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 Over last years, great attention has been developed to avoid the machines 

breakdown especially in the squirrel cage induction motor which suffer from 

different failures. The aim of this paper is to present a new method for the 

diagnosis of rotor bar breakage and end ring in induction machine fed by an 

inverter based on discrete wavelet transform applied on the voltage of an 

auxiliary winding as a new monitoring signature. The expression of the 

auxiliary winding voltage related to a small coil inserted between two stator 

phases is presented. The study is focused on the high-level signals of 

approximation and details coefficients. Thus, the evolution of any frequency 

of interest in the waveform is given in this paper. The method is validated by 

simulations of four broken bars and end ring cases under unloaded and 

loaded machine. 
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1. INTRODUCTION 

The squirrel cage induction machine is widely used in industrial applications, it represents more 

than 70% of the electrical machines due to its reliability and its low maintenance costs. However, this kind of 

machine is often subject to several constrains during its operation and it may suffer serious damage leading to 

its deterioration and fail. The production shutdowns are costly in terms of time lost, maintenance costs and 

can cause damage to other devises. Improving the electromechanical systems operation have attracted several 

researchers in order to avoid downtime of the machines and guarantee its overall performance. For that 

reason, the preventive maintenance is important. It is based on online monitoring and diagnosis of real-time 

signals. Multiple methods are used to investigate diagnosis process according to various faults occurring in 

the machine such as bearing faults, eccentricity, broken rotor bars and stator winding inter turn faults [1]. 

Condition monitoring and faults diagnostics using signal analysis are the most powerful methods to detect the 

machine failures at the initial stage without affecting the signal contain [2], [3]. The most classical one is the 

fast fourier transform (FFT) that is widely used for the detection of broken rotor bars in induction machine by 

transforming the signal from time domain to frequency domain. This approach gives satisfactory results if the 

signal monitored is stationary and the machine operates under steady state mode. However, the frequencies 

related to the presence of broken rotor bar fault can be detected by other causes such as bearing faults and 

voltage fluctuations [4]. Furthermore, the stationarity of the signal changes according to the stresses and the 
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environment that the machine is exposed to. In this case, the FFT cannot extract the inherent information of 

the non-stationary signals, the fundamental frequency can mask the small characteristic frequencies produced 

by broken bar faults making them undistinguishable. The time frequency analysis is required to overcome the 

FFT disadvantages such as the short-time fourier transform (STFT) [5] which performs temporal location of 

different frequency components of the signal. The resolution of this method uses a constant window size for 

all frequencies. To adjust the time widths to the frequency the wavelet transform (WT) is used [6]-[8].  

A comparative study conducted by Kim et al. proves its effectiveness [9]. Thus, the transient component will 

be localized to extract the components associated to the failure evolution. The wavelet which is a small wave, 

has time-widths that automatically change with their frequencies. It provides simultaneously time and 

frequency information. The WT is a powerful diagnostic technique in power applications. Many research 

papers have been published in this field [10]-[16]. It uses multi-resolution technique depending on the 

different frequencies given by the signal that means for high frequencies, the wavelet uses a low time 

resolution whereas a high time resolution is reached for low frequencies. In general, the wavelet transform 

can be categorized in two forms: continuous wavelet transform (CWT) and discrete wavelet transform 

(DWT) used to extract the fast transition characterizing the failures of the signal after decomposition.  

In fact, in a wide range of industrial application, induction motors are used with variable speed. For 

this reason, the present article establishes the detection of broken rotor bars and end rings of a squirrel cage 

induction motor fed by an inverter [17]. Due to the inaccessibility of direct measurements of rotor parameters 

in asynchronous motors, a new methodology for online fault detection is presented. It is based on monitoring 

a novel signal related to an auxiliary winding inserted inside the machine. It’s a small coil between two stator 

phases. The novelty of this article is to diagnose and monitor the auxiliary winding voltage through the 

analysis of discrete wavelet transform coefficients with a high-order mother wavelet. 

