𝑡)} in (20) and 𝑤(𝑡) in (22), the control function 𝜈(𝑡) in (28) can be expressed 

by (29): 
 

𝜈(𝑡) = �̇�𝑑(𝑡) + (𝑘2 + 𝑟2 + 𝑟𝑤)𝑦𝑑(𝑡) −
𝑀𝑇𝑇𝑥(𝑡)

𝑘1
+

1

𝑘1
𝑀𝜙(𝑡) −

|𝑘1|

𝑘1
sign(𝑤) max(𝑑) (29) 

 

with 𝑀 = [
𝑘1(𝑘2 + 𝑟2 + 𝑟𝑤)

1 + (𝑘2 + 𝑟𝑤)(𝑘2 + 𝑟2)
].  

 

Note that the control function in (29) requires a value of 𝜙(𝑡). Consider the 𝑤(𝑡) function in (22); 

𝑤(𝑡) = 𝑘1𝑒1(𝑡) + (𝑘2 + 𝑟2)𝑒2(𝑡) +  𝑘1𝑦𝑑(𝑡) + 𝑘2𝜙(𝑡) − 𝜙(𝑡)̇ . The state variables 𝑒2(𝑡) and 𝑤(𝑡) have 

been controlled to zero at each stage. Furthermore, it is expected that 𝑒1(𝑡) ≈ 0 to obtain 𝑧1(𝑡) ≈ 𝑦𝑑(𝑡). 

Assume that for a value 𝑡 ≥ 𝑇 that satisfies 𝑒2(𝑡), 𝑤(𝑡) ≈ 0 , from (22), we will get 𝑘1𝑒1(𝑡) = �̇�(𝑡) −
𝑘2𝜙(𝑡) − 𝑘1𝑦𝑑(𝑡). Next, to obtain 𝑒1(𝑡) = 0, the value of 𝜙(𝑡) is obtained from an ordinary first-order 

differential equation. 

 

�̇�(𝑡) − 𝑘2𝜙(𝑡) − 𝑘1𝑦𝑑(𝑡) = 0 (30) 
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The solution of (30) is a path for internal dynamics, and it depends on the initial value of 𝜙(𝑡0) and 

the path 𝑦𝑑(𝑡). In order to make bounded the internal dynamic, it is necessary to determine the initial value 

of 𝜙(𝑡0) so that the solution of (30) is bounded for every 𝑡 ≥ 0. 

 

3.3.  Simulations  

This section gives some examples to illustrate the implementation of the controls described in the 

previous section. Example 1. Consider the dynamics of the paper cutting machine [34], which is expressed by 

(31): 
 

{
�̇�1(𝑡) = −0.046𝑥1(𝑡) − 0.027𝑥1(𝑡)𝑢(𝑡) + 0.978𝑑

�̇�2(𝑡) = −0.7632𝑥1(𝑡) + 3.197𝑥2(𝑡)
 (31) 

 

Suppose 𝜈(𝑡) = −0.046𝑥1(𝑡) − 0.027𝑥1(𝑡)𝑢(𝑡) then (31) can be written as (32). 
 

{
�̇�1(𝑡) = 𝜈(𝑡) + 0.978𝑑

�̇�2(𝑡) = −0.7632𝑥1(𝑡) + 3.197𝑥2(𝑡)
 (32) 

 

As shown in (32) has formed a normal system with a control function 𝜈(𝑡) with an internal dynamic of order 

one. If 𝑥1 = 0, then zero dynamics is �̇�2(𝑡) = 3.197𝑥2(𝑡), which is unstable and consequently is a non-

minimum phase system with relative degrees 𝜌 = 1 . Simulations were carried out using the data in Table 1. 

Using Table 1, the control function in (18), which takes the output to the origin, is 𝜈(𝑡) =
−1.3103(17.5910𝑥2 − 11.1970𝑤 − 0.7632 sign(𝑤)). Figure 1 shows the simulation results for the 

stabilisation problem. Figure 1(a) shows that the proposed control function with several parameter values 

variations successfully stabilises the system output to the origin. The system output initially moves from the 

initial value away from the origin to a certain maximum point and then towards the origin. The convergence 

behaviour of the system output is strongly influenced by the value of the backstepping control parameter. The 

maximum point achieved for a small combination of control parameters is smaller, but the system output 

takes longer to converge to the origin. As for larger combinations, it takes a relatively short time to converge, 

but the system will move to a larger maximum point. Figure 1(b) shows the internal dynamics for each 

backstepping control parameter. In contrast to the system output, the internal dynamics controlled with large 

parameters move from the initial value to the origin directly. Meanwhile, the internal dynamics, which are 

controlled with small parameters, allow the internal dynamics to move away from the origin until a certain 

maximum point before moving towards the origin. 

