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 Plant disease classification using deep learning techniques is a popular 

research area due to the numerous opportunities for introducing advance and 

robust classifiers. Nevertheless, classifying chilli plant diseases accurately 

from images under uncontrolled environment and various imaging 

conditions remains unsolved due to the lack of chilli disease image datasets. 

In this study, the efficacy of three high-performance deep learning 

algorithms, namely VGG16, InceptionV3, and EfficientNetB0, in classifying 

three types of chilli leaves diseases, namely upward curling, 

mosaic/mottling, and the bacterial spot, is demonstrated. These methods are 

popularly used for other plant disease classifications due to their 

effectiveness. The experiments were performed on the 3,000 chilli plant 

disease images collected from three different field environments in Selangor, 

Malaysia. The images were captured with a complex background and 

various illuminations, angles, and distances to reflect the real-life scenarios. 

The complexity of the collected images was created based on the taxonomic 

information of chilli leaves diseases and the unavailability of chilli disease 

images under various imaging conditions in the publicly available plant 

disease databases. Experimented using appropriate specifications, the 

models demonstrated outstanding performance with more than 95% 

accuracy with the highest accuracy of 98.83% by InceptionV3. 
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1. INTRODUCTION 

Chilli or scientifically known as capsicum annuum L. is Malaysia’s utmost cultivated crop [1] and 

has been recognized as among the top tenth of self-sufficiency ratio (SSR) in selected agricultural 

commodities with the highest import dependency ratio (IDR) of 73.6% [2]. The five widely domesticated 

species planted as annual crops are capsicum annuum, capsicum frutescense, capsicum chinense, capsicum 

baccatum, and capsicum pubescence [3], plagues and diseases easily infect these plants. The effects of the 

infection are a significant reduction in chilli production and deterioration of fruit quality, resulting in low 

returns for farmers [4]. According to [5], chilli plant diseases are mainly due to the infection caused by 

pathogenic microbes, namely fungus, bacteria, and viruses. The infection is visible but needs to be examined 

closely and adequately controlled to avoid the massive diseases spread on the farm. The conventional way of 

detecting and classifying plant diseases is time-consuming, and automatic detection and classification 

approaches have been introduced to tackle this problem. In the late 1990s, conventional computer vision 
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techniques were used to resolve chilli plant diseases’ automatic detection and identification [6]. The major 

weakness of the traditional computer vision technique was that it was only proven successful on simpler and 

controlled setups but struggled as the operational conditionschanged [7]. 

As the years passed, automatic detection and classification of plant diseases utilizing image 

processing and deep learning approaches have received significant consideration among the experts of the 

subject. Deep learning is a branch of artificial intelligence that allows machines to perform impressive 

recognition, prediction, and filtration [8]. Many practical and reliable deep learning algorithms for plant 

disease classification [9]–[13]. Typically, the classification is performed according to the infected leaf shape 

and a detectable change in the leaf colour caused by the fungus, bacteria, and virus infection. The application 

of the transfer learning approach for deep learning has received significant attention. Transfer learning has 

emerged as a powerful technique whereby the knowledge gained from the larger dataset is transferred to the 

new dataset [14], [15]. In scenarios within sufficient training data, this technique is beneficial, as presented in 

research by [16]. In transfer learning, pre-trained models are generally trained on a large scale, such as 

ImageNet that contains millions of actual images. The advantage is that the learned features are transferred 

by the weights and the architecture obtained from these models [17]. Inspired by these findings, the 

performance of the pre-trained model of VGG16, InceptionV3, and EfficientNetB0 in classifying chilli plant 

disease images captured under an uncontrolled environment with various imaging conditions and a small 

dataset is studied. This paper shows the performance of these models for classifying highly complex chilli 

plant diseases images. The findings in this paper will create more opportunities for developing more accurate 

classifiers in the future. This is because the existing studies have only shown less than 90% accuracy on a 

particular type of chilli disease [18], [19]. This paper is organized as follows. Section 2 describes chilli plant 

disease taxonomy, and section 3 provides the architectures of the used deep learning methods, materials, 

methods, and experimental setup, and section 4 discusses the results. Finally, the paper is concluded in 

section 5. 

