
TELKOMNIKA, Vol. 11, No. 10, October 2013, pp. 5763 ~ 5773
ISSN: 2302-4046
  5763

Received April 19, 2013; Revised July 2, 2013; Accepted July 15, 2013

Optimization Design of a Real-time Embedded
Operating System Based on ISO17356

Jiang Chun-Mao*1, Qu Ming-Cheng2, Wu Xiang-Hu Hu2
1School of Computer Science Technology and Information Engineering, Harbin Normal University

Harbin 150025, Heilongjiang, China.
2School of Computer Science and Technology, Harbin Institute of Technology

Harbin 150001, Heilongjiang, China
*Corresponding author, e-mail: 780319467@163.com

Abstract
This paper distinguishes the differences between dynamic and static operating system from the

design target, and discusses the resulting different technologies used when system is implemented. Based
on this theory, according to ISO17356 OS specification and using the hardware abstraction layer idea, a
simple and efficient static real-time operating system is implemented for ARM architecture, and the kernel
contains no more than 3000 lines C codes. With the idea of separating mechanisms and strategies, the
internal resources are used as a mechanism to implement different scheduling policies; proposes a
priority-based packet scheduling algorithm, which achieves a good performance both in time and space.

Keywords: ISO17356 OS, Real-Time Embedded Operating System, Static

Copyright © 2013 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

With the advancement in networking and multimedia technologies enables the
distribution and sharing of multimedia content widely. Although encryption can provide
multimedia content once a piece of digital content is decrypted, the dishonest customer can
redistribute it arbitrarily [2, 3]. In the field of automotive electronic, there are always a lot of
duplication of development work for different products, which not only reduces the efficiency of
software development, but also makes the system extensibility and portability affected. To
address these issues, the European automotive industry in the mid-90s of 20th century
developed an open system interface OSEK / VDX specification [1]. The specification has now
become an industry standard for embedded real-time systems, and was adopted by ISO as an
international standard--ISO17356. To be convenient for the narrative, the following OSEK
standard is equivalent to ISO17356 standard [2].

In the previous studying on the OSEK operating system, they mostly only concerned
with how to implement the system, but didn't distinguish the differences between dynamic and
static operating system from design idea. This paper first analyses the different requirements for
embedded system in different application environments, to present the static and dynamic
operating system concept; from the different design objectives of the two types, present different
techniques used when implemente them. OSEK operating systems consistent with the
characteristics of the static operating system, therefore, we use static design approach, discuss
the design objectives of each part by top-down method, and discuss the task management,
resource management and interrupt management in detail [3].

2. Dynamic Operating System and Static Operating System
Embedded operating system application environments are diverse, and different

applications have different requirements for the services provided by the system. In some
circumstances, users want the operating system to provide rich functionality as much possible
to meet the diverse requirements of the applications; and in other high reliability and security
areas, users pay more attention to the predictability and real-time of the operating system.

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 10, October 2013 : 5763 – 5773

5764

Therefore, there are in fact mainly two types of embedded operating system: static operating
system and dynamic operating system [4].

Dynamic operating system gives top priority to flexibility and adaptability to pursue to
meet the various requirements of application as much as possible. To support this flexibility,
dynamic operating system must have the ability to dynamically allocate resources, such as
dynamic creation and deletion of tasks, dynamic application and releasing of semaphores and
so on. Som typical dynamic operating systems are Vxworks, pSOS, uCLinux and so on [5-6].

The design objective of static operating system is predictability, and the pursuit of the
optimal performance. To achieve those objectives, it requires the user to configure all objects
statically before the system starts, such as the number of tasks and timers and so on, which
produced a "static operating system" concept. Currently, OSEK is a typical representative of the
static operating system [8-10].

2.1. System Design

In order to meet flexibility, the dynamic operating system will provide a very rich APIs for
users. But the static operating system must guarantee that the APIs provided does not affect the
predictability of the system, so the restrictions on the number of APIs and the ways they are
used will be made.

