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ABSTRACT

Low-back pain (LBP) is a complex health problem requiring accurate diagnosis
and effective treatment. However, the current decision support system (DSS) for
LBP only considers the patient’s pain intensity and treatment suitability, which
may not lead to optimal outcomes. This paper proposes a novel DSS that com-
bines machine learning (ML) and expert input to classify LBP types and pro-
vide more reliable and personalized recommendations. We used an open-source
dataset to train and test various ML models, including an ensemble model that
combines multiple classifiers. We also performed data analysis and feature ex-
traction to enhance the model’s predictive power. We developed a prototype tool
to demonstrate the model’s performance and usability. Our results show that the
ensemble model achieved the highest accuracy of 92.02%, followed by random
forest (RF) (91.01%), multilayer perceptron (MP) (91.01%), and support vector
machine (SVM) (87.88%). Our findings suggest that ML can help LBP special-
ists diagnose and treat LBP more effectively by learning from historical data and
predicting LBP categories. Our DSS can potentially improve the quality of life
for LBP patients and reduce the burden on the healthcare system.
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1. INTRODUCTION
Medically, low-back pain (LBP) is a prevalent problem that limits peoples’ ordinary ways of life and

hinders them from scheduling exercises, tasks and activities [1]. As a symptom, LBP has been identified as
the foremost noteworthy social burden disease universally [2]. It is not a disease that cannot be validated by
an external standard [3], but a public health challenge [4] that affects people of all ages [5], [6]. For that,
LBP is ranked sixth in terms of the overall burden of disability and disability-adjusted life years, with a global
point prevalence of 9.4% [7], [8]. LBP affects a large proportion of the population in the world, which is why
proper diagnosis and treatment are crucial. With about 60% to 90% of the adult population being at risk of
developing LBP in their lives [9], it is pertinently essential to establish clear evidence for managing all types
and forms of LBP. However, as the authors in [10], [11] observed, the lack of clear proves for one particular
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treatment mediation being prevalent to another justifies the need for proper decision-making. Remarkably,
the current clinical practice cannot successfully guarantee the effective management of LBP [10] to determine
the LBP types and provide more accurate, effective, and reliable diagnoses and treatments. In this context,
the use of decision support systems (DSS) for clinical practice is expected [2], [12]. Worthy of mention,
DSS in clinical medicine has gotten significant consideration from researchers and practitioners of information
systems [1], [13], [14]. Of specific significance is decision-making during medical diagnosis, which is an
essential aspect of patient care and administration by healthcare experts [1], [12]-[16].

Against the background described in the preceding paragraph, existing DSS for LBP predominantly
focus on assessing pain intensity and treatment suitability, contributing to enhanced medical decision-making
and improved care quality [15]. These systems offer clinical guidance for diagnosing and treating LBP, fos-
tering effective doctor-to-patient collaboration and improving communication skills within health information
system settings [17]. However, there is a notable absence of classification systems that stratify LBP types based
on range of motion for comprehensive clinical decision-making. Consequently, there is an urgent need for an
intuitive, user-friendly model to assist physicians in the effective diagnosis and treatment of LBP.

This paper endeavors to develop a model for classifying LBP types based on range of motions, aiming
to furnish physicians with more precise, effective, and reliable diagnoses and treatments. The contribution
is twofold: methodologically, the paper presents a framework merging machine learning and expert involve-
ment for LBP diagnosis, evaluated using an open-source range of motion dataset. Practically, a prototype
tool is implemented, allowing analysis of range of motion features to predict LBP types, demonstrating the
framework’s capability and suitability. The research outcome delivers a model for a DSS, facilitating clinical
decision-making and treatment recommendations for LBP specialists.