 

 

2. TAXONOMY OF CHILI DISEASES 

Chilli is a type of plant that can be easily affected by fungi, bacteria, viruses, and pests. Besides, 

climate changes and the risk of a resistance breakdown can also affect the durability of disease resistance. 

The example of the fungi, bacteria, viruses, and pests commonly affected by chilli plants [5] are summarized 

in Figure 1. 

 

 

 
 

Figure 1. Taxonomy of chilli plant diseases according to [5] 

 

 

In this study, three types of diseasewere considered: the bacterial spot, upward curling and 

mosaic/mottling, as shown in Figure 2(a), Figure 2(b), and Figure 2(c), respectively. The bacterial spot is the 

small black spots of water-soaked on the leaves and gradually browning, coalesce, rugged and cracked. It is 

mainly due to the pathogen that is known as xanthomonas. The upward curling disease is caused by 

Begomovirus transmitted by Bemisia whiteflies that caused yellowing of veins and reduced leaf size. The 

mosaic disease caused the leaves to be yellowed and narrow, which is transmitted mainly by greenfly aphids. 
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Figure 2. Samples of chili plant diseases image used in the experiments, (a) bacterial spot, (b) upward 

curling, and (c) mosaic/mottling 

 

 

3. MATERIAL AND METHODS 

3.1.  Chili plant disease dataset 

The dataset used in this study consists of 3,000 images of capsicum annuum L. plants and annotated 

into three classes of chilli leaves diseases: namely the upward curling, mosaic/mottling and bacterial spot. 

The images were self-collected under an uncontrolled environment and various illuminations, views, and 

distances to reflect the real-life scenarios. The images were collected from three different field environments 

located at Sijangkang Selangor; Community Urban Farm, Bukit Rimau, Selangor, and a greenhouse at the 

Faculty of Engineering, Universiti Putra Malaysia (UPM) Selangor. The images were captured using Apple 

iPhone 7 with the dimension of resolution 3024×4032 and Asus Zenfone 2 with the dimension of resolution 

2304×4096. These images were cropped, resized and flipped manually using Microsoft Photos at the initial 

stage to reduce the background clutter and occlusion issues. Data annotation was done by consulting the 

experts at the farms and cross-checking with the related published papers. For each disease, 800 and 200 

images were used for training and testing, respectively. 

 

3.2.  Pretrained DCNN model and parameters 

In this study, the performance of VGG16, Inception V3 and EfficientNet B0 in classifying chilli 

plant diseases from complex images was compared. These models were selected for their outstanding 

performance when classified the plant disease images from the ImageNet dataset [20]. The VGG16, as 

illustrated in Figure 3 [21], used a recommended default input image size of 224×224×3 and 13 

convolutional layers with a rectified linear unit (ReLU) activation function. The convolutional layers were 

fed into a max pooling, three fully connected (FC) layers and a Softmax function at the end of the 

architecture. The last FC layers were replaced by three channels for this study, indicating the three classes of 

chilli plant diseases understudy. 

Meanwhile, InceptionV3 [22] has 42 total deep network layers with a grid size-reduction block 

between the inception modules blocks and one auxiliary classifier at the third concatenated trunk, as shown 

in Figure 4. The recommended size of the input image for this model is 299×299×3, and five convolutional 

layers process the input image with two max-pooling layers at the first stage. Then, a series of inception 

modules process the input before finally performing classification using a fully connected layer and a 

Softmax function. EfficientNet [20] is a convolutional neural network architecture with a compound scaling 

method that uniformly scales all depth, width, and resolution dimensions to pursue better accuracy and 

efficiency. Currently, there are seven versions of EfficientNet networks, in which each version is the 

upgraded version of the previous, which is scaled from the EfficientNetB0 baseline using different compound 

coefficients. The EfficientNetB0 network consists of a convolutional layer, several mobile inverted 

bottleneck convolutional (MBConv) layersand optimization layers, as shown in Figure 5. The recommended 

size of the input image for this model is 224×224×3. 
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Figure 3. The architecture of the VGG16 network [21] 

 

 

 
 

Figure 4. The architecture of InceptionV3 network [23] 

 

 

 
 

Figure 5. The architecture of EfficientNetB0 network [23] 

 

 

3.3.  Experimental setup 

The experiment was conducted on a 64-bit operating system, an x64-based processor running on 

Intel(R) Core (TM) i5-10200H CPU @2.40 GHz with NVIDIA GeForce GTX 1650 and 8 GB RAM. All 

deep learning models were compiled with GPU support. The proposed chilli plant disease classification is 

shown in Figure 6. The filters, feature maps, pooling layers and hyperparameters of the VGG16, InceptionV3 

and EfficientNetB0 models remain the same structure, as obtained from Keras Applications API with 

ImageNet [24]. Nevertheless, a combination of fully connected layers and Softmax activation was applied. 