 

 

2. DISCRET WAVELET TRANSFOM  

The discrete wavelet transform is one of the most powerful diagnosis techniques for analyzing time 

frequency representation of a signal by decomposing it in a set of sub-signals [18]-[20]. It is suitable for 

highlight the change occurs in the signal in early stage. This technique uses a multi-resolution in order to 

analyze the signal through different frequency band. According to Mallat algorithm [18], [21], each signal is 

associated with certain frequency band. The DWT leads to a signal decomposition into multiple small wave 

signals. The number of this decomposition is called levels (n). The decomposition is implemented using two 

filters: a low pass filter, denoted as h(k), containing low frequency component of the signal that determine 

approximation coefficient 𝑎𝑗; and a high pass filter denoted as g(k) containing high frequency component that 

identifies the detail coefficient 𝑑𝑗. The sum of approximation coefficients and detail can reconstruct and 

approximate the signal as shown in (1).  

 

𝑠(𝑡) = ∑ 𝛼𝑖
𝑛𝜙𝑖

𝑛(𝑡) + ∑ ∑ 𝛽𝑖
𝑗
𝜓𝑖

𝑗
(𝑡)𝑖

𝑛
𝑗=1𝑖 = 𝑎𝑛 + 𝑑𝑛 + ⋯ + 𝑑1 (1) 

 

Where n is the decomposition level, 𝛼𝑖
𝑛 is the scaling coefficients and 𝛽𝑖

𝑗
 is the wavelet coefficients, 

𝜙𝑖
𝑛(𝑡), 𝜓𝑖

𝑗
(𝑡) are the scaling function at level n and wavelet function at level j respectively [22].  

The frequency bands related to the detail coefficient 𝑑𝑗 and approximation coefficient 𝑎𝑗 are expressed as (2) 

and (3). 

 

𝑓𝑑𝑗 ∈  [(
𝑓𝑠

2(𝑗+1)) , (
𝑓𝑠

2𝑗)] (2) 

 

𝑓𝑎𝑗 ∈ [0, (
𝑓𝑠

2(𝑗+1))] (3) 

 

For the application of the discrete wavelet transform the selection of the mother wavelet and the 

determination of the number of decomposition levels are important [23]. Recently, several mother wavelets 

families exist with different proprieties categorized in two kinds of wavelet. The first one is the wavelet with 

infinite support such as Morlet, Gaussian, Meyer, Haar, and Mexican Hat. The second one is the compact 

supported wavelet which is divided into biorthogonal wavelet and orthogonal wavelet such as Daubechies or 

Coiflet. For this kind, a high-order mother wavelet is recommended for the extraction of the small 

frequencies and the reconstruction of the signal without losing information. The mother wavelet function 

generated by a translation (a) and a scale parameter (b) is defined as (4). 
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𝜓(𝑎,𝑏)(𝑡) =  
1

√𝑏
𝜓 (

𝑡−𝑎

𝑏
) (4) 

 

For the feature extraction, the used dyadic scales is discretized as a= 2𝑗 where j denotes the level and b=2. 

After that, the scalar product of this mother wavelet and a function f(t), gives the expression of the discrete 

wavelet function as (5). 

 

𝑑𝑤𝑡(𝑎, 𝑏) = 〈𝑓, 𝜓(𝑎,𝑏)〉 = ∑ 𝑓(𝑡𝑚) 
1

√𝑏
𝜓 (

𝑡𝑚−𝑎

𝑏
) 𝑑𝑡

𝑞
𝑚=0  (5) 

 

The filters used in the DWT are constructed from the selected mother wavelet (t) and the scaling function ϕ(t) 

as (6). 

 

{
ψ(t) = √2 ∑ 𝑔(𝑘)𝜙(2𝑡 − 𝑘)𝑘

𝜙(𝑡) = √2 ∑ ℎ(𝑘)𝜙(2𝑡 − 𝑘)𝑘

 (6) 

 

With ∑ 𝑔(𝑘) = 0𝑘  and ∑ ℎ(𝑘) =𝑘 √2. Therefore, the approximation and the detail coefficients corresponding 

to the low and high frequency components respectively are presented as (7). 

 

{
𝑎𝑗,𝑘 = ∑ ℎ(2𝑘 − 𝑚)𝑎𝑗−1,𝑘𝑚

𝑑𝑗,𝑘 =  ∑ 𝑔(2𝑘 − 𝑚)𝑚 𝑑𝑗−1,𝑘
 (7) 

 

For the best failures extraction, the number of decomposition levels depends on the sampling frequency. It 

can be determined by the follow (8). 

