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 Numerical analysis plays a vital role in the computational modeling of a 

nephron. The solutions from numerical methods exhibit regular, period 

doubling, and irregular oscillations as global behavior. A single nephron 

compliance tubular model with transport mechanism and autoregulatory 
mechanism has been developed using the cellular automata framework in 

this paper. Global emergent behavior of the biological system has been 

captured using cellular automata framework. An ultradiscretization 

technique is used to convert the governing partial differential equations of a 
single nephron compliance tubular model to cellular automata local rules. 

The global emergent behaviors from the local cellular automata rules have 

been compared with the reported experimental analysis. The cellular 

automata framework in biological modeling is an emerging perspective to 
model global functional behaviors. 
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1. INTRODUCTION  

Kidneys maintain the autoregulation of the blood pressure which may vary due to fluctuations caused 

by the blood vessels and heartbeats [1]. The blood flow in the kidney drives the glomerular filtration and is then 

autoregulated by several mechanisms to stabilize the transport mechanism [2]. The numerical methods and the 

large computing power available are used to simulate the transport mechanism of compliance nephrons. Models 

are refined to increase the accuracy at the tubular level by incorporating more individual transporters. 

Mathematical models of single nephron compliance tubular function have been developed in detail at the 

microscale level by incorporating many segments of the nephron such as thin ascending limb, thick ascending 

limb and descending limb [3]. This helps in capturing the detailed functionality of a nephron at structural and 

hemodynamic levels based on the transportation of the water and electrolytes. Macroscopic mathematical 

models of nephron with water, sodium chloride and urea transport have been tested with the experimental 

conditions and revealed the process of urine concentrating mechanism [4], [5]. 

Layton [6] have developed a model to represent tubular chloride concentration because the solute 

concentration at the macula densa (MD) is the primary signal that initiates the Tubuloglomerular feedback 

mechanism (TGF) autoregulatory response [6]. Single nephron TGF compliance tubular models are primarily 

based on the models of Holstein-Rathlou and Marsh [7]. The main focus of the models is to determine the 

factors that contribute to sustained oscillatory behavior that has been observed experimentally. Sustained 
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oscillations occur in the compliance tubule model when the resistance of the afferent arteriole is included in 

the governing differential equations. 

Moss et al. [8] has developed a new approach for the modeling of nephron system using one-

dimensional network automata. The Moss model incorporates the discretized structural and behavior of the 

nephron for fluid flow, solute transport and TGF. The discretized model has captured the self-sustained 

oscillations, period doubling and irregular oscillations with various TGF gain and has been compared with 

the A. T. Layton’s continuous nephron models [6]. 

Experimental analysis has been extensively conducted by Leyssac and Holstein on Sprague-Dawley 

(SD) rats, Winstar Kyoto (WKY) rats and spontaneously hypertensive (SH) rats [9], [10]. They have 

identified that the oscillation in the nephron tubule occurs due to autoregulatory mechanisms such as 

myogenic and TGF mechanisms. Regular stable oscillatory behavior has been observed in the Sprague-

Dawley rats under the experimental conditions by giving various dosages of loop diuretics. The loop diuretics 

regulate the autoregulatory mechanism from low concentration to high concentration to get regular oscillatory 

property, period doubling and irregular oscillatory behavior in the SD, WKY and SH rats [9], [10]. 

Cellular automata (CA) models are useful in modeling the emergent behavior of an evolving system. The 

CA models have been applied to model various phenomena [11], [12]. The key step in creating a CA model is to 

arrive at appropriate local space-time evolution rules. In this paper, a nephron model has been proposed with 

myogenic and TGF autoregulatory system that explicitly illustrates the functionality of the nephron tubule with 

compliant tubular walls using cellular automata. We have modeled pressure-driven flow within a compliant tubule 

using cellular automata based on the compliant-TGF model developed by Layton and Edwards [13]. 