This part has been converted into three outputs representing the chilli plant disease classes (upward curling, 

bacterial spot and mosaic/mottling). All pre-trained models were set to frozen layers to avoid Keras from 

updating their weights during the training. Other settings include batch normalization and batch size. Based 

on [25], each pixel value of the images was divided by 255 for batch normalization, and the selected batch 

size was 32. Batch normalization could overcome the problem of internal covariate shift, which can impede 

the training of deep neural networks. Stochastic gradient descent (SGD) was used as the optimizer due to its 

high performance [26], while the learning rate of 0.0001 was adopted based on [16]. The epoch is set to 50, 

and the selectionis based on several trials, such as 10, 30, 50 and 100 epochs. The resultshave shown that 50 

epochs have produced high accuracy and better processing stability.  
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The input images were divided into two sets, 80% for training and 20% for testing, as recommended 

by [27]. The images were resized according to the model’s default size, 224×224 pixels for VGG16 and 

EfficientNetB0, and 299×299 pixels for Inception V3. The methods were trained with two training sets, 

where the first set consists of original images and the second setconsists of augmented images. Both sets 

consist of the same amount of images that is 2400 images. In the second training set, the images were sheared 

at an angle of 0.2 degrees, zoomed at 0.2 magnification and horizontal flipped using Imagedatagenerator in 

Kerasapplication. Image data generator works randomly in real-time, with the number of images remaining 

the same. The augmentation parameters selection was decided based on the observation from a few trials, 

where the features of the disease can be visualized using these parameters. 

 

 

 
 

Figure 6. The proposed chili plant disease classification framework 

 

 

4. RESULTS AND DISCUSSION 

The performance of the selected deep learning algorithms was evaluated based on accuracy, recall, 

precision, and F1-score. Accuracy is the number of correctly identified samples, and recall is the number of 

positive samples that are accurately identified. Meanwhile, precision is the measurement of accurately 

identified samples among all the true samples, andthe F1-scorerepresents a harmonic mean between 

sensitivity and precision. The experiments were conducted on two datasets, where the first dataset consist of 

original images and augmented images in the second dataset. The results in Figure 7(a), Figure 7(b) and 

Figure 7(c) show that EfficientNetB0 outperformed VGG16 and InceptionV3, but in Figure 8(a), Figure 8(b) 

and Figure 8(c), it is shown that InceptionV3 outperformed VGG16 and EfficientNetB0. It is also observed 

that for both cases, VGG16 and InceptionV3 required less computation time compared to EfficientNetB0 to 

reach above 90%. 

 

 

 
(a) (b) (c) 

 

Figure 7. The accuracy produced by (a) VGG16, (b) InceptionV3, and (c) EfficientNetB0 using original 

images for training 
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(a) (b) (c) 

 

Figure 8. The accuracy produced by (a) VGG16, (b) InceptionV3, and (c) EfficientNetB0 using augmented 

images for training 

 

 

Nevertheless, the accuracy of models trained by original images did not differ much when trained on 

augmented images. At the 50 epochs, it is shown that the InceptionV3 has produced the highest accuracy of 

98.83% on augmented images while EfficientNetB0 highest accuracy of 97.67% on original images, 

respectively. The obtained accuracy, precision, recall, and F1-score for the VGG16, InceptionV3 and 

EfficientNetB0 are shown in Table 1. It is shown that the performance of EfficientNetB0 and InceptionV3 is 

approximately similar for both cases, that is, when original or augmented images train the models. However, 

EfficientNetB0 has better performance when trained by original images, but opposite to InceptionV3, the 

model performed better when trained by augmented images. 