2.1.1. Task Management

In a dynamic operating system, applications must be able to dynamically create and
delete tasks, so the kernel must provide mechanism for dynamic memory management. The
disadvantage of such mechanism is that: the task is not guaranteed to be created successfully.
Because it is difficult to accurately estimate the total amount of required memory, when system
memory runs out, the requirements of creating tasks will be delayed to meet or even ignored.
Clearly, in high reliability and high security environment, this approach is unacceptable [7].

To solve this problem, the system will know in advance the creation of the tasks the
user requests. Static operating system uses a method of static configurations, configuring all
tasks and all resources tasks require for the system before starting. In this way, users will be
able to very accurately assess the demand of applications for memory, and also ensure the
request of creating tasks will not fail. At the same time, this approach also avoids the overhead
of time caused by dynamic creation, and improves the system's real-time. Because the tasks in
the system are implicitly created before starting, after startup they have been in existence, the
static operating system only has system services of "active tasks" , and no "create a task".
"Activation" is only the process of initializing the task control block based on the configuration
information of tasks.

In many cases, users want to advance or delay the implementation of a task, which is
required to dynamically change the priority of the tasks in the applications. Therefore, in the
dynamic operating system, it must provide such APIs. However, this approach will produce
uncertainty in applications, execution order of tasks and the scheduling time of takes can not be
predicted. Therefore, in the static operating system, once the task priority is configured, it's not
allowed to change dynamically during operation.

In many application environments, it often needs more than one task to work together,
so any operating system must provide means for synchronization between tasks.

In pursuit of flexibility, the dynamic operating system provides a variety of IPC
mechanisms such as semaphores, mutexes, message queues, mailboxes and so on. The
common feature of these synchronization mechanisms is that when the task can not enter into
the critical section, it changes to sleep state until they are awakened. Take the semaphore as
an example, when a semaphore is created, any task that wants to access the critical section
may apply to use the semaphore, if the semaphore is being occupied, the task changes into the
sleep state. This brings two problems: (1) When more than one task is blocked because of
waiting for the same semaphore, the system can not be sure that how long each task will be
blocked, thus increasing the unpredictability of system behavior; (2) a high priority task may be
forced to block some uncertain time to wait for a low-priority task to be completed, that is, the
priority inversion problem. Clearly, in high reliability, real-time systems, thus unpredictable
blocking is not acceptable.

To avoid these problems, in a static operating system, it can not use the IPC
mechanism of "block - sleep - wake up". To accurately predict the time the task will be blocked,

TELKOMNIKA ISSN: 2302-4046 

Optimization Design of a Real-time Embedded Operating System Based … (Jiang Chun-mao)

5765

it must know in advance the number of tasks to access the critical region. Obviously, this can
only be achieved in the method of static configuring. As for the priority inversion problem, it
mainly uses Priority Ceiling Protocol or Priority Inheritance Protocol to resolve, which is what
OSEK standard is doing.

OSEK standard provides "resources" as a means of synchronization among tasks.
Resources are defined as follows: The task gets resources before entering the critical area and
releases resources after leaving the critical area, the specific mechanism is as follows: (1)
through making clear the ownership of the specified resources statically before the system
starts, the kernel knows which tasks will access which critical areas; (2) use Priority Ceiling
Protocol to avoid the occurrence of priority inversion. When the task obtains resources, its
priority will be raised to the Priority Ceiling Protocol resources priority, other tasks can not enter
the critical areas naturally; when the task releases resources, its priority gets back to the original
priority, then the other high priority tasks can preempts. With the guarantee of Priority Ceiling
Protocol, a task in running state can always get a successful access to resources, and access
to critical areas. Obviously, it can easily predict the execution order of tasks in this way.

To further enhance the ability of communication between tasks, OSEK standard also
provides a "event" mechanism. With the target of not affecting the predictability of the system,
the mechanism of events is designed to follow two principles: (1) it must specify the ownership
of the event; (2) the task can only wait for its own event. After the owner of the event and
waiting mode are specified, the waiting time of task is controllable.