 

𝑛 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 [ 
log (

𝑓𝑠
𝑓⁄ )

log (2)
 ] (8) 

 

In this paper, Debauchies mother wavelet has been used for the DWT analysis in order to avoid 

overlapping between adjacent wavelet signals. The higher order Debauchies (dbN) gives an ideal failures 

extraction by using high number of filters, for db40, the filter length corresponding is 𝐿𝑑𝑏40 = 2N = 80. The 

fundamental frequency is 𝑓𝑠 = 50 𝐻𝑧, the sampling frequency is 𝑓𝑠 = 10,000 samples/s, the application of 

(6) leads to 𝑛 = 7. According to (2) and (3) the frequency bands associated to each level is presented in 

Table 1. When the number of decomposition levels increase, the frequency bands of DWT correspondent 

decrease. The detail 𝑑1 includes the high frequency component of the signal and the low frequencies includes 

in 𝑎7.  

 

 

Table 1. Frequency bands for the Wavelet signals 
Levels  Approximation signals 𝑎𝑗 (Hz) Detail signals 𝑑𝑗 (Hz) 

j=1 𝑎1 0-2500 𝑑1 2500-5000 

j=2 𝑎2 0-1250 𝑑2 1250-2500 

j=3 𝑎3 0-625  𝑑3 625-1250 

j=4 𝑎4 0-312.5 𝑑4 312.5-625 

j=5 𝑎5 0-156.25 𝑑5 156.25-312.5 

j=6 𝑎6 0-78.125 𝑑6 78.125-156.25 

j=7 𝑎7 0-39.0625 𝑑7 39.0625-78.125 

 

 

3. AUXILIARY WINDING VOLTAGE  

The aim of the proposed method consists of inserting a small coil as a “sneak” between two stator 

phases. The technic is built considering the auxiliary winding that forms an angle 𝜃0with the A stator phase 

as shown in Figure 1. Therefore, the inserted coil has no conductive contact with the other phases. It is 

coupled mutually with all the motor circuits in the stator and the rotor. The determination of the auxiliary 

winding voltage is the main key of this approach. Monitoring this signal is extremely beneficial to achieve an 

efficient diagnosis of the squirrel cage induction machine [24], [25]. This technic was applied previously for 

a wound rotor induction machine [26], [27]. The mathematical model of the squirrel cage induction machine 

fed by an inverter is presented in [17]. 
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Figure 1. Auxiliary winding emplacement inside the squirrel cage induction motor 

 

 

The mathematical model of this method is presented in this section. As known, the voltage is a 

derivation of the flux. Therefore, the auxiliary winding voltage is expressed as (9). 

Vaux =
d φaux

dt
 (9) 

 

From the current vector I= [ Isa ,  Isb ,  Isc, Ir1, … , Ir𝑖 , … . Ir𝑛 ] obtained from the squirrel cage induction 

machine fed by an inverter, the auxiliary winding flux is defined as (10).  

 

𝜑𝑎𝑢𝑥 = 𝑎 Isa + 𝑏 Isb + 𝑐 Isc + ∑ 𝑑𝑗
Nr
𝑖=1 Ir𝑖 (10) 

 

The coefficients a, b, c and dj depend on the angle θ0, as shown in [13], 

𝑎 =  Msaux  cos( 𝜃0), 𝑏 = Msaux  cos (
2𝜋

3
− 𝜃0), 𝑐 = Msaux  cos (

4𝜋

3
− 𝜃0), 𝑑𝑗 =  Mraux cos (𝜃 +

𝑗𝜋

3
) , 

 𝑗 = 0,2,4 ….  
 

Msaux , Mraux  are the mutuel inductances of the inserted coil with the stator phases and the rotor bars 

respectively. In order to form a three-phase system with the auxiliary winding, we consider two other fictive 

coils. Their shift phase angles are 120⸰. The expressions of the voltage in these fictive coils are (11). 

