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 Localization is a challenging research issue in various sectors of activity, 

particularly in dynamic indoor environment with high perturbation. Many 

existing localization techniques in wireless sensor networks are not efficient 

because of many constraints such as the high cost, the memory and energy 

limitation and the environmental noise effects. Thus, the development of 

novel methods of localization has become a great concern for the wireless 

sensor networks. In this paper, we propose a tracking method that combines 

regression tree and Kalman smoother filtering. Previously, regression tree 
has been suggested for static positioning by means of received signal 

strength indicator measurements. In this work, we employ this strategy to 

solve the mapping relation between these measurements and the target 

position by means of an optimized propagation model. Moreover, the 
predicted position considered as the observed information is introduced to 

the Kalman smoother algorithm, to have more precise state of the moving 

target. The proposed algorithm has been assessed and compared to other 

existing methods using real measurements of the received power by the 
moving target in an indoor environment. The evaluation shows that our 

solution outperforms other methods regarding localization accuracy. 
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1. INTRODUCTION 

Wireless sensor networks (WSNs) have gained great importance in the last few years in various 

monitoring and control applications such as military applications, smart building, health monitoring [1], 

recognition, environment control and precision farming [2]. This interest is expected to grow further with the 

high evolution of wireless systems. An increasing number of applications have been related to distributed 

monitoring by exploiting real-time position estimation.  

Localization [3], [4] has became a very important need in these applications. Accordingly, 

researchers continue seeking efficient solutions for localization and tracking services which should be able to 

make a tradeoff between robustness, precision and real time availability. Global positioning system (GPS) is 

popular method of the localization service; however, its employment in indoor environments is not possible. 

Therefore, researchers seek for alternative solutions based on WSNs. In fact, many strategies using different 

metrics like received signal strength indicator (RSSI) [5]-[7], angle of arrival (AOA) [8], time of arrival 

(TOA) [9] and impulse responses (IR) [10], have been suggested. Localization using RSSI has been proposed 

as this radio indicator is always available and easily measured, while the other existing techniques often 

require expensive and complex hardware and present many constraints such as the high cost and the memory 

and energy limitation. On the other side, indoor environments present many constraints like interference, 

https://creativecommons.org/licenses/by-sa/4.0/
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reflections, shadowing due to obstacles and pathloss fading. Consequently, RSSI is submitted to high level of 

fluctuations that will cause negative effects on the accuracy of the localization results. Particularly, the main 

challenge is to reduce this perturbation in dynamic scenario. So, it has been suggested to develop learning by 

example (LBE) solutions which proved their suitability in the understanding of the complex relation between 

the RSSI behavior and the target position. Many researches propose Machine learning based methods for 

localization systems such as support vector machines (SVMs) [11], neural networks (NNs), and Fuzzy Logic 

[12]. Accordingly, with machine learning methods, it is simpler to model the complex and dynamic behavior 

of RSSI in WSNs. Also, predicting mobile positions solutions using filtering have been increasingly 

employed [13]-[15].  

The contributions of this paper are listed as follows: First contribution is emphasized on the 

framework of building the fingerprint database by means of an adequate propagation model applied to the 

multiple distributed training samples in order to address RSSI fluctuations problem. Second contribution 

proposes a tracking strategy of a moving node that combines regression tree and Kalman Smoother to have 

better performance. It uses a decision tree as a predictive model which maps the observations of training 

RSSI to the training positions. The estimated location by means of the RT is introduced to the Kalman 

smoother algorithm as the observation information, to provide more accurate state of the target. The proposed 

algorithm has been experimentally assessed using real measurement of a mobile target in an office room. The 

first section introduces the problematic. Then, Sect. 2 is devoted to explain the proposed method. In this 

section, the RT based localization algorithm using RSSI parameters is presented. Finally, the last section is 

devoted to analyze the experimental results. 

The development of smart communication technologies has enabled the emergence of new Location 

based services (LBSs) applications [16]-[18]. Indeed, indoor localization is a basic process in robotics field 

[19], [20]. Simultaneous localization and mapping (SLAM) is proposed [21], enabling localization and 

building maps of an unknown environment. The authors combine SLAM with extended Kalman filter (EKF) 

to overcome the problem of having noisy acquired data. The simulation validation shows accurate and 

consistent positioning particularly when the landmarks number is increased. However, in the context of 

mobile autonomous robots which are limited in terms of energy, the SLAM method requires higher 

computational cost and its complexity should be studied specially when dealing with large maps. 