In the life cycle a task has a variety of features, according to the characteristics, a task
can be divided into different states. Therefore, all possible actions that the task has in the
system determine the set of status of the task. In a multitasking operating system, CPU can only
handle a task at any moment, so a task requires at least three states:
(1) pending: the task has not been loaded into memory, do not have any running conditions;
(2) running: the task possesses CPU, and execute its instructions;
(3) ready: In addition to CPU, the other conditions are all ready, only wait for scheduling;

Different operating systems on the basis of these three states will make the necessary
expansion according to the different behaviors of tasks. From the previous section it can be
seen that the dynamic operating system provides a wealth of IPC mechanisms in order to meet
the various requirements of the applications, and most of these IPC mechanisms use a "block -
sleep – wake up" approach. To support this tasks behavior under IPC mechanism, the operating
system must add a "sleep" state for the tasks.

As discussed in the previous section, tasks in "sleep" state can not be predicted when
they will be awakened, this will lead to uncertainty in system behavior. So in a static operating
system, there is no "sleep" state for the tasks.

In order to support the event mechanism, OSEK standard needs to be added a "wait"
state for tasks. However, this "waiting" is different from "Sleep": tasks in "wait" status can be
waked up at any time, the waiting time is controllable, so it will not affect the system's
predictability.

2.1.2. Memory Management

In a dynamic operating system, to support the dynamic creation and deletion of various
objects, it must provide dynamic memory management mechanism. In addition, as the kernel
does not know the size of the stack required for each task, it will be demanded to maintain a
memory pool to meet the various needs of the task stack.

All objects of a static operating system are statically configured, the size of task stack is
also static pre-allocation, so memory management is also very simple, without complex dynamic
memory management mechanism.

2.2. Performance Comparison
2.2.1. Space comparison

Dynamic operating system has dynamic memory management mechanism and a large
number of APIs, this makes the internal control mechanism be complicated and difficult to
maintain, and directly resulting in the large quantity of kernel codes. In addition, the dynamic
memory management mechanism has high memory requirements, at the same time, it will also
bring about memory fragmentation.

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 10, October 2013 : 5763 – 5773

5766

Static operating system's internal management mechanism is very simple, the internal
data structures and functions can be designed to be compact, so the number of kernel codes is
very small. As a result of a static configuration, on the one hand it can store more global
variables in the ROM, reducing the demand for RAM to reduce hardware costs; on the other
hand, the size of each task stack can be configured according to the applications need, thus
avoiding memory waste.

Static operating system obtains information of the applications to the maximum extents,
it configures the kernel according to specific needs, so it can be done on the optimal use of
space.

2.2.2. Real-time

Real-time performance of the system is mainly reflected in two aspects: (1) the
response time of the request for resources; (2) the time of scheduling.

In a dynamic operating system, the request for resources will go through the process of
dynamica allocation; when the memory is exhausted, this request will be delayed, which will
decrease real-time. In the static operating system, all objects are statically configured, they exist
throughout the process of system running, there is no need for the process of " allocation "; so
every request for resources will be able to be immediately responded, which has high real-time.

Dynamic operating system allows applications to change priority in the process of
running, which makes scheduling algorithm more complicated, longer time required for
scheduling and unpredictable. In a static operating system, it doesn’t dynamically change
priorities, so the scheduling algorithm is simple, and scheduling time is short.

Therefore, the static operating system has higher real-time than the dynamic operating
system.

2.2.3. Verifiability

Because the kernel of dynamic operating system is complex, it needs dynamic memory
management mechanism, which will cause the system difficult to maintain. In application
development based on dynamic operating system, all objects go through the dynamic creation
and deletion, system behavior is difficult to predict, so it is very difficult to test the system
completely.

In contrast, the kernel of static operating system is simpler and easier to maintain. Since
all objects are statically defined before the system starts, it will be able to calculate the demand
on hardware resources, it is easy to verify. Because the system has good predictability, the
tests of the application can also be done through limited test cases to cover all possible
situations.

