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 This paper presents the results of investigations of the impact of parabolic 

pulsed heating on output voltage levels of a thermoelectric generator. The 

experiment was set up and tested under different test conditions. The output 

voltage levels were investigated. The experimental results showed that 

applying parabolic pulsed heating of 40, 60, 80 and 100 °C significantly 

maintained the output voltage levels of thermoelectric generator at about 80-

95% which was different from steady heating case which was about 10-30% 

of maximum voltage level.  Moreover, the parabolic pulse heating technique 

allows the heatsink to not be heated continuously and then the high 

temperature could be released out from a heat exchanger outside the heating 

period. This causes the next heating period to have a temperature difference 

between both sides of the device, and for that reason, could provide more 

power and efficiency. 
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1. INTRODUCTION 

Electricity can be directly produced form heat by thermoelectric generator (TEG) [1]. More than 

70% of the global energy consumption is lost as waste heat the during conversion process. This wasted 

energy originates from numerous sources such as mining and smelting plants, factories, electricity generators, 

air-conditioning and lighting appliances, vehicles’ engines, pipelines, brakes and exhausts, and even the 

human body [2], [3]. TEGs are made of 2 types of semiconducting materials, one is doped to be n-type and 

the other is doped to be p-type [4], [5]. One side of the TEG receives heating at the hot side (Th: high 

temperature side), while the other side has lower temperature (Tc: cold temperature side). The electricicty is 

generated by the different temperature (∆T) between both sides of TEG [6]. The open circuit voltage 

generated by TEG (V) is determined by equation V=n ∆T where n is the number of connected 

thermocouples, αAB is the Seebeck coefficients of the two joined materials A and B formingthe thermocouple 

(αAB=αA−αB) [7], [8]. However, the best conversion efficiency recorded for most structures and attractive 

material of TEGs is low relatively, about 7.3-11% [9]. Therefore, a number of studies have been conducted 

on TEG efficiency enhancement [10], [11] which can be classified into 3 common concepts. First, by using 

new or modified cell materials and structures [12] such as, figure of merit and thermocouples arrangement, 

rare earth materials, and innovative designs and devices [13] and TEG’type of structure [14], [15]. Vertical, 

planar and mixed. Second, providing high different temperature between both sides of the TEG such as 

cooling pads, heatsinks, multi-stage modules and other cooling systems.  
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However, using abundant rare earth materials allows for increased efficiency. But the cost of 

materials is more expensive as well and the maximum temperature difference of the TEG from both sides is 

still limited by the material, which means that the voltage generation is also limited. 

Related research in [16], the TEG was applied with solar energy using a Fresnel lens. The distance 

between the lens and thermoelectric module was investigated. The TEG could produce 1.03 W with energy 

conversion efiiciency of 1.81%. Lashin et al. [17] explained the TEG system was applied with an internal 

combustion engine through the exhaust gas chanel. The research work provides an enhanced structural design 

with cooling fins, in order to maintain the temperature difference between the hot side and cold side pf TEG. 

Zhu et al. [18] showed the TEG performance was investigated under highly concentrated light. The systems 

were designed for reducing temperature of photovoltaic cells. The photovoltaic cells were attached by TEG 

for reducing temperature of cell and the performance of TEG in case of partial illumination with different 

size of TEG and light intensity were analyzed. Results showed that the TEG (Length:4 cm) delivered the 

maximum power when compared to the other TEG samples (length: 3 and 6.2 cm). Rahman et al. [19] 

reported the design and manufacture of a 3D flexible thermoelectric power generator using chemical vapor 

deposition (CVD) on a layer surface. The results showed that with an output voltage of a 4×4 cm2, the 

flexible TEG device was up to ~1 mV, operating voltage at a temperature of 100 °C. Yang et al. [20] describe 

a CMOS MEMS-based thermoelectric energy generator device used under natural cooling condition with a 

high output performance. The measured results showed an opencircuit voltage of as high as 1.6 V and an 

output power of 0.49 μW when the temperature of the heat source was at 35 °C, which makes it applicable to 

wearable TEG devices for converting body warmth. Balakrishnan et al. [21] ilustrated an A3-D finite 

element model of a two-stage thermoelectric generator using low temperature bismuth-telluride 

thermoelectric material and Guterudite of medium temperature thermoelectric materials was used. The results 

showed the optimum structure of a two-stage thermoelectric device that can fully harvest electrical energy 

from the properties of thermoelectric materials. Ma et al. [22] reported TEG efficiency under steady-state and 

transient pulsed heating conditions. Square and triangular pulsed heat functions were compared for temporary 

studies. The results show that square pulsed heating provides the best efficiency compared to triangular 

pulsed heating and steady state heating. 