2. BACKGROUND AND MOTIVATION
Research on LBP management and treatment has become increasingly significant due to its global

impact and rising occurrence [18]. Despite this, medical practitioners face challenges in effectively diagnosing
and stratifying LBP types, leading to difficulties in providing appropriate treatment, often attributed to the time-
consuming nature of the process [19]. Patient stratification for LBP treatment can be accomplished through
classification systems and clinical prediction rules (CPRs), with CPRs relying on statistical analysis to identify
key predictors of outcomes or conditions. However, diagnosing LBP based on range of motion impairment
remains challenging, requiring expert knowledge of anatomical and physiological complexities [1]. The goal is
to introduce a novel approach supporting statistical analysis and the extraction of valuable patterns from LBP
data to enhance decision-making. Implementing a clinical decision support system (CDSS) for LBP, especially
using machine learning, aims to address these challenges and improve the quality of care effectively [20].
A well-designed CDSS can reduce diagnostic errors, provide fast results, offer essential information to special-
ists for clinical leadership, and ensure efficiency without replacing experts in the decision-making process [2].
The objective is to leverage machine learning to develop a CDSS tool for LBP diagnosis and prediction based
on range of motions, utilizing a classifier to recognize patients’ data and determine LBP types.

The rest of this paper is structured as follows. In section 3, the paper reviews related works and
establish the research gaps. Section 4 presents the materials and methods explaining the data collection pro-
cess, model implementation pipeline, model formulation, and evaluation procedure. In section 5, we present
the model simulation and implementation. In section 6 describes the results and provides the discussion,
and section 7 presents the threats to validity. Finally, in section 8 presents the conclusions and recommenda-
tions for future work.

3. RELATED WORK
The literature discusses existing literature on digital platforms for healthcare, with a specific focus

on musculoskeletal (MSK) disorders, especially LBP. The literature review highlights various models and ap-
proaches, emphasizing their contributions and limitations. Lin et al. [1] developed a DSS for LBP diagnosis,
addressing uncertainty management and clinical evaluations. Smith et al. [21] implemented a CDSS for man-
aging chronic pain at the primary care level. Tascau et al. [22] used an integrated DSS for LBP management,
emphasizing the reliability of patient information. Pombo et al. [23] explored machine learning (ML) to en-
hance CDSS for LBP diagnosis. Van-Hooff et al. [24] focused on CDSS based on logical proof for spine-related
consultations.
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Gulbandilar et al. [25] used a fuzzy logic algorithm to predict LBP intensity, while Navani and Li [26]
designed an ML system for chronic pain risk prediction. Bach et al. [27] developed a self-back control system
for smartphones but faced limitations. Gaonkar et al. [28] employed ML techniques for classifying LBP, and
Lima et al. [29] studied back muscle activity in chronic LBP patients during functional tasks. The summary
critiques each study’s strengths and weaknesses, such as the specificity of LBP types addressed, accuracy of
predictions, and practical applications.

The literature concludes by asserting the study’s unique contribution-proposing a model to facilitate
clinical decision support for stratifying LBP based on types. The aim is to provide physicians with more
accurate and effective diagnoses, ultimately reducing the global burden of disabilities and deaths caused by
LBP. The significance of the study lies in its focus on CDSS in LBP, an area that has received less attention
despite existing research on decision support systems in health and medical informatics.

4. MATERIALS AND METHOD
The research employed an experiment-based quantitative approach, drawing on simulation and im-

plementation methods as outlined in references [30], [31]. The study’s focus was on constructing a decision
support model that identifies distinct LBP types through ML, utilizing data primarily derived from secondary
sources related to LBP patients. The comprises various stages: data exploration and analysis, feature extraction,
model training and testing, model evaluation, and prediction. The conceptual flow highlights the systematic
progression followed in the development of the decision support model for LBP type determination.