Geolocalization is well used to develop efficient routing algorithm [22]. Developing routing method 

for emergency healthcare applications is a challenging topic. Singh et al. [23] proposed an efficient routing 

algorithm based on geolocation (W-GeoR) for VANET’s health monitoring applications. The W-GeoR 

method is emphasized on selecting the best next-hop node to determine the optimal path.  

The advancement of micro-electro-mechanical systems (MEMS) has enabled the growth of the 

unmanned aerial vehicle (UAV). Mostafa et al. [24], design an agent-based autonomous flight control (AFC) 

architecture for UAV, enabling autonomous navigation and routing. Among the proposed functionalities, 

localization is suggested to perform the tracking of UAV. The evaluation results confirm the performance of 

the proposed architecture in terms of precision, quality and power consumption. In similar context, 

autonomous vehicles have seen tremendous growth in recent years [25]. Localization and motion detection 

are basic parts of autonomous vehicle. Several recent studies [26]-[28] have suggested solutions to determine 

the path tracking of the autonomous vehicle. Vivacqua et al. [29] have proposed a low-cost architecture in 

terms of required equipments and algorithm complexity. It uses filtering method to reduce data uncertainty 

and improve the solution robustness. 

Many researchers have studied range-based localization using specific metric to enhance 

localization accuracy. For instance, Thimmaiah and Mahadevan [30] have proposed a TOA based 

localization method in wireless sensor networks. It has been proved that this method outperforms other 

existing approaches in terms of localization error tolerance. While ToA based localization systems provide 

accurate results, it is essential to have synchronized clocks. Synchronization has a negative impact on the 

localization system complexity. 

 

 

2. RESEARCH METHOD 

2.1.  Problem formulation 

In this section, we descibe the experimental environment where the performance of the localization 

algorithm will be evaluated. We consider the indoor environment with size 𝑋 = 9 [𝑚] 𝑎𝑛𝑑 𝑌 = 7.1 [𝑚]. As 

shown in Figure 1. A set of L reference nodes (anchors) are available at fixed positions. As we consider the 

dynamic scenario, the moving target will acquire the RSSI data from anchors. The collected RSSI data will 

be provided at particular positions. The IEEE802.15.4 standard working at the operating frequency f=2.4 

[GHz] has been used in this experiment. 
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Figure 1. Indoor environment 

 

 

The position state evolution over time is depicted in Figure 2. As shown, each current position 

estimation 𝑋𝑡+1 is based on the previous estimation 𝑋𝑡 by predicting each time the covariance error denoted 

𝑃. The updating equations yield to more refined position estimation 𝑌 at each time instant. 

 

 

 
 

Figure 2. Target tracking problem 

 

 

We denote unknown state vector at time t as x(t), including the position of the moving sensor. The 

adopted mobility [31] equation is given by (1): 

 

𝑥(𝑡) = 𝐹𝑥(𝑡 − 1) + 𝑊 (1) 

 

with F is the state transition matrix and 𝑊 = 𝑁(0, 𝑄) is the the noise term given by a Gaussian distribution 

with zero mean and covariance 𝑄. The observation equation including the measurement is given by (2): 
 

𝑧(𝑡) = 𝐻𝑥(𝑡) + 𝑉 (2) 
 

with H is the observation matrix and 𝑉 = 𝑁(0, 𝑅) is the observation noise with covariance denoted 𝑅. 
 

 

2.2.  Proposed tracking algorithm 

2.2.1. Channel modeling 

To characterize the indoor environment propagation, it has been suggested to refer to the pathloss 

log-normal model [32] for its efficiency and simple implementation. Accordingly, the received power can be 

defined as (3), 
 

𝑃𝑟𝑥 = 𝑃𝑡𝑥 + 𝐾𝑐 − 10𝜂 𝑙𝑜𝑔 (
𝑑

𝑑0
) + 𝑋𝜎 (3) 

 

where 𝑃𝑡𝑥 is the transmitted power, 𝜂 is the pathloss coefficient which depends on the environment 

characteristic, 𝑑0 is the reference distance, 𝑑 is the transmitter-receiver distance and 𝐾𝑐 is a propagation 

constant given by (4). 