In summary, the overall performance of the static operating system is better than the
dynamic operating system, thi is why the article chooses OSEK standard to implement a static
operating system.

3. OSEK Standard Profiles

OSEK standard specifies four conformance classes, a conformance class can be
implemented as a operating system of specific version. In fact, the four conformance classes
are upward compatible: any applications developed for the BCCx operating system can be
transplanted without modification to the ECCx operating system, any applications developed for
the xCC1 operating system can be transplanted without modification to the xCC2 operating
system as Figure 1.

3.1. Task Management

OSEK specification divides tasks into basic tasks and extended tasks. Basic tasks have
3 states: running state, ready state and suspended state, extended tasks have one more
waiting state, as Figure 2.

OSEK specification supports four scheduling strategies, preemptive scheduling, non-
preemptive scheduling, mixed preemptive scheduling and group scheduling.

TELKOMNIKA ISSN: 2302-4046 

Optimization Design of a Real-time Embedded Operating System Based … (Jiang Chun-mao)

5767

Figure 1. Restricted upward compatibility for conformance classes

Figure 2. State transition diagram of task

3.2. Event Mechanism
Events as a means of communication among tasks, are used to ensure synchronization

between different extended tasks. This mechanism means: an extended task in a wait state,
when at least one event it’s waiting occurs, it will enter into the ready state. Only extended tasks
have events.

3.3. Resources Management

When multiple tasks access shared resources at the same time, resource management
mechanisms are needed to protect critical areas. OSEK specification uses the Priority Ceiling
Protocol, that is, after a task occupies a resource, the priority of the current process will
temporarily be increased to the priority of the resource; when the task releases the resource, its
priority goes back to the original priority of the task.

3.4. Interrupt Handling

OSEK specification defines two kinds of interrupt service routine: (1) First Class
Interrupt: This interrupt routine doesn’t use operating system services, after interrupt ends, the
interrupt handler continues from the place where interrupt takes place, which does not affect the
task management. (2) Second Class Interrupt: This interrupt routine is formed through the
configuration from the user subroutine when the system is generated, it can call the operating
system API, and impact task scheduling.

3.5. Alarm Mechanism

Alarm is a service mechanism provided by OSEK specification to address cycle event,
to some extent it can be seen as a timer in other operating systems. When the count of the
alarm value equals to the set value, the system will call the service program to set up events or
activation tasks.

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 10, October 2013 : 5763 – 5773

5768

4. The Operating System Design
4.1. The Overall Structure of the Operating System

To facilitate the system migration, we adopted the design idea of hardware abstraction
layer, the hardware-related and hardware-independent part are strictly divided. The overall
design is divided into two parts:

1. Operating system kernel: hardware-independent part is the core of the operating
system, which provides users with a variety of services and is responsible for tasks, resources,
events, counters, alarms and the interrupt service routine management.

2. Hardware Abstraction Layer: hardware-related part is the basis for operating system
kernel to run on specific hardware platform, which includes the system start, the task context
switching, the bottom handling of interrupt and clock.

Figure 3. The overall structure of the operating system

4.2. Interface with OIL
Any operating system should have input, for OSEK operating system, its input is OIL

file. OSEK specification does not define the interface with the OIL and OS, and we are in point
of view of the needs of the OS input, OIL file will be divided into two parts: (1) system
configuration information, including system boot parameters; (2) Object creation, used to
configure the details of each object. See Figure 3.

For the system configuration information, it must contain the sum of each object, the
operating system determines how much memory is needed through the use of these
parameters to avoid unnecessary waste.

There are two main methods for object creation: direct and indirect creation. The
advantage of direct creation: The control block objects on the operating system are directly
assigned, operation is fast; Drawback is that: the coupling of the OS and OIL is too high, which
does not meet the modular design. Regard to the future possible demand for expansion of OS
and OIL, and OS internal data security, we use indirect methods to create: OIL stores
information for each object separately, and then creates the object with OS functions, do not
need to care about relationship of each object in the OS.