The CA model captures the emergent behavior during the evolution in terms of the template of 256 

elementary rules. The properties from the rules developed for the governing partial differential equation 

(PDE) have to be compared with 256 rules and analyse the global emergent behavior [14]. The properties 

exhibited by the cellular automata model are not obvious for the analysis of emergent behavior [15]. The 

continuous governing equations are discretized and the CA model is then constructed using 

ultradiscretization (UD) [16]. The UD procedure preserves the integrability and the characteristics of 

integrability [11]. The UD equations with the algebraic setting have been applied in the max-plus algebra, 

min-plus algebra and minimax algebra [3], [17]. 

In this paper, we have developed a systematic procedure to construct a single nephron compliance 

tubular model from differential equations to CA rules with appropriate assumptions. Only sodium chloride as 

solute concentration is considered and the other electrolytes such as potassium and bicarbonates, which have a 

low impact on the autoregulatory mechanism, are assumed to be absent. The solutions developed by the rules 

from the cellular automata model have been analysed and compared with the original experimental findings. 

The developed single nephron compliance tubular model in this paper is able to capture the regular, period 

doubling and irregular pulse propagation properties, which have been observed in the experimental analysis. 

 

 

2. CELLULAR AUTOMATA BASED SINGLE NEPHRON COMPLIANCE TUBULAR MODEL 

We have described the governing equations related to the single nephron model in this section. The 

schematic diagram of a single nephron model, shown in Figure 1, comprises of glomerulus, pre-ascending 

limb, thick ascending limb (TAL) and autoregulatory mechanism. Blood enters glomerulus through the 

afferent arteriole and is filtered before passing to the efferent arteriole. The filtrates flow through the pre-

ascending limb, and then go to the TAL. After TAL, the solutes go to the collecting duct through MD. The 

information related to the solute concentration is fed back to the afferent arteriole from MD. This feedback 

process is called the TGF mechanism. The active transport dynamics in TAL play a major role in TGF 

regulation of the solute concentration. The afferent arteriole contracts and expands due to myogenic and TGF 

mechanisms [18], [19]. 

Layton and Edwards [13] has given the modified governing equations for the glomerulus and 

nephron tubule. The governing equations are formed using nephron tubular fluid pressure 𝑃(𝑥, 𝑡); tubular 

fluid volumetric flow rate 𝑄(𝑥, 𝑡); nephron tubular radius 𝑅(𝑥, 𝑡), and fluid solute concentration 𝐶(𝑥, 𝑡) as 

dependent variables [8], [13], [20], [21]. Boundary conditions for tubular fluid pressure are needed at the two 

ends of the TAL. The inflow fluid pressure in TAL is determined by TGF response. The tubular fluid 

pressure is assumed at the end of the TAL based on the pressure range observed in previous experiments. The 

TAL extends from 𝑥 = 0 at loop-bend to 𝑥 = 𝐿 at the early distal tubule end (MD) [21]. The single nephron 

tubule extends in space from the loop-bend to the collecting duct end, where tubular fluid pressure in rats  

has shown to be 13 mmHg based on interstitium measurements. The total length of the nephron tubule is 

represented as 𝐿0 which equals 4𝐿. The nephron inflow pressure 𝑃(0, 𝑡) = 𝑃0(𝑡) and the outflow pressure 

𝑃(𝐿0, 𝑡) = 𝑃1(𝑡) are considered as boundary conditions. This advection-diffusion nephron tubule in (1) for 

the pressure P was advanced in time using numerical analysis [13].  
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Figure 1. Block diagram of a compliance nephron tubule with modeling parameters 

 

 

The modeling equation [21], As shown in (2), represents the solute concentration in TAL. The time 

independent interstitial solute concentration is represented as 𝐶𝑒(𝑥). The active transport mechanism is 

incorporated through maximum active transport rate 𝑉𝑚𝑎𝑥(𝑥) (Michaelis-Menten-like kinetics) and Michaelis 

constant 𝐾𝑀. The transepithelial solute diffusion is denoted by backleak permeability 𝜅 . The solute transport 

mechanism in TAL is independent of 𝑅(𝑥, 𝑡) and is directly proportional to the steady state TAL radius 

𝑅𝑠𝑠(𝑥). The boundary condition 𝐶(0, 𝑡) = 𝐶0 means that the fluid entering into the TAL has a constant solute 

concentration.  