 

𝐾𝑐 = 20 𝑙𝑜𝑔 (
4𝜋

𝜆
) (4) 
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The noise 𝑋𝜎 is modeled by a Gaussian random variable with zero-mean and variance 𝜎. Let us 

consider an optimized channel modeling by selecting an optimal pathloss exponent 𝜂 by focusing on 

minimizing the minimum mean square error (MMSE) given by (5): 
 

𝑚𝑖𝑛
𝜂

[|𝑃𝑟𝑥(𝜂) − 𝑅𝑆𝑆𝐼𝑟𝑥|2] (5) 

 

where 𝑅𝑆𝑆𝐼𝑟𝑥 is the RSSI measured by one of the selected anchors. As discussed in [17], the optimized 

channel model is emphasized on the changing behavior of the pathloss exponent according to the distance. 

Thus, the new model focuses on two different pathloss exponents 𝜂1 and 𝜂2as described in the following 

equation.  
 

𝑃𝑟𝑥 = {
𝑃𝑡𝑥 + 𝐾𝑐 − 10𝜂1 𝑙𝑜𝑔 (

𝑑

𝑑0
) 𝑖𝑓𝑑 < 20𝜆

𝑃𝑡𝑥 + 𝐾𝑐 − 10𝜂2 𝑙𝑜𝑔 (
𝑑

𝑑0
) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

2.2.2. Observation model: RT-based localization 

This section aims at introducing the RT based algorithm using RSSI [33]. The algorithm starts with 

defining M training samples presented in uniform distribution as indicated in Figure 3, where 𝛿 is the interval 

between two samples. As shown in Figure 4, the RSSI transmitted by the anchor nodes and collected by the 

moving target represent the new input data to RT method. The predicted result will be considered as the 

observed data 𝑧(𝑡). The proposed model is presented in the following sub-section. 

a) Definition of the training data: Machine learning methods are emphasized on two main steps, the training 

step and the testing or prediction step. The input information 𝑃 = ({𝑃𝑟𝑥,𝑚
𝑙 })

𝑚=1

𝑀
, is the received signal 

strength at samples 𝑚 = 1,..., 𝑀 and transmitted by reference node 𝑙. The location of each training sample 

is denoted as 𝑟𝑚 = (𝑥𝑚, 𝑦𝑚).  

 

 

 
 

Figure 3. Training data 

 

 

b) Regression tree algorithm using RSSI: This section describes the RT method. As presented in Figure 4. 

As shown in Figure 4, the algorithm starts by the training phase, where the defined training samples with 

their corresponding locations 𝑟𝑚 = ({𝑥𝑚, 𝑦𝑚}𝑚=1
𝑀 ) are the input training data. The main goal of the 

training process is to construct the model which maps the RSSI data to the locations. This method is 

based on minimizing the mean square error 𝜺 given by the following expression where 𝑟𝑚 is the actual 

training position and �̃� is the estimated position during the training. 

 

휀𝑡 =
1

𝑀𝑙
∑ (𝑟𝑚 − �̃�)2𝑀𝑙

𝑚=1  (7) 

 

�̃� =
1

𝑀
∑ 𝑟𝑚

𝑀
𝑚=1  (8) 

 

Then, the algorithm focuses on splitting the training set and minimizing the error resulting from the each 
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split휀(𝑠𝑝𝑙𝑖𝑡). 
 

휀(𝑠𝑝𝑙𝑖𝑡) =
𝑀𝑙

(𝑙𝑒𝑓𝑡)

𝑀𝑙
∑ (�̃�1 − 𝑟𝑚)

𝑚:𝑃𝑚
𝑖𝑑 +

𝑀𝑙
(𝑟𝑖𝑔ℎ𝑡)

𝑀𝑙
∑ (�̃�2 − 𝑟𝑚)

𝑚:𝑃𝑚
𝑖𝑑  (9) 

 

𝑀𝑙
(𝑟𝑖𝑔ℎ𝑡)

is the number of cases in the right subset, �̃�1 and �̃�2 are the predicted positions presenting the two 

sub-nodes left and right resulting from the split. 