5. Design of Task Management
Task management is the core of the operating system, mainly faced two problems: (1)

the effective division of scheduling policies; (2) balance for scheduling algorithm in time and
space performance.
5.1. Separation of Scheduling Mechanisms and Policies

OSEK specification supports four scheduling strategies, preemptive scheduling, non-
preemptive scheduling, mixed preemptive scheduling and group scheduling. In this regard, we
use the thought of separation of mechanism and policy: the internal resources of the operating

TELKOMNIKA ISSN: 2302-4046 

Optimization Design of a Real-time Embedded Operating System Based … (Jiang Chun-mao)

5769

system as a mechanism, users use internal resources to achieve a variety of scheduling
strategies, within the system, it does not distinguish what kinds of scheduling policies. When the
task starts running, it automatically accesses to internal resources; when the task stops, it
automatically releasee internal resources. For the management of internal resources, followes
the priority ceiling protocol, see the section of the design for resource management.
(1) Preemptive scheduling: directly scheduling by task priority;
(2) Non-preemptive scheduling: if task runs, it has the highest priority to the internal resources

to ensure that the process is not preempted by other tasks;
(3) Mixed preemptive scheduling: According to (1) and (2) to handle tasks;
(4) Group scheduling: if task is running, it has the highest priority of the internal resources of the

group to ensure that no preemption by the same group of tasks, but can be preempted by
tasks in other groups with higher priority.

5.2. Scheduling Algorithm Based on Priority and Group

Task scheduling algorithm is the core algorithm of the operating system, which is
related to the overall system performance. In order to achieve simply, and to achieve a
balanced objective in time and space, we propose a priority-based group scheduling algorithms:

Let highest task priority be N, from small to large divide them into P groups, each group
has N/P priorities
(1) For one time explicitly scheduling, find the highest priority in the P groups from high to low,

the average cost is P/2;
(2) when activating a task, compare the priority of the task activated with the highest priority of

the group, and then update the highest priority of the group. The cost is 1 time of compare
operation;

(3) when terminating a task, update the highest priority of the group, in the group find the
highest priority from high to low, the average cost is N/2P;

In summary, the total cost of system scheduling is P/2 + 1 + N/2P, when P=N1/2, the
total cost is minimum.

μC/OS-II is an excellent operating system in the field of embedded systems, especially
its scheduling algorithms is unique. We compare the performance of the above scheduling
algorithm with the μC / OS-II scheduling algorithm. Because μC / OS-II supports only 64 fixed
priorities, so in the above model, N = 64, P = 8; the results are shown in Table 1.

Table 1. Performance comparison between C-OSEK and μC / OS-II for scheduling
Categories C-OSEK μC/OS-II
The time for
one explicit
scheduling

4 times searches in
average

2 times searches

Space

a array of 256 bytes is
needed for bitmap
mapping

No extra space is
needed

Flexibility

The number of
priorities can be
greater than 64, and
the smaller the highest
priority of task is, the
faster the scheduling
process will be.

The number of
priority is fixed to 64,
and regardless of
the highest priority of
tasks, the
scheduling time is
constant

From Table 1 we can see that, compared with μC/OS-II scheduling algorithm, C-OSEK

scheduling algorithm eliminates the need for a lot of space costs, and has a high flexibility,
which needs very little amount of time costs. As the number of the priorities used in practical
applications is generally no more than 64, the C-OSEK scheduling algorithm performance is
very good.

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 10, October 2013 : 5763 – 5773

5770

6. Design of Resource Management
Operating system must guarantee exclusive access to the critical areas, a good

exclusive method should have the four characteristics:
(1) two tasks can not occupy the same resources;
(2) priority inversion can not appear;
(3) can not deadlock;
(4) task that has possession of resources can not enter a wait state.