 

𝑅(𝑥, 𝑡) = 𝛼(𝑃(𝑥, 𝑡) − 𝑃𝑒) + 𝛽(𝑥) (3) 

 

𝑃𝑒 is the interstitial pressure along the TAL, 𝛼 is the degree of tubular compliance of the nephron 

tubule, and 𝛽(𝑥) is the unpressurized TAL radius. 

 

𝑃0(𝑡) = 𝑃0(1 + 𝐾1𝑡𝑎𝑛ℎ(𝐾2(𝐶𝑜𝑝 − 𝐶(𝐿, 𝑡 − 𝜏))) (4) 

 

As shown in (3) and (4) show the myogenic and TGF mechanism for the complaint single nephron tubule 

respectively. 𝐶(𝐿, 𝑡 − 𝜏) = 𝐶𝑜𝑝 is taken as initial condition when 𝑡 = 0. 𝐾1 is the half range of pressure 

variation 𝑃0(𝑡) and 𝐾2 denotes the TGF sensitivity. 𝐶𝑜𝑝 is steady state TAL solute concentration at MD. 

𝐶(𝐿, 𝑡 − 𝜏) is solute concentration along MD, where 𝜏 represents TGF delay [21]. The model parameters and 

their values along with the auxiliary equations, are as in Ryu [21].  

 

2.1.  Ultradiscretization of compliance nephron tubular model  

In this section, the cellular automata model for pressure and solute concentration governing 

equations has been developed. The partial differential equations are first transformed by ultradiscretization. 

The binary transformation is then applied to the ultradiscretized variables. 

The tubular pressure in (1) of the nephron tubular model has been simplified and shown in (5) with 

the consideration of 𝑘1 =
1
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In (5) has a negativity problem that cannot be ultradiscretized with normal tropical discretization. This issue 

has been resolved by applying Cole-Hopf transformation to (7) where c is a constant.  

 

𝑃 =
𝑓𝑥

𝑓
 (6) 

 

𝑃(𝑗Δ𝑥, (𝑛 + 1)Δ𝑡) = 𝑐
𝑓((𝑗+1)Δ𝑥,𝑛Δ𝑡

𝑓(𝑗Δ𝑥,𝑛Δ𝑡)
 (7) 

 

Let us denote 𝛿 = 𝑘1
Δ𝑡

Δ𝑥2 and 𝑚 =
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𝑐𝛿
.  
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𝑃(𝑗Δ𝑥, (𝑛 + 1)Δ𝑡) = 𝑃((𝑗 − 1)Δ𝑥, 𝑛Δ𝑡)
Ω

Λ
 (10) 

 

Let us use 
1−2𝛿

𝑐𝛿
= 𝑒

−𝑀

𝜖 , 𝑐2 = 𝑒
𝐿1
𝜖 , 𝑃(𝑗Δ𝑥, 𝑛Δ𝑡) = 𝑒

𝑃1(𝑗Δ𝑥,𝑛Δ𝑡)

𝜖  and 𝑅(𝑗Δ𝑥, 𝑛Δ𝑡) = 𝑒
𝑅1(𝑗Δ𝑥,𝑛Δ𝑡)

𝜖 . These equations 

have been substituted in (10) and in the limit when 𝜖 → +0. We get (11) after the application of Min-Max 

algebra and assuming 𝐿1 − 𝐾2 = 𝑁. 