However, most of the above-mentioned research applied steady state heating to the TEG. The other 

case depends on environmental factors which cause more complexity and hord controlling. In case of pulsed 

heating, it was found that it could significantly enhance TEG performance in a simulation [22], [23]. In 

addition, most works proposed only the maximum ouput and efficiency, while the maintain output value 

levels of the TEG have not been presented. 

In this paper, a pulsed parabolic heating technique is presented for use with the most commonly 

used TEG structures. The experiments were tested under most testing temperatures T [24], [25] in range  

0-100 °C, the TEG output voltage level can be determined through both theoretical and experimental 

investigations. This paper is organized as follows: methodology and experimental test-rig in section 2, results 

and discussion in section 3, and conclusions in section 4. 

 

 

2. METHOD 

2.1.  Experimental system 

A schematic diagram of the TEG test is shown in Figure 1. The system can be divided into four 

parts; heat supply (IKA C-MAG HS7 Digital Hotplate) which can adjust different applied temperature, 

thermoelectric generator (TEG model type is SP1848-27145 and size is 4×4×0.34 cm whose internal 

resistance is 2.5 Ω.), heat exchanger (dimension of 7×9×3.5×0.1 cm that was used to dispose heat with rate of 

273 W/m°C) and electrical resistance (100 Ω) and oscilloscope (GDS-2074A GW, INSTEK) which was used 

for the voltage measurement. The resolution of the measurement equipment was calculated ~0.08 mV. To 

measure the temperature of hot and cold sides, type 𝐾 thermocouples were used with an accuracy of ±1.5 °C 

and the response time was 2.50 seconds. 

 

2.2.  Thermoelectric generator  

TEG is a solid-state device which consists of a large number of p-type and n-type semiconductor 

junctions. One side of the TEG is heated and the other side has a lower temperature causing both sides to 

have different temperatures (𝑇ℎ − 𝑇𝑐). As a result, heat stimulates free electrons to move. Therefore, the 

voltage according to the is as (1) [25]: 

 

𝑉𝑜𝑢𝑡 = 𝑛(𝛼𝐴 − 𝛼𝐵)(𝑇ℎ − 𝑇𝑐) (1) 
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where 𝑉𝑜𝑢𝑡 is output voltage of the TEG, n is the number of thermocouples, 𝛼𝐴 and 𝛼𝐵 are the Seebeck 

coefficient of p-type and n-type, respectively. 𝑇ℎ and 𝑇𝑐 are the temperatures at the high temperature side and 

cold temperature side, respectively. 

 

2.3.  Experimental test scenarios 

The experimentel system described above for the ambient temperature in which the system was set 

up to be 25 °C. Three pulsed heating were applied to the TEG, including parabola pulse and steady state heat. 

Experiments performed over a continuous period time (1,000 seconds). The output voltage levels of the TEG 

were investigested. Elements used for the aforementioned experiment test set-ups is shown in Figure 2. 

 

 

 
 

Figure 1. Diagram of TEG module testing concept in this research 

 

 

 
 

Figure 2. shows elements used for the aforementioned experiment test set-ups 

 

 

3. RESULTS AND DISCUSSION  

In this section, the results are explained and discussed and as follows: the output voltage levels of 

three pulsed heating conditions are compared the different temperature of both ends of TEG in different 

heating conditions and the normalized values of average ouput voltage levels. 

 

3.1.  The output voltage levels of two type heating conditions are compared 

Experimental results from the test described above for ambient temperature of the system was set up 

to be 25 °C under different heating conditions were applied including parabolic pulsed heating and steady 

state heating showed that parabola pulsed heating provided better performance for the TEG compared with 

steady state heating in long time period. 