The summary of the classification results for each disease, namely upward curling (UC), 

mosaic/mottling (M) and bacterial spot (BS) diseases, are shown in the confusion matrix in Table 2. It is 

demonstrated that InceptionV3 has produced the highest true positivevalue when classifyingbacterial spots 

for both cases but the mosaic/mottling, the InceptionV3 model, has the highest true positive value when 

trained by augmented images. Nevertheless, the true positive value of the InceptionV3 model is lower than 

the true positive value of EfficientNetB0 when trained by original images. All three methods have equivalent 

performance when classifying the upward curling disease. It is also shown that the models have difficulty 

classifying the mosaic/mottling disease, as the produced true positive value is the lowest compared to other 

diseases. The complex features of the mosaic/mottling disease are approximately similar to the upward 

curling disease that caused the methods to misclassify. 
 

 

Table 1. The VGG16, InceptionV3 and EfficientNetB0 testing performance 
Training Set Models Accuracy (%) Precision (%) Recall (%) F1 Score 

First set (original images) VGG16 95.17 95.00 95.00 0.95 

InceptionV3 97.50 97.00 97.00 0.97 

EfficientNetB0 97.67 98.00 98.00 0.98 

Second set (augmented images) VGG16 95.83 96.00 96.00 0.96 

InceptionV3 98.83 99.00 99.00 0.99 

EfficientNetB0 96.83 97.00 97.00 0.97 

 
 

Table 2. Confusion Matrix of the methods that were trained using original and augmented images 
  First Training Set (Original Images) Second Training Set (Augmented Images) 

  VGG16 InceptionV3 EfficientNetB0 VGG16 InceptionV3 EfficientNetB0 

True 

Label 

BS 0.97 0.02 0.01 0.99 0.0 0.1 0.98 0.0 0.02 0.98 0.02 0.0 1.0 0.0 0.0 0.98 0.0 0.02 

M 0.01 0.91 0.08 0.02 0.96 0.02 0.0 0.98 0.02 0.02 0.90 0.08 0.0 0.98 0.02 0.0 0.94 0.06 

UC 0.0 0.02 0.98 0.0 0.03 0.97 0.0 0.02 0.98 0.0 0.02 0.98 0.0 0.02 0.98 0.0 0.02 0.98 
  BS M UC BS M UC BS M UC BS M UC BS M UC BS M UC 

  Predicted Label 

 

 

5. CONCLUSION AND FUTURE WORKS 

The efficacy of deep learning algorithms, namely VGG16, Inception V3 and EfficientNet B0, 

methods in classifying three types of chilli plant diseases, namely upward curling, mosaic/mottling and 

bacterial spot from a dataset that consists of 3,000 images in an uncontrolled condition and under various 

imaging conditions is demonstrated. The experiment results showed that InceptionV3 has better performance 

than the VGG16 and EfficientNetB0 in classifying bacterial spot images. Still, all the models have difficulty 

classifyingthe mosaic/mottling disease due to the complex features of the mosaic/mottling disease that are 
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approximately similar to the upward curling disease. All three methods have equivalent performance when 

classifying the upward curling disease. In conclusion, deep learning algorithms have shown a great potential 

for classifying chilli plant diseases. The performance algorithms can be further improved by exposing them 

to high-complexity images and several other types of diseases, which will create more opportunities for 

developing more advanced classifiers. 

 

 

ACKNOWLEDGEMENTS 

The authors wish to acknowledge the financial support received from the Fundamental Research 

Grant Scheme (FRGS), Ministry of Higher Education, with grant number 5540078 (ID: 15948 and reference 

code: FRGS/1/2018/WAB01/UPM/02/30). The authors would also want to extend appreciation to Mrs. Noor 

Azlina Abdul Aziz and Cui Hairu for their support in this study. 

 

 

REFERENCES 
[1] S. Lob, M. N. M. Aris, S. N. M. Sidique, N. F. Ibrahim, and X. Jin, “Growth development and natural infection incidence of 

tobacco mosaic virus (TMV) on silicon-treated chilli (capsicum annuum L.) cultivated in commercial soil,” Malaysian Applied 

Biology, vol. 46, no. 3, pp. 221–226, 2017. 
[2] Department of Statistics Malaysia, “Press Release Supply and Utilization Accounts Selected Agricultural Commodities,” 

Department of Statistics, no. December, pp. 2013–2015, 2021. 