OSEK standard uses external resources as a means to provide mutual exclusion, it
uses Priority Ceiling Protocol to address these four issues, specifically as follows:
(1) when the task enters the critical zone for resources, its priority will be raised to the ceiling

priority of the resources to ensure critical areas are not seize by the other tasks that have the
resources;

(2) when the task releases resources to leave the critical region, its priority goes back to the
original priority, other tasks that have the resources can enter the critical area;

Priority ceiling protocol with respect to semaphores and other mutual exclusion locks
has the advantages of avoiding deadlock and priority inversion, which switches the mutual
exclusion problem into the task priority level problem, so that the problem be simplified.

Access to critical areas not only exists between tasks, but also between a large number
of tasks and interrupts as well as between the interrupts and interrupts. Therefore, we extend
Priority Ceiling Protocol to interrupt level, the specific methods are as follows:

Let resource R has been occupied by
1 2, , ... nT T T ,n tasks and 1 2, , ... mI I I , m interrupts.

(1) when the task (1)jT j n  obtains resource R, its priority will be raised to the highest priority of

all tasks,mean while banning all interrupts that have the resource;
(2) When the interrupt (1)kI k m  obtains resource R, it prohibits all other interrupts that have

the resource;

7. Design of Interrupt Management
Interrupt is an important factor affecting the performance of embedded systems. Some

of the interrupts are independent relatively to the operating system, which will not affect the core
behavior, OSEK standard calls them First Interrupts; in some other interrupts, the user may
make some impact on the operation of scheduling, such as activating task, set time, such
interrupts should be perceived by the system (RTOS-aware), OSEK standard calls them
Second Interrupts.

First Interrupts are mainly used for work that needs to be done quickly, which do not
interact with the operating system, the cost of them is minimum; Second Interrupts need to
interact with the operating system using APIs provided by the operating system. Therefore, the
system should be designed to achieve two objectives:
(1) Interrupts can not be interrupted by Second Interrupts to ensure they are executed as soon

as possible, but they can be interrupted by a higher priority First Interrupt;
(2) Second Interrupts can be interrupted by First Interrupts, at the same time they can be

interrupted by a higher priority Second Interrupt;
Based on the above two objectives, we design as follows:
(1) The lowest priority of all First Interrupts  the highest priority of Second Interrupts;
(2) Second Interrupts need to use EnterISR and LeaveISR at the beginning and end of

interrupts to inform the operating system of the arrival of interrupt;
Interrupt context saving and restoring is another key for designing. There are two

general methods: (1) store interrupt context in the current task stack; (2) use a single interrupt
stack. If we store interrupt context in the current task stack, we need to increase the size of task
stack. Because users can not estimate the arrival time of interrupt, when the interrupt frequency
is not high the memory will be wasted, when the interrupt frequency is too high, the stack will
overflow. Therefore, we use a single interrupt stack to save the interrupt context, thus not only
ensuring safety, but also improving the memory utilization rate.

C-OSEK supports interrupt nesting, which makes the processor switch to another mode
between the interrupt handlers and opens the interrupt, as shown in Figure 4.

TELKOMNIKA ISSN: 2302-4046 

Optimization Design of a Real-time Embedded Operating System Based … (Jiang Chun-mao)

5771

Figure 4. ARM-based interrupt handling process which can be nested

8. Other Parts
8.1. Alarm Management

Alarm depends on the counter, the counter depends on the clock interrupt. As the alarm
will activate task or set the event, which will impact on task scheduling, so the clock interrupt is
treated as a two types of interrupts. Every time when the clock interrupt arrives, the counting
values of counter will all increase, followed by checking whether the alarm on the counter is due
and performs the appropriate action. To speed up the processing of alarm, the alarm queues
from small to large by triggering time. Counter is used to describe counter, ACB is used to
describe alarm, as shown in Figure 5.

Figure 5. Alarm and counter

8.2. Event Management
C-OSEK supports for each task up to 64 events. Task control block uses three

attributes allEvents, eventWaiting and eventState, to indicate all the events task has and events
it’s waiting for and the current state.