 

𝑃1(𝑗Δ𝑥, (𝑛 + 1)Δ𝑡) = 𝑃1((𝑗 − 1)Δ𝑥, 𝑛Δ𝑡) + 2𝑅1(𝑗Δ𝑥, 𝑛Δ𝑡) +  max [2𝑅1(𝑗Δ𝑥, 𝑛Δ𝑡),  

𝑃1(𝑗Δ𝑥, 𝑛Δ𝑡) + 3𝑅1(𝑗Δ𝑥, 𝑛Δ𝑡) − 𝑀, 𝑃1((𝑗 + 1)Δ𝑥, 𝑛Δ𝑡) +  

𝑅1((𝑗 + 1)Δ𝑥, 𝑛Δ𝑡) − 𝑁]  − 2𝑅1((𝑗 − 1)Δ𝑥, 𝑛Δ𝑡) − max [2𝑅1((𝑗 − 1)Δ𝑥, 𝑛Δ𝑡),   

𝑃1((𝑗 − 1)Δ𝑥, 𝑛Δ𝑡)  + 3𝑅1((𝑗 − 1)Δ𝑥, 𝑛Δ𝑡)  − 𝑀, 𝑃1(𝑗Δ𝑥, 𝑛Δ𝑡) + 𝑅1(𝑗Δ𝑥, 𝑛Δ𝑡) − 𝑁] (11) 

 

2.2.  Cellular automata rules for single nephron tubular model  

The CA rule has been developed for (10) with the consideration of the nephron tubule as compliance 

tubular 𝑅(𝑥, 𝑡) = 𝑃(𝑥, 𝑡). The cellular automata model parameters are calculated from the corresponding 

experimental findings [6]. The possible case for the CA rule has been prepared based on the model 

parameters and the case is 𝑁 ≪ 𝑀, where N and M are CA parameters for pressure oscillations. When we 

consider nephron tubule as compliance tubule and assume 𝑅(𝑗Δ𝑥, 𝑛Δ𝑡) = 𝑃(𝑗Δ𝑥, 𝑛Δ𝑡) where 𝑁 ≪ 𝑀 and 

substitute in (11), we get (12). 

 

𝑃1(𝑗Δ𝑥, (𝑛 + 1)Δ𝑡) = 𝑃1((𝑗 − 1)Δ𝑥, 𝑛Δ𝑡) + 2𝑃1(𝑗Δ𝑥, 𝑛Δ𝑡)  + max [2𝑃1(𝑗Δ𝑥, 𝑛Δ𝑡),  

4𝑃1(𝑗Δ𝑥, 𝑛Δ𝑡) − 𝑀, 2𝑃1((𝑗 + 1)Δ𝑥, 𝑛Δ𝑡) − 𝑁] − 2𝑃1((𝑗 − 1)Δ𝑥, 𝑛Δ𝑡) −  

𝑚𝑎𝑥[2𝑃1((𝑗 −  1)Δ𝑥, 𝑛Δ𝑡),4𝑃1((𝑗 − 1)Δ𝑥, 𝑛Δ𝑡) − 𝑀, 2𝑃1(𝑗Δ𝑥, 𝑛Δ𝑡) − 𝑁]  (12) 

 

The eight possibilities have been substituted in the ultradiscretized pressure (12) and the outputs 

have been depicted in Table 1. Table 1 gives the CA Rule 206 for the ultradiscretized as shown in (12) with 

the assumption nephron tubule as compliance tubule where 𝑅(𝑗Δ𝑥, 𝑛Δ𝑡) = 𝑃(𝑗Δ𝑥, 𝑛Δ𝑡).  

 

 

Table 1. Cellular automata approach to calculate pressure 𝑃1(𝑗Δ𝑥, (𝑛 + 1)Δ𝑡)  

variations for compliance tubule 
Sl No 𝑃1((𝑗 − 1)Δ𝑥, 𝑛Δ𝑡) 𝑃1(𝑗Δ𝑥, 𝑛Δ𝑡) 𝑃1((𝑗 + 1)Δ𝑥, 𝑛Δ𝑡) 𝑃1(𝑗Δ𝑥, (𝑛 + 1)Δ𝑡) 