[3] A. Norfadzilah, “Screening of Selected Cucumber Mosaic Virus Resistance Chilli Genotypes Obtained from World Vegetable 
Center for High Yield in Malaysian Condition,” 2018. 

[4] N. Yusuf, S. M. Fazi, N. A. Ali, and N. I. Fauzi, “Effects of Colletotrichum capsici infection on the growth and antioxidative 

response on defense mechanisms of Capsicum annuum,” 2016. 
[5] M. Parisi, D. Alioto, and P. Tripodi, “Overview of biotic stresses in pepper (Capsicum spp.): Sources of genetic resistance, 

molecular breeding and genomics,” International Journal of Molecular Sciences, vol. 21, no. 7, 2020, doi: 

10.3390/ijms21072587. 
[6] K. Pushpanathan, M. Hanafi, S. Mashohor, and W. F. Fazlil Ilahi, “Machine learning in medicinal plants recognition: a review,” 

Artificial Intelligence Review, vol. 54, no. 1, pp. 305–327, 2021, doi: 10.1007/s10462-020-09847-0. 

[7] A. Picon, M. Seitz, A. Alvarez-Gila, P. Mohnke, A. Ortiz-Barredo, and J. Echazarra, “Crop conditional Convolutional Neural 
Networks for massive multi-crop plant disease classification over cell phone acquired images taken on real field conditions,” 

Computers and Electronics in Agriculture, vol. 167, no. September, p. 105093, 2019, doi: 10.1016/j.compag.2019.105093. 

[8] R. I. Hasan, S. M. Yusuf, and L. Alzubaidi, “Review of the state of the art of deep learning for plant diseases: A broad analysis 
and discussion,” Plants, vol. 9, no. 10, pp. 1–25, 2020, doi: 10.3390/plants9101302. 

[9] J. Liu and X. Wang, “Plant diseases and pests detection based on deep learning: a review,” Plant Methods, vol. 17, no. 1, pp. 1–

18, 2021, doi: 10.1186/s13007-021-00722-9. 
[10] Ü. Atila, M. Uçar, K. Akyol, and E. Uçar, “Plant leaf disease classification using EfficientNet deep learning model,” Ecological 

Informatics, vol. 61, no. October 2020, p. 101182, 2021, doi: 10.1016/j.ecoinf.2020.101182. 

[11] J. Chen, J. Chen, D. Zhang, Y. Sun, and Y. A. Nanehkaran, “Using deep transfer learning for image-based plant disease 
identification,” Computers and Electronics in Agriculture, vol. 173, no. April, p. 105393, 2020, doi: 

10.1016/j.compag.2020.105393. 

[12] A. Ramdan, A. Heryana, A. Arisal, R. B. S. Kusumo, and H. F. Pardede, “Transfer Learning and Fine-Tuning for Deep Learning-
Based Tea Diseases Detection on Small Datasets,” Proceeding - 2020 International Conference on Radar, Antenna, Microwave, 

Electronics and Telecommunications, ICRAMET 2020, pp. 206–211, 2020, doi: 10.1109/ICRAMET51080.2020.9298575. 

[13] A. R. Luaibi, T. M. Salman, and A. H. Miry, “Detection of citrus leaf diseases using a deep learning technique,” International 
Journal of Electrical and Computer Engineering, vol. 11, no. 2, pp. 1719–1727, 2021, doi: 10.11591/ijece.v11i2.pp1719-1727. 

[14] W. Zhu, B. Braun, L. H. Chiang, and J. A. Romagnoli, “Investigation of transfer learning for image classification and impact on 
training sample size,” Chemometrics and Intelligent Laboratory Systems, vol. 211, no. February, p. 104269, 2021, doi: 

10.1016/j.chemolab.2021.104269. 

[15] S. Niu, Y. Liu, J. Wang, and H. Song, “A Decade Survey of Transfer Learning (2010–2020),” IEEE Transactions on Artificial 
Intelligence, vol. 1, no. 2, pp. 151–166, 2021, doi: 10.1109/tai.2021.3054609. 

[16] Y. Wu, X. Qin, Y. Pan, and C. Yuan, “Convolution neural network based transfer learning for classification of flowers,” 2018 

IEEE 3rd International Conference on Signal and Image Processing, ICSIP 2018, pp. 562–566, 2019, doi: 
10.1109/SIPROCESS.2018.8600536. 