4.1. Data exploration and analysis
In this study, a dataset focusing on LBP symptoms and range of motion was obtained from the Kaggle

Data-Science Repository [32]. A total of 310 patients’ details were collected, consisting of 12 input features
related to pelvic and spinal parameters. To enhance the dataset’s relevance to LBP, a brainstorming session
involving six experts from the Department of Medical Rehabilitation at Obafemi Awolowo University and the
Orthopedic Unit of Obafemi Awolowo University Teaching Hospital Complex was conducted. These experts,
with a minimum of 8 years of post-graduation experience, played a crucial role in identifying features essential
for classifying and stratifying LBP. The goal of this session was to provide insights into the dataset, understand
its relation to LBP, and assess its suitability for building a decision support model.

The dataset was structured with 12 input features, but for model processing, six features were con-
sidered, while the remaining six were automatically checked by the system. The input features, such as pelvic
incidence, lumbar lordosis angle, and spondylolisthesis degree, were discussed and clarified during the expert
session. The dataset was categorized into two classes (normal and abnormal), representing different severity
levels of LBP. The abnormal class was further subdivided into three subclasses (acute, sub-acute, and chronic).
The identified input features were utilized to construct a model using three machine learning algorithms for
classification. The labeled feature maps, detailing each feature’s names and values, were employed in this
process. Overall, the research aimed to leverage the expertise of medical professionals to enhance the dataset’s
relevance and build an effective decision support model for LBP classification.

4.2. Model implementation pipeline
Figure 1 shows the description of the system operations. For pre-processing, the dataset was trans-

formed to include indicators transformation and dimensionality reduction. The feature construction approach
was used to improve the ML algorithms’ descriptive accuracy [33]. Next, the feature selection process was
performed to reduce the dataset and number of features.

The study focused on two key events related to LBP indicators and class labels (normal, abnormal
with subclasses of acute, sub-acute, and chronic). A chi-square test was conducted to assess the relationship
between each LBP indicator and the class label, determining their independence or necessity. Indicators found
to be independent were discarded, while necessary indicators were retained. Following feature selection, the
data was split for training and testing using the SciKit library. The training dataset underwent classification
using an Ensemble of machine learning algorithms, including support vector machine (SVM), random forest
(RF), and multilayer perceptron (MLP). The classification results were evaluated for accuracy, precision, recall,
f-measure, and receiver operating characteristics (ROC) metrics, providing a validated decision support tool for
predicting the severity level of LBP. For implementing the decision support tool to determine LBP, the Python
programming language in the visual studio software coding environment was used.
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Figure 1. Description of system operation

4.3. Model formulation, simulation and evaluation processes
An ensemble of supervised ML algorithms (SVM, RF, and MLP) was used to formulate the model

for classification and implementation of the decision support tool. In particular, the stacked Ensemble that
involves training and testing on the dataset based on the classifiers was used. The simulation was carried using
the Python programming language. The decision support model was simulated using the training dataset (80%
of the dataset) on the stack ensemble method with the scikit-learn simulation tool in the python ML library.
For that, the dataset was clustered and classified to determine LBP type. The result of the classified cluster was
stored in a cluster.

Additionally, the testing set (20% of the dataset) was applied to the classification model. The model
performances were measured using accuracy, precision, recall, f-measure, and ROC. In this context, the ac-
curacy determines the complete correctness of the classifier after prediction, as shown in (1). The precision
determines the proportion of the actual class predicted negatively see (2). The recall determines the proportion
of the actual cases classified correctly or positively see (3). The f-measure determines the harmonic mean of
recall and precision for each class for which the recall and precision were calculated to validate the degree of
the test’s accuracy see (4). The ROC curve visualizes the classifier’s performance to reflect a two-dimensional
difference in the test dataset used for testing the decision support model. The two dimensions are the true
positive rate (TPR) against the true negative rate (TNR).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TN

TN + FP
(2)

Recall =
TP

TP + FN
(3)

F −measure =
2 ∗ precision ∗ recall
precision+ recall

(4)