9. Application Verification and Performance Analysis
We choose ISO17356 OS version 2.2.3 specification and ISO17356 OIL version 2.5

specification, in the AT91SAM7X256 of ARM hardware platform we achieve a C-OSEK

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 10, October 2013 : 5763 – 5773

5772

operating system, and make a complete functional test. Next, the system will be applied to a
color digital instrumentation system of Harbin Weidi Motor Company of China and Germany.

As in-depth analysis of the characteristics of the static operating system, the task
management mechanism design is very simple. C-OSEK kernel code is less than 3000 lines, in
32-bit ARM platforms it’s only 3.5K after being compiled. Here is the comparison with some of
the currently influential OSEK product in the kernel size, as shown in Table 2.

Table 2. Size comparison for various OSEK kernels
Name of OSEK operating system Kernel size

Emerald-OSEK(University of Michigan)
OSEKTurbo(Metrowerks Company)

P-OSEK(Integrated System)
SmartOSEK(Zhejiang University)

C-OSEK(Harbin Institute of Technology)

5.5 KB
5 KB

2.8 KB
4.3 KB
3.5 KB

The size of the object control block is an important factor to determine the memory

usage size of the system as well as an important indicator to measure if the system design is
simple. The following compares with the size of the object control block of Tsinghua OSEK, as
shown in Table 3.

Table 3. Size comparision between C-OSEK and TH-OSEK for the object control block

Object
Size(Bytes) Size(Bytes)

TH-OSEK C-OSEK
Task control block 55 43

Resource control block 24 23
Counter control block 20 24
Alarm control block 36 30

From Table 3, it can be seen that C-OSEK kernel is small, the design of the object

control block is more compact.

10. Conclusion
This paper analyzes deeply the static and dynamic operating system differences. We

designed and implemented C-OSEK operating system based on them. C-OSEK is a real-time
embedded operating system of completely independent intellectual property rights, which will
play a certain role in the development of China's auto industry. Next, we will conduct study for
the AUTOSAR standards integration.

Acknowledgements
This work was supported by Heilongjiang province natural science foundation F201139.

References
[1] Baynes K, et al. The performance and energy consumption of embedded real-time operating systems.

Computers. IEEE Transactions on. 2003; 52(11): 1454-1469.
[2] Leslie, IM, et al. The design and implementation of an operating system to support distributed

multimedia applications. IEEE Journal on Selected Areas in Communications, 1996; 14(7): 1280-
1297.

[3] John A Stankovic, R Rajkumar. Real-Time Operating Systems. Real-Time Systems. 2009; 28(3): 237-
253.

[4] Sun Bao-Min, Sun Xiao-Min. Design of TH-OSEK embedded RTOS. Computer Engineering and
Design. 2004; 25(5): 661-664.

[5] Zhao MD, et al. SmartOSEK: A real-time operating system for automotive electronics. Embedded
Software and Systems. 2005; 36(5): 437-442.

TELKOMNIKA ISSN: 2302-4046 

Optimization Design of a Real-time Embedded Operating System Based … (Jiang Chun-mao)

5773

[6] Steiger C, H Walder, and M Platzner.Operating systems for reconfigurable embedded platforms:
Online scheduling of real-time tasks. IEEE Transactions on Computers. 2004; 53(11): 1393-1407.

[7] Santos RM, J Santos, and JD Orozco. Power saving and fault-tolerance in real-time critical embedded
systems. Journal of Systems Architecture. 2009; 55(2): 90-101.

[8] Barbalace A, et al. Performance Comparison of EPICS IOC and MARTe in a Hard Real-Time Control
Application. IEEE Transactions on Nuclear Science. 2011; 58(6): 3162-3166.

[9] Wu XD, et al. Energy-Efficient Scheduling of Real-Time Periodic Tasks in Multicore Systems, Network
and Parallel Computing. 2010; 628(9): 344-357.

[10] Lelli J, et al. An experimental comparison of different real-time schedulers on multicore systems.
Journal of Systems and Software. 2012; 85(10): 2405-2416.