[17] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on deep transfer learning,” Lecture Notes in Computer 

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11141 LNCS, pp. 
270–279, 2018, doi: 10.1007/978-3-030-01424-7_27. 

[18] T. Purwaningsih, I. A. Anjani, and P. B. Utami, “Convolutional Neural Networks Implementation for Chili Classification,” 

Proceeding - 2018 International Symposium on Advanced Intelligent Informatics: Revolutionize Intelligent Informatics Spectrum 
for Humanity, SAIN 2018, pp. 190–194, 2019, doi: 10.1109/SAIN.2018.8673373. 

[19] A. R. Bahtiar, Pranowo, A. J. Santoso, and J. Juhariah, “Deep Learning Detected Nutrient Deficiency in Chili Plant,” 2020 8th 

International Conference on Information and Communication Technology, ICoICT 2020, pp. 5–8, 2020, doi: 
10.1109/ICoICT49345.2020.9166224. 

[20] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” 36th International Conference 

on Machine Learning, ICML 2019, vol. 2019-June, pp. 10691–10700, 2019. 
[21] F. Liu, Y. Wang, F. C. Wang, Y. Z. Zhang, and J. Lin, “Intelligent and secure content-based image retrieval for mobile users,” 

IEEE Access, vol. 7, pp. 119209–119222, 2019, doi: 10.1109/ACCESS.2019.2935222. 

[22] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture for Computer Vision,” 
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-December, pp. 

2818–2826, 2016, doi: 10.1109/CVPR.2016.308. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Efficacy of chili plant diseases classification using deep learning: a preliminary study (Suhana Rozlan) 

1449 

[23] Y. Bazi, M. M. A. Rahhal, H. Alhichri, and N. Alajlan, “Simple yet effective fine-tuning of deep cnns using an auxiliary 
classification loss for remote sensing scene classification,” Remote Sensing, vol. 11, no. 24, 2019, doi: 10.3390/rs11242908. 

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” 

Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017, doi: 10.1145/3065386. 
[25] D. Masters and C. Luschi, “Revisiting Small Batch Training for Deep Neural Networks,” pp. 1–18, 2018, [Online]. Available: 

http://arxiv.org/abs/1804.07612. 

[26] V. Maeda-Gutiérrez et al., “Comparison of convolutional neural network architectures for classification of tomato plant 
diseases,” Applied Sciences (Switzerland), vol. 10, no. 4, 2020, doi: 10.3390/app10041245. 

[27] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for image-based plant disease detection,” Frontiers in Plant 

Science, vol. 7, no. September, 2016, doi: 10.3389/fpls.2016.01419. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Suhana Rozlan     received the Bachelor of Electronic Engineering from Universiti 

Tun Hussein Onn Malaysia (UTHM), in 2003. She is currently pursuing the Master of 

Communication EngineeringatUniversiti Putra Malaysia (UPM). Her research interest includes 

computer vision applications in agriculture, using deep learning methods to study plant leaf 

disease detection in complex backgrounds. She can be contacted at email: 

gs55752@student.upm.edu.my. 

  

 

Marsyita Hanafi     is currently a Senior Lecturer at the Department of Computer and 

Communication Systems, Faculty of Engineering, Universiti Putra Malaysia (UPM). She 

received her Ph.D. in Image Processing and Artificial Intelligence from Imperial College 

London, UK, in 2012. Her research interests are image processing and artificial intelligence that 

include autonomous vehicles, precision agriculture, biometric, and IoT-based intelligent 

monitoring systems. She is actively involved with multi-discipline research studying AI and 

image processing applications with the Faculty of Agriculture, Faculty of Medicine, and Faculty 

of Education. She has been involved with IEEE as a member since 2012. She is the principal 

investigator and collaborator for projects under the local funding bodies; namely the Malaysian 

Ministry of Higher Education (MoHE), and Research University Grant Scheme (RUGS) (now 

known as Putra Initiative Grant) UPM. She can be contacted at email: marsyita@upm.edu.my. 

 

 

 

https://orcid.org/0000-0002-0125-4198
https://orcid.org/0000-0003-1012-6988