As (1), (2), and (3) show, TP is the number of true positives in the dataset. The number of false
positives is denoted as FP, TN is the number of true negatives, and FN is the number of false negatives. Worthy
of mention, two sets of the labels are built when using precision and recall for the metrics to validate the model.
This includes the reference set containing the correct value, and the test set contains values guessed by the
classifiers. These two values are compared for each label to determine precision and recall. Overall, a confusion
matrix was used to summarize the model validation results of the classification, primarily to determine the TP,
TN, FP, and FN values.
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5. MODEL SIMULATION AND IMPLEMENTATION
We implemented a tool that facilitates the LBP DSS based on the range of motion test. Making

reference to the tool, the range of motion test was performed using the features extracted from the dataset
with the LBP DSS. The tool accepts the different observations from the features which the system extracts
automatically. The tool predicts the inputted features to determine the severity level of the LBP. The range of
motion test was carried out subsequently to determine if the LBP is normal, acute, sub-acute, or chronic using
the tool. Table 1 described in summary the range of motion test values the system extracted from the dataset for
the features that predicted normal and abnormal (acute, sub-acute, and chronic), respectively. Figures 2-5 show
the prediction results reflecting the range of motion test values entered in each field and the severity levels.
Figure 2 showed that the predicted result is normal, indicating that given the range of motion test values of the
features extracted from the data set, the patient has normal LBP. Figure 3 showed that the predicted result is
acute, indicating that given the range of motion test values of the features extracted from the data set, the patient
has acute LBP. Figure 4 showed that the predicted result is sub-acute, indicating that the patient has sub-acute
LBP given the range of motion test values of the features extracted from the data set. Figure 5 showed that the
predicted result is chronic, indicating that given the range of motion test values of the features extracted from
the data set, the patient has chronic LBP.

Table 1. Summary of range of motion test values for predicting LBP cases
Abnormal

No Features Normal Acute Sub-acute Chronic
1 Pelvic incidence (PI)/Slope 9.4251 72.4250 8.0214 8.4574
2 Pelvic tilt (PT)/Direct tilt 19.2541 53.3512 37.8332 18.2456
3 Lumbar lordosis angle (LLA)/Thorocic slope 41.6524 57.2650 79.2542 43.1245
4 Sacral slope (SS)/Cervical tilt 23.2001 56.7412 48.5763 21.2542
5 Pelvic radius (PR)/Sacrum angle 112.2010 130.2451 101.5857 111.2360
6 Spondylolisthesis (S)/Scoliosis slope 10.3654 10.2351 48.45.75 12.2154

Figure 2. Predicted result determining the severity level of LBP as normal

6. RESULTS AND DISCUSSION
The confusion matrix in Figures 6 and 7 contains information about the actual and predicted classi-

fications used to measure the model performance [34], [35]. Figure 6 shows the confusion matrix for the first
phase of the dataset used for training (80%). Figure 7 shows the confusion matrix for the second phase of
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Figure 3. Predicted result determining the severity level of LBP as acute

Figure 4. Predicted result determining the severity level of LBP as sub-acute

Figure 5. Predicted result determining the severity level of LBP as chronic

the dataset used for testing (20%). We use the confusion matrix to visualize the tasks performed in the clas-
sification [36]. As Figures 6 and 7 reflect, the row contains the predicted classes, while the column contains

Implementing decision support tool for low-back pain diagnosis ... (Ishaya Gambo)



1308 ❒ ISSN: 2502-4752

the model’s actual class. Moreover, the predicted values that are correct are labelled diagonally in each of the
confusion matrices. With that, it was easy to interpret errors in the prediction obtained from values outside the
diagonal visually [36]. Therefore, we used precision, recall, f-measure, and accuracy to evaluate the model’s
performance for the data shown in Figures 6 and 7. Figure 6 shows that 0–abnormal class and 1-normal. Out of
40 observations dedicated for evaluation, 22 for abnormal, and 18 were normal. The system predicted rightly
21 and misclassified 1 as normal. The system predicted all the 18-observations for normal. All these test sides
were not known to the system. These were separated test sets to evaluate the system.