1 𝑁 𝑁 𝑁 𝑁 
2 𝑁 𝑁 𝑀 𝑀 
3 𝑁 𝑀 𝑁 𝑀 
4 𝑁 𝑀 𝑀 𝑀 
5 𝑀 𝑁 𝑁 𝑁 
6 𝑀 𝑁 𝑀 𝑁 
7 𝑀 𝑀 𝑁 𝑀 
8 𝑀 𝑀 𝑀 𝑀 
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The output of each row from Table 1 has to be noted from the most significant bit (MSB) to the least 

significant bit (LSB) in order to obtain CA rule. The order from MSB to LSB is 𝑀𝑀𝑁𝑁𝑀𝑀𝑀𝑁 and converted 

into binary form as 11001110. The binary form value is converted into the decimal value as 206. The value 206 

obtained is the rule number from the elementary cellular automata rule framework developed by Wolfram [22]. 

 

 

3. RESULTS AND DISCUSSION 

Single nephron model with transport mechanism and autoregulation has been modeled using cellular 

automata. The physiological behavior of the single nephron model has been analysed for the compliance 

tubular model. The behavior of the model has been explicitly studied with and without autoregulation. 

Leyssac and Holstein have performed the experiments on the SD, SH and WKY rats [9], [10]. 

Pressure variations have been observed in the rats after reducing the solute active transport mechanism using 

loop diuretics [10]. The data collected by the investigators strongly support that the pressure oscillation 

developed in the afferent arteriole is due to the TGF mechanism initiated by the solute concentration at the 

MD. These observations were analysed by micro-puncturing at the proximal convolution tubule. 

In the cellular automata, the evolution takes place in a spatio-temporal grid. The origin cell is the 

left topmost cell. The spatial increment is along the X-axis (towards right) and the temporal increment is 

along the Y-axis (towards down). The dynamic state of cells are represented by white (0) and black (1) where 

black represents the cell value is above the threshold and white represents the cell value is below the threshold. 

Initialization in CA means assigning black cells in the first two rows. The first row initialization is for no-

feedback case and the first two-rows initialization is for TGF case. The evolutionary patterns arrived from the 

CA rules have been categorized and compared with the Wolfram CA class framework based on Table 2. 

 

 

Table 2. CA evolution schemes for various initializations with TGF () and without feedback (X)  
Initialization Scheme First row Second row 

IC1 Left top X 

IC2 Left top 1-step diagonally right () 

IC3 2-cell spacing X 

IC4 2-cell spacing 1-cell right shift () 

IC5 2-cell spacing 1-cell left shift () 

IC6 Only middle X 

IC7 Only middle 1-cell right and 1-cell left shift () 

IC8 Random X 

IC9 Random Random () 

IC10 4-cell symmetry spacing X 

IC11 4-cell symmetry spacing from center 4-cell symmetry spacing from center () 

IC12 Alternate cell spacing X 

IC13 Alternate cell spacing 1-cell right and 1-cell left shift () 

 

 

The physiological interpretations of CA rule 206 will be discussed for the compliance nephron 

tubular model. CA rules are derived for pressure variations with various initialization schemes depicted in 

Table 3, selected out of many possibilities, for the study of the evolution of patterns from the CA rule 206. 

The initialization means there is a pressure perturbation as black in the initial section of the tubule at 𝑡 = 0 

for TGF inhibited case. The pressure perturbation has been initialized with black cells at 𝑡 = 0 in the first 

layer and also perturbation as black has been initiated in the second layer below the previous section at 𝑡 = 1 

for TGF activated case. The evolved patterns in Figures 2, 3, and 4 have been analysed and are shown in 

Table 3 that exhibit the emergent global properties of the physiological behavior of the nephron tubule. 

 

 

Table 3. Physiological interpretations obtained from various patterns in figures for nephron compliance 

model 

Figures Emergent Behavior [Proposed CA model] 
Wolfram 

Class 

Conditions under which the emergent behavior has been observed 

experimentally 

Figure 2(a) Pulse is not propagating and spatially constant  Class 2  Not available 

Figure 2(b) Pulse inhibition  Class 1  Normal ATF fluid in WKY rats [9]. 

Figure 2(c) Period doubling behavior  Class 2 Medium TGF activation in SD rat [9], [10]. 