 

 

Table 1. Simulation parameters  
Parameter Value Description 

𝑟2  {3,7,11} Backstepping parameter 

𝑟𝑤 {5,9,15} Backstepping parameter 

𝑑(𝑡)  𝑟𝑎𝑛𝑑() × 𝑠𝑖𝑛(𝑡) Disturbance 

𝑘1  −0.7632 Coefficient variable internal dynamic  

𝑘2  3.197 Coefficient variable external dynamic 

 

 

Next up for the tracking problem, we use the path 𝑦𝑑(𝑡) = cos(𝑡). The path for internal dynamics 

obtained from the equation 𝜙(𝑡) is obtained from the solution of the following ordinary differential equation.  
 

𝑑𝜙(𝑡)

𝑑𝑡
− 3.197𝜙(𝑡) + 0.7632 cos(𝑡) = 0 (33) 

 

If the initial value is 𝜙(𝑡0) = 𝜙0 , then the solution of (33) is (34). 

 

𝜙(𝑡) = 0.217 cos(𝑡) − 0.068 sin(𝑡) + exp(3.197)(𝜙0 − 0.217) (34) 

 

In order for (34) to be bounded, the term exp(3.197𝑡) needs to be eliminated. Selecting the initial value of 

𝜙0 = 0.217 will produce a bounded solution of (34) as well as a particular solution, namely 𝜙(𝑡) =
0.217 cos(𝑡) − 0.068sin (𝑡). The simulation result for the tracking problem with the path 𝑦𝑑(𝑡) = cos(𝑡) is 

shown in Figure 2. Figure 2(a) compares the system's output dynamics with the trajectory. The system output 

has converged to the trajectory at 𝑡 ≈ 1. At 𝑡 ∈ [1,10], the system's output and the trajectory remain 

attached, and there is no dynamic spike even though the system is disturbed. Figure 2(b) shows the internal 

dynamics. Internal dynamics move from the initial point following a path 𝜙(𝑡) whose value is bounded at 
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[−0.5,0.5]. This indicates that the backstepping control is successful in bringing the system output to the 

trajectory while keeping the internal dynamics to a minimum. 

 

 

 
(a) 

 

 
(b) 

 

Figure 1. Comparison of state variable dynamics on paper cutting machines with varying control parameter  

values with (a) system output and (b) internal dynamic 

 

 

Example 2 given a bilinear control system with a disturbance function �̇�(𝑡) = 𝐴𝑥(𝑡) + 𝑢(𝑡)𝐵𝑥(𝑡) +
𝑁𝜔(𝑡) with the system output 𝑦(𝑡) = 𝑥2(𝑡) and the parameter values are given in [40]. 
 

𝐴 = [
3/16 5/12

−50/3 −8/3
] , 𝐵 = [

−1 0
0 0

] , 𝑁 = [
1
0

] (35) 

 

The disturbance function is generated using the equation 𝜔(𝑡) = rand( ) × sin(𝑡). The purpose of the 

control is to drive the system output to the origin 𝑦𝑑(𝑡) = 0. For the control parameters, the values of {𝑟1 =
1, 𝑟𝑤 = 3} and {𝑟1 = 5, 𝑟𝑤 = 7} are used. Comparison of computational results between the proposed method 

and the robust control method H∞ [13], [40] is shown in Figure 3. 

Figure 3 shows that both control methods can bring the output to the origin relatively quickly. 

Compared with the robust H∞ control, the results depend on the combination of {𝑟1, 𝑟𝑤} values. In the 

backstepping method, the control performance shows significantly different results for the two variations of 

the given {𝑟1, 𝑟𝑤} value. For the {𝑟1 = 1, 𝑟𝑤 = 3} combination, the backstepping method produces worse 

performance than the H∞ robust control method. The system output controlled using backstepping takes 

longer to converge to the origin. Still, the robust H∞ control method produces a higher minimum output 

value at the beginning of the simulation. By changing the value of the control parameter {𝑟1, 𝑟𝑤} to be larger, 
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the convergence of the backstepping method increases rapidly. The {𝑟1 = 5, 𝑟𝑤 = 7} combination can bring 

the system output with a minimal minimum value to the origin in time 𝑡 ≈ 0.5, which is 700% faster than the 

{𝑟1 = 1, 𝑟𝑤 = 3} variation, which takes time 𝑡 ≈ 3.7.  