 

 

 
 

Figure 4. RT-based localization method 
 

 

c) Kalman smoother: As previously mentioned, the KS is introduced to have more refined position 

estimation. One of the common methods used in KS is the Rauch-Tung-Striebel (RTS) smoother 

algorithm. RTS is an efficient two-pass algorithm operating in two stages: the forward and the backward 

steps. The first one is defined as the regular Kalman filter (KF) using recursive model for state estimation. 

The different steps of the KS method are illustrated in Figure 5. The goal of prediction phase of KS is to 

estimate the future position based on the current location as given by (10). 

 

𝑥(𝑡/𝑡 − 1) =  𝐹𝑥(𝑡 − 1) + 𝑊 (10) 

 

The covariance is given by (11): 

 

𝑃(𝑡/𝑡 − 1) =  𝐹𝑃(𝑡 − 1) 𝐹𝑇 + 𝑄 (11) 

 

these two terms are refined during the correction phase by means of the observed data already predicted 

by the RT method. So, the Kalman gain is calculated as (12): 

 

𝐺(𝑡) = 𝑃(𝑡/𝑡 − 1) 𝐻𝑇 (𝐻𝑃(𝑡/𝑡 − 1) 𝐻𝑇 + 𝑅) − 1 (12) 

 

the updated equations are given by the following expressions. 

 

𝑥(𝑡/𝑡) = 𝑥(𝑡/𝑡 − 1) + (𝑧(𝑡) − 𝑥(𝑡 /𝑡 − 1)𝐻)𝐺(𝑡) (13) 

 

𝑃(𝑡/𝑡 − 1) = (𝐼 − 𝐺(𝑡)𝐻)𝑃(𝑡 /𝑡 − 1)) (14) 

 

The resulting a-priori and a-posteriori state estimates, and the covariance estimates are saved in the 

backward step to be used in the smoothing phase. The optimal smoothed estimate of the state is obtained 

using the observations. In more detail, during the backward step, the state estimate of the forward 

computed before is updated in order to provide an improved smoothed estimate. The recursive equations 

are defined as (15): 

 

𝑥(𝑡/𝑛) = 𝑥(𝑡/𝑡) − 𝐾𝑡(𝑥(𝑡 + 1/𝑛) − 𝑥(𝑡 + 1/𝑡)) (15) 
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𝑃(𝑡/𝑛) = 𝑃(𝑡/𝑡) + 𝐾𝑡(𝑃(𝑡 + 1/𝑛) − 𝑃(𝑡 + 1/𝑛))𝐾𝑡
𝑇 (16) 

 

where 
tK  is the smoother gain calculated as, 

 

𝐾𝑡 = 𝑃(𝑡/𝑡)𝐹𝑇(𝑡 + 1)𝑃−1(𝑡 + 1/𝑡) (17) 

 

the iteration of KS filtering and RTSS is done between adjacent instants in order to ensure the real-time 

need. In more details, the filtering estimation at time t is used to smooth the estimated state and 

covariance at time t-1. This yield to more refined result at time k-1. 

 

 

 
 

Figure 5. Block diagram of Kalman smoother algorithm 

 

 

3. RESULTS AND DISCUSSION 

The proposed algorithm is assessed using real measurements gathered in an indoor environment 

with size 𝑋 = 10 𝑚 and 𝑌 = 8 𝑚, where 8 reference nodes are deployed at fixed positions. The WSN uses 

the frequency 2.4 GHz. The experimental environment is depicted in Figure 1. For the training data, we 

consider M=285 training samples uniformly distributed and generated by the pathloss model. The basic 

metric to evaluate the adopted solution is the relative average localization error 𝜌 defined as (18): 

 

𝜌 =
1

𝑁
(∑

𝜀𝑛

√𝑋2+𝑌2

𝑁
𝑛=1 ) × 100 (18) 

 

where 휀𝑛 is the absolute error corresponding to position with index 𝑛.  

First, we start looking at the absolute localization error for several test positions. Table 1 shows the 

predicted positions for the mobile sensor when using KS and KF. The estimation is evaluated for K=9 

acquisitions at different time instant. As it can be seen, more accurate position estimation when using KS 

compared with KF method. For example, the minimum error is 휀𝑘 = 0.1 𝑚 at 𝑡 = 8 while the maximum 

value is 휀𝑘 = 1.08 𝑚. 
 