Figure 3(a) Pulses are constant and are not sustained  Class 2  Not available. 

Figure 3(b) Unstable pulsating behavior  Class 4  10 − 20 mins after injection of 7.5 × 10−4 moles of furosemide [9]. 

Figure 3(c) Regular pulsating behavior  Class 2  5 − 8 mins after stopping TGF mechanism in SHR rats [9]. 

Figure 4(a) Stable oscillatory behavior  Class 2  Within 3 mins of ATF injection in WKY rats [9]. 

Figure 4(b) Irregular and unstable pulses  Class 2  3 − 5 mins after injection of 3.0 × 10−4 moles of furosemide [9]. 

Figure 4(c) Propagated irregularly  Class 3  5 − 10 mins after injection of 7.5 × 10−4 moles of furosemide [9]. 
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(a) 

 
(b) 

  

 
(c) 

 

Figure 2. Pressure perturbation pattern in nephron tubule using CA analysis with (a) initialization of IC1 

scheme without feedback, (b) initialization of IC2 scheme with TGF mechanism, and (c) TGF is activated 

when IC13 scheme is initialized 

 

 

 
(a) 

 
(b) 

  

 
(c) 

 

Figure 3. Pressure perturbation pattern in nephron tubule using CA analysis with (a) TGF is not activated when 

IC12 scheme is initialized, (b) IC5 scheme when TGF is activated case, and (c) IC6 scheme when no-TGF case 
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The study of the pressure variations in the nephron tubule under various concentrations of loop 

diuretics exhibits self-sustained oscillation, period-doubling oscillation, and irregular oscillation in the 

experimental findings. Moreover, these oscillations have been observed in different evolutionary patterns, 

shown in figures obtained from the cellular automata rule are depicted in Table 3. In summary, pressure 

perturbation behavior in the nephron tubule has shown that the oscillations are of different regimes such as 

regular, stable, period doubling, and irregular. This global physiological behavior has been observed from the 

CA analysis with a simple set of local rules with various initialization schemes shown in Table 3. The regular 

pressure oscillatory behavior has been observed in the normotensive rats whereas hypertensive rats exhibit 

chaotic and non-period oscillatory properties [23]. 

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 4. Pressure perturbation pattern in nephron tubule using CA analysis with (a) IC7 scheme is initialized 

with TGF case, (b) IC8 scheme initialization without feedback, and (c) TGF is activated when IC9 scheme is 

initialized 

 

 

The whole kidney model has to be developed for better physiological and pathological behavior 

using cellular automata. Such model can then be compared with the Robert Moss and Gale Thomas whole 

kidney model for better understanding [8], [24]. In this work, an attempt has been made to view the nephron 

modeling from the point of view of cellular automata. Moreover, the cellular automata approach offers a way 

to incorporate the learning mechanism at the local level and allow the system to evolve for studying the 

global behavior [12], [25]. Physiological process modeling with learning mechanism as a fundamental unit 

suggests an integrated approach for living systems [26]. The learning algorithm, as modeling tool compared 

to task-based ones, is yet to take off in a big way. The proposed CA approach will be extended to explore the 

possibilities. 

 

 

4. CONCLUSION 

The single nephron compliance tubular model has been developed by transforming the governing 

partial differential equations to cellular automata rules. Ultradiscretization techniques are used to transform 

the governing equations to the corresponding cellular automata rules. The proposed cellular automata based 
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nephron compliance tubular model exhibits emergent behavior that has been experimentally observed. The 

nephron model with compliance tubule is found to be associated with rule number 206 in the CA scheme. 

The evolved behavior from the cellular automata nephron model has been compared with the experimental 

findings. The pressure perturbations in the nephron tubule, under different assumptions, exhibit regular to 

irregular pulsating behavior due to the two auto-regulatory mechanisms - TGF and myogenic in compliance 

tubular model. The modeling approach of cellular automata can be extended to multinephron modeling to 

understand the whole kidney physiology. 
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