Figures 3 to 6 show the measured output voltage levels for each particular testing temperature T 

level of 40 °C, 60 °C, 80 °C, and 100 °C. As shown in Figure 3(a), Figure 4(a), Figure 5(a) and Figure 6(b), 

steady heating applied to TEG could provide highest output voltage level (0.4-1.9 V) which was almost the 

same as when parabolic pulse heating was applied to TEG but for long time period testing, could provide 

different output voltage levels. Figure 3(b), Figure 4(b), Figure 5(b) and Figure 6(b), parabolic pulse heating 

maintain output voltage level but steady heating provided an output voltage level (0-0.4 V) for all testing T 

level. 

The obtained results showed that applying steady heating to TEG could provide high output voltage 

levels of TEG initially but for longer periods, out voltage levels of TEG decreased near to zero for all tested 

T levels. This was different from the case of applied parabolic pulse heating that could maintain output 

voltage levels. This is because there is time to release heat out from heat exchanger at the cold side of the 

TEG.  

 

3.2.  The different temperature of both ends of TEG in different heating conditions 

Figures 7 to 10 show that the maximum hot side and cold sife surface temperature of the TEG 

attains a value of differented heating temparatures where generated heating from hot plate for particular 
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applied heating temperature for both side of TEGwere compared between steady state heating is shown in 

Figure 7(a), Figure 8(a), Figure 9(a) and Figure 10(a) and parabolic heating is shown in Figure 7(b), Figure 

8(b), Figure 9(b) and Figure 10(b). 

 

 

  
(a) (b) 

  

Figure 3. Voltage level output of TEG under different heating condition at 40 oC (a) steady heating and  

(b) parabolic heating 

 

 

  
(a) (b) 

  

Figure 4. Voltage level output of TEG under different heating condition at 60 oC (a) steady heating and  

(b) parabolic heating 
 

 

  
(a) (b) 

  

Figure 5. Show voltage level output of TEG under different heating condition at 80 oC (a) steady heating and 

(b) parabolic heating 
 

 

  
(a) (b) 

  

Figure 6. Voltage level output of TEG under different heating condition at 100 oC (a) steady heating and  

(b) parabolic heating 
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(a) (b) 

  

Figure 7. Different heating condition curves at 40 oC (a) steady heating and (b) parabolic heating 

 

 

  
(a) (b) 

  

Figure 8. Different heating condition curves at 60 oC (a) steady heating and (b) parabolic heating 

 

 

  
(a) (b) 

  

Figure 9. Different heating condition curves at 80 oC (a) steady heating and (b) parabolic heating 

 

 

  
(a) (b) 

  

Figure 10. Different heating condition curves at 100 oC (a) steady heating and (b) parabolic heating 
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3.3.  The normalized values of average ouput voltage levels 

The experiment results show in Figures 1 to 6 that application of particular testing heat T of  

40-60 °C could provide output voltage level (0.4-1.9 V) in both types of heating conditions for all particular 

T testing level. But for a longer time period, the different heating condition could provide significantly 

different output voltage levels. The above explanation is clearly shown by Figures 11 to 14; where applying 

the differented heating temparatures. With steadily applied heating, the voltage drop was about 90%, 75%, 

70% and 70% at temperatures (T) of 40, 60, 80 and 100 °C respectively. Parabolic pulse heating could 

maintain output voltage level for all T levels.  

 

 

 
 

Figure 11. Normalized voltage value between steady and parabolic heating at particular testing  

temperature 40 oC 

 

 

 
 

Figure 12. Normalized voltage value between steady and parabolic heating at particular testing  

temperature 60 oC 

 

 

 
 

Figure 13. Normalized voltage value between steady and parabolic heating at particular testing  

temperature 80 oC 
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Figure 14. Normalized voltage value between steady and parabolic heating at particular testing  

temperature 100 oC 

 

 

4. CONCLUSION  

This paper proposed an alternative technique used to increase voltage generated from TEG using 

parabolic pulsed heating. Parabolic pulsed heating and steady heating functions were applied to TEG. The 

experimental results from the different heating conditions were compared. Results showed that parabolic 

pulsed heating enhanced the performance of the TEG significantly. This technique has many advantages of a 

heating technique that allows the TEG cold side; Tc to gradually cool out before the next heat treatment is 

applied to hot side of TEG; Th. The results showed that the proposed technique was able to maintain the 

output voltage level for all T test temperatures. 
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