 

 

 
(a) 

 

 
(b) 

 

Figure 2. Comparison of state variable behaviour in the tracking problem with (a) system output versus the 

path and (b) internal dynamic 

 

 

For tracking problems, select the path 𝑦𝑑(𝑡) = cos(𝑡). The implementation of the control function 

in (29) using several variations {𝑟1, 𝑟𝑤} is shown in Figure 4. The calculation of the error value between the 

system output and the path using IAE for each {𝑟1, 𝑟𝑤} combination is shown in Table 2. 

Figure 4 shows, with all given combinations value of {𝑟1, 𝑟𝑤}, the system output can follow the path 

with identical behaviour but at different speeds. At the start of time, the system output moves away from and 

against the given path. The system output moves back to the given path at a maximum point, shown at time 

𝑡 ≈ 0.7. The smaller the combination of {𝑟1, 𝑟𝑤} values, the higher the system output value and the longer it 

takes to converge to the path. These results provide a different IAE value for each combination {𝑟1, 𝑟𝑤} with 

the characteristic that the lower the combination value, the higher the IAE value for the combination. Table 2 

shows the IAE values of each combination shown in Figure 4. The combination {𝑟1 = 3, 𝑟𝑤 = 3}, the 

smallest combination, gives the largest IAE value, while the combination {𝑟1 = 12, 𝑟𝑤 = 9}, the largest 

combination, gives the smallest IAE value. 
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Figure 3. Comparison of the system output stabilised to the origin using the backstepping method with two 

variations of {𝑟1, 𝑟𝑤} and the robust H∞ control method 

 

 

 
 

Figure 4. The effect of variations in the value of {𝑟1, 𝑟𝑤} on control performance 

 

 

Table 2. IAE values based on the combination {𝑟1, 𝑟𝑤} shown in Figure 4 
{𝑟1, 𝑟𝑤} IAE ToC (seconds) 

{𝑟1 = 3, 𝑟𝑤 = 3}  7.63929 0.58891 

{𝑟1 = 5, 𝑟𝑤 = 7}  1.96321 0.54580 

{𝑟1 = 7, 𝑟𝑤 = 9} 1.04368 0.54813 

{𝑟1 = 12, 𝑟𝑤 = 9}  0.60237 0.54495 

 

 

Table 2 does not adequately explain the change in IAE value due to changes in the value of the 

combination of {𝑟1, 𝑟𝑤}. Next, the IAE calculation is performed using a combination of partitioned (𝑟1, 𝑟𝑤) =
[1,25] × [1,25] with Δ𝑟 = 0.5, and the results are shown in Figure 5. The highest IAE value occurs for the 

combination of {𝑟1 = 1, 𝑟𝑤 = 1}, and the lowest IAE value occurs for the combination of {𝑟1 = 25, 𝑟𝑤 = 25}.  

Statistically, the correlation level can be calculated from the combination {𝑟1, 𝑟𝑤} to the IAE value. 

Using Spearman's non-parametric correlation test, 𝑟1 to IAE is −0.68043 while 𝑟𝑤 to IAE is −0.68240 with 

1% significance level. This means that {𝑟1, 𝑟𝑤} has enough correlation to lower the IAE value. Furthermore, 

if multiple regression is performed to obtain the IAE function for the {𝑟1, 𝑟𝑤} combination, the equation 

IAE = −0.10646𝑟1 − 0.10657𝑟𝑤 + 3.64456 is obtained. Although the weights of the two coefficients 
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{𝑟1, 𝑟𝑤}are different, the difference is very small. We say that both {𝑟1, 𝑟𝑤} give almost equal weight to 

changes in IAE values. 

 

 

 
 

Figure 5. IAE value for all combinations of (𝑟1, 𝑟𝑤) = [1,25] × [1,25]  
 

 

4. CONCLUSION 

This article discussed the control design for tracking problems using the backstepping method for a 

non-minimum phase bilinear control system containing disturbance. The disturbance function is assumed to 

exist only in dynamic externals. The bilinear control system is converted into a normal form using a 

linearisation transformation based on input and output. The control function is designed using the 

backstepping method from the normal form. For systems that have internal dynamics, the internal dynamics 

are stabilised first. For the tracking problem, a path has been defined for the internal dynamics so that the 

system output follows the path, and the internal dynamics remains bounded. Based on the simulation, the 

proposed control function successfully brings the output to follow the trajectory for stabilisation problems 

and tracking problems. The selection of the right parameters will affect the performance of the control and, 

for a certain value, results in better performance than the Robust method on stabilisation problems. The 

combination of control parameters is almost symmetrical and inversely proportional to the resulting IAE 

value. 
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