Figure 6. Confusion matrix on the first phase of the dataset used for training (80%)

Figure 7. Confusion matrix on the second phase of the dataset used for testing (20%)

Figure 7 indicates the total of 52 test sets that were separated from the dataset. There are 3 classes
available (0-acute, 1-chronic, and 2-subacute). The system classified 19 right out of 21 observations available
for acute and misclassified 2 as chronic. 12-observations or records were available for chronic. The system
predicted 9 right and misclassified 3 as acute. Out of 19 observations available for sub-acute, the system
predicted 17 observations right and misclassified 2 as chronic. Table 2 shows the summary of the classification
results of LBP.
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Table 2. Classification results of LBP
Classes 0 1 2 Total observation
Acute 19 2 0 21

Chronic 3 9 0 12
Sub-acute 0 2 17 19

Going further, Table 3 shows the results based on the first phase of the dataset used. At the same time,
Table 4 display the result based on the second phase of the dataset used. Tables 5 and 6 show the results of
each ML algorithms (SVM, RF, and MLP) and the stacked ensemble.

Table 3. Evaluation metrics using training set
Classifier Accuracy (%) Precision (%) Recall (%) F-measure (%)

MLP 95.00 95.00 95.46 95.99
SVM 97.50 97.34 97.73 97.49
RF 97.50 97.83 97.22 97.46

Stacking 97.50 97.39 97.73 97.73

Table 4. Evaluation metrics using test set
Classifier Accuracy (%) Precision (%) Recall (%) F-measure (%)

MLP 80.77 81.51 82.60 80.49
SVM 84.62 84.09 85.78 84.70
RF 86.54 84.74 97.22 84.98

Stacking 86.54 83.09 82.21 82.21

Table 5. Differences in ensemble model evaluation over training and test phases
Metrics Phase 1 (%) Phrase 2 (%) Differences (%)

Accuracy 97.50 86.54 10.96
Precision 97.39 83.09 14.30

Recall 97.73 82.21 15.52
F-measure 97.73 82.21 15.52

Table 6. Model evaluation result
Metrics Model performance

1 Accuracy 92%
2 Precision 80%
3 Recall 90%
4 F-measure 85%

Tables Tables 3 and 4 show how sensitive the system is to precision. However, there have been dif-
ferent results with minor changes based on the random shuffling of the datasets at different program execution.
As Tables 5 and 6 reflect, RF performed relatively better than the other algorithms. For the RF, the hidden-
layer-size specified was (500x500), which implies 500 hidden units with two layers is for RF. The number of
times and the hidden layers and units specified can improve the performance of the system. Nevertheless, it is
essential that we avoid overfitting the model. The result in the stacking drop down is the performance of the
other algorithm. We used the ROC curve to visualize and inspect the performance of the algorithms. The ROC
curve compares the rate at which the classifier is making a correct prediction, “true positive” (TP) prediction
and the “false positive” (FP) prediction. Figure 8 shows that the system had a good prediction because the
system had a perfect trade-off between TPR and FPR. The prediction is approximately 1, which is above the
line. Figure 9 shows that all the classes as predicted by the stacked Ensemble were above the line. Since the
system had three classes for these data, it has three curves above the line, and the area under curve (AUC) is
shown on the right-hand side. The AUC is an aggregation metric that determines how well the system predic-
tion was made in this context. Figure 10 shows the cross-validation result, which is the other way of detecting
the performance of the dataset. Cross-validation helps the system know the model’s performance in real-time,
not just for testing and splitting data.
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Figure 8. ROC for the ensemble model on the first phase of the data