 

Table 1. Absolute error of KS and KF for different time instant 
time instant t t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 

휀 [m] for KF 0.46 0.61 1.04 0.91 1.10 1.30 0.95 0.11 0.75 

휀 [m] for KS 0.34 0.87 0.35 0.30 0.92 1.08 0.44 0.10 0.75 

 

 

To have fair comparison with the existing state of the art methods, we assess the algorithms in terms 

of relative localization error and variance. Figure 6 and Figure 7 show the comparison between the proposed 
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algorithm, the RT and using KF by focusing on the two metrics. As clearly shown, we obtain lower error and 

variance with the suggested method. The combination of RT with KS presents an error 5.8%, while it's 

10.6% and 12.5% for RT combined to KF and RT respectively. Similarly, the variance of the proposed 

algorithm is 0.12 m which is a low value. This proves that our method provides high accuracy for all the 

estimated positions despite the rapid changes and incertainty that characterize the environement. 

 

 

 
 

Figure 6. Localization error for the proposed algorithm versus RT, RT+KF 

 

 

 
 

Figure 7. Variance for the proposed algorithm versus RT, RT+KF 

 

 

Now, we evaluate the impact of the training samples number considerd during the training phase. 

Consequently, we will vary the distance  that separates two training samples as the uniform distribution is 

considered in this work. Figure 8 and Figure 9 report the average absolute error 휀 and its variance in function 

of the training input data by comparing the proposed algorithm to the existing state of the art strategies: SVR, 

Naive Bayes, and the trilateration.  

In Figures 8 and 9, the suggested method outperforms the other algorithms in terms of error and 

variance when changing the training samples number. Increasing the number of training samples does not 

improve the precision. This is due to fluctuations and incertainty of RSSI data. Accordingly, selecting few 

numbers M=285 training samples will suffice to have optimal results in terms of accuracy and complexity. 

The comparison among the proposed method and the machine-based localization algorithms: RT, SVR and 

NB is depicted in Figure 10. As it can be noticed, KS with RT improves the accuracy and outperforms the 

well known machine learning methods when considering the relative localization error. 
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Figure 8. Localization error vs training samples 

number 

Figure 9. Variance vs training set density 

 

 

 
 

Figure 10. Localization error for the proposed algorithm versus RT, SVR, and NB 

 

 

4. CONCLUSION 

In this paper, we address the wireless sensor tracking in an indoor area. The work focuses on using 

RSSI parameter to reach the accuracy objective. Moreover, this metric is low cost since it'a already available 

in all wireless equipments. However, this acquired data is submitted to many environmental constraints like 

fluctuations and incertainty. Consequently, we propose to use machine learning algorithm to overcome the 

issue of the environment complexity. During the training phase, the algorithm starts the data collection by 

distributing the training samples in the area and determining the corresponding RSSI using the pathloss 

model. During the testing phase, real RSSI measurements of a mobile sensor are considered as the input of 

the trained model. Consequently, the positions are estimated using the regression tree model already built 

during the training step. As our major concern is accurate positionning, the regression tree is combined with 

the Kalman Smoother method yielding to more refined localization estimation. The suggested method has 

been evaluated using real RSSI measurements and compared to existing learning by example algorithms. The 

results show the suggested approach outperforms other methods, giving low localization error.  

As mentioned before, the RSSI presents low-cost metric, while this radio parameter is too sensitive 

particularly when considering dynamic scenario in an indoor environment. Accordingly, efficient techniques 

of filtering would be studied and discussed to reduce the real RSSI measurements fluctuations together with 

the improvement of the propagtion model. Moreover, real time availability is one of the localization goals 

that would improve. The delay of the position estimation would be reduced particularly when dealing with 

emergency applications. 

Future work intends to improve the suggested approach by considering multi moving targets. Also, 

the method will be adapted to a more complex indoor environment with obstacles. On the other side, the 

sensor node is limited in terms of battery. Reducing the computational cost of the localization method is a 

major concern. Thus, the next challenge is to reduce the algorithm complexity. 
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