Figure 9. ROC for the ensemble model on the second phase of the data

Figure 10. Cross-validation on both phases of the dataset

Table 5 presents the data’s evaluation result for both phases and their percentage difference. Table 5
shows that the model has a higher detection accuracy of 97.5% based on the phases of data, with 84.615%
accuracy. This shows that the first phase of data has a difference of 13.885% higher than the second phase
of data. The precision metrics for the model, as shown in Table 5, indicated that the first dataset has 97.68%.
In comparison, the data has 83.946% precision in the second phase. This means that the first phase of the
data has a difference of 13.422%. The recall evaluation metrics showed that the first phase of the data had a
higher recall of 97.727% than the second phase of data with 83.229%. This means that the first phase of the
data has a difference of 14.043%. F-measure showed that the first phase of the data had a higher F-measure of
97.727% compared to the second phase of data with 83.229%. This means that the first phase of the data had
a difference of 14.043%. The developed model accumulated an accuracy of 92.03%; for precision, the model
has a precision of 80%. The recall evaluation metrics showed that the model has a recall of 90.94%, and for
F-measure, the model has a rate of 85%. Table 6 shows detail of the ensemble model performance.
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As Table 5 shows, the differences in terms of the evaluation metrics between both phases of the data
are relatively low. This means that the model is good enough for prediction and classification purposes. In
particular, with an accuracy difference of 10.96%, the experts accept that the results were good enough, as
there is no perfect system. Also, the experts showed much confidence and trust in using the tool, especially for
training and educational purposes in the laboratories, to show how the severity level of LBP can be determined.
SVM and RF produce the same accuracy of 91.01%, respectively. Likewise, the ensemble model outperformed
SVM, MLP, and RF with 92.02% accuracy, as seen in Table 7. The stacked ensemble model achieved 92.02%
accuracy. Consequently, it means the model can correctly predict and determine the severity level of LBP based
on the range of motion test performed.

Table 7. Overall accuracy for machine learning models
Model Accuracy

1 Accuracy 87.89%
2 Precision 91.01%
3 Recall 91.01%
4 F-Measure 92.02%

7. THREATS TO VALIDITY
The validity of the study faces two main threats: internal and external. Internally, the risk lies in col-

lecting, analyzing, and understanding the dataset and its features. This was addressed by involving experienced
Orthopedic consultants and specialist physiotherapists in LBP during the study, ensuring a comprehensive un-
derstanding and guidance on the necessary features for LBP classification. Additionally, the internal validity
threat related to result acceptance and confidence was mitigated by demonstrating the implemented tool to the
experts, showcasing the technological and scientific processes involved. External validity, the second threat,
underscores the need for validation with real-life datasets in the problem domain and adherence to software
design principles for future LBP prediction and classification systems, as emphasized in [37], [38].

8. CONCLUSION
This interdisciplinary study integrates health research with computer science to develop a ML-based

DSS for classifying LBP types. The primary goal is to improve the precision, efficiency, and reliability of LBP
diagnoses and treatments by identifying key features governing LBP types. The study reviews existing literature
on ML-based DSS for LBP, emphasizing their efficacy in detection and categorization. Addressing gaps in prior
research, the study conducts feature analysis to extract crucial features for LBP categorization. Utilizing a
modified Delphi approach with experts from Obafemi Awolowo University, datasets are analyzed. ML models,
particularly an ensemble model, demonstrate superior performance based on accuracy, precision, recall, and
F-measure metrics. The developed DSS proves promising for real-world applications, guiding patient treatment
and classifying LBP into normal, acute, subacute, or chronic categories, contributing to the evolving field of ML
in healthcare. For future work, we recommend the following. Increasing the model parameters and the number
of datasets with more features can enhance the model’s performance. However, this will cause getting data from
more sources and increase processing capacity. Increasing the model’s parameter set would indicate a longer
time of model training with additional information, ultimately enhancing model performance. We investigate
how mutual knowledge can code the relationship between input and output variables. As a result, employing a
probabilistic graphical model architecture, such as a Bayesian network to estimate the probability distribution
between the input and target variables will assist researchers in identifying the direct influence of each input
variable on the target variable. Extend the LBP DSS predictions to include health-related implications of an
LBP type. By so doing, more information is offered to the physician, allowing them to deliver more competent
advice to patients.
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