 

Vauxa =
d φauxa

dt
 , Vauxb =

d φauxb

dt
 , Vauxc =

d φauxc

dt
 (11) 

 

After testing different value of 𝜃0, this angle does not affect the simulation results. Therefore, we choose 

𝜃0=0. Thus, the auxiliary winding flux of the phase A is represented as (12) and (13). 

 

φauxa = φsa + φsb + φsc + ∑ φri
Nr
𝑖=1  (12) 

 

φauxa = Msaux Isa –
Msaux 

2
 Isb –

Msaux 

2
 Isc + ∑ Mraux cos (𝜃 +

𝑗𝜋

3
)Nr

𝑖=1  Iri , j = 0, 2, 4 … (13) 

 

 

4. SIMULATION RESULT AND DISCUSSIONS 

In this section, the proposed method is applied to diagnose a 450W squirrel cage induction machine 

fed by an inverter under several faults and operation conditions. The simulation is carried out by MATLAB 

wavelet toolbox for performing DWT of the auxiliary winding voltage signal with seven levels corresponding 

to different frequency bands as shown in table 1; whereas Daubechies-40 was selected as the mother wavelet. 

The performance of the proposed method for fault detection is tested in different rotor bar breakages cases 

and under load levels. The characteristic of the simulated motor is presented in Table 2.  

The motor fed by an inverter has been tested under five cases with 2 load conditions: healthy state, 

the presence of a broken bar, two broken bars, five broken bars and two broken bars with one broken end 

ring. The supply frequency f is included in details 𝑑7. The frequencies below f are included in the 
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approximation of the level 7 𝑎7.The higher-level signals associated to the frequency bands below the supply 

frequency, are discussed in this section. The results show the advantage of the time-frequency representation 

of the signal. The oscillations occur in different frequency bands at the same time as shown in Figure 2. 

Figure 2(a) and Figure(b) present the sampled auxiliary winding voltage signal (s at the top) and the signals 

resulting from the DWT for the healthy state in the case of an unloaded machine and in the case of a motor 

with Cr=3Nm. The detail 𝑑6 reproduces the analyzed auxiliary winding voltage. The signals 𝑎7, 𝑑7 and 𝑑6 do 

not present any variation. The non-defected machine case is considered as a reference for this study to which 

the faulty cases will be compared.  

 

 

Table 2. Motor Specifications 
Symbol quantity Value 

V Power supply voltage 220/380 V 

f Frequency 50 Hz 

p Number of poles pairs 1 

Nr Number of rotor bars 27 

Ns Number of stator slots 193 

Rs Resistance of stator winding 4.1 Ω 

Rb Resistance of a rotor bar 74 μΩ 

Re Resistance of the rotor end ring 74 μΩ 

Lb Leakage inductance of rotor bars 0.33 μH 

Le Leakage inductance of rotor end rings 0.33 μH 

J Moment of inertia 4.5 10−3 Nm𝑠2 

 

 

 
(a) 

 

 
(b) 

 

Figure 2. Wavelet analyses of auxiliary winding voltage for healthy state in case of (a) unloaded machine and 

(b) Cr=3 Nm 
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For the breakage of one rotor bar presented in Figure 3, in the case of an unloaded machine, in 

Figure 3(a) a small variation appears at t=1.97s. The oscillation amplitude in the approximation signal 𝑎7 is 

4.46 V. In the details 𝑑7, it corresponds to 25.33 V. When the load increases to Cr=3 Nm as shown in  

Figure 3(b), the oscillation amplitude increases to 25.27 V and to 151V for the approximation 𝑎7 and the 

detail 𝑑7 respectively. 

 

 

 
(a) 

 

 
(b) 

 

Figure 3. Wavelet analyses of auxiliary winding voltage for one broken bar in case of (a) unloaded machine 

and (b) Cr=3 Nm 

 

 

Figure 4 present the case of two broken bars, in Figure 4(a) more oscillations appear in the 

approximation signal 𝑎7. The first one occurs at t=1.97 s with an amplitude of 4.445 V. The other one occurs 

at t=2.573 s with an amplitude of 6.581 V. The details signal 𝑑7 shows two oscillations at t=1.97 s 

corresponding to an amplitude of 25.33 V and a large oscillation at t=2.564 s with an amplitude of 74.79 V. 

When the load level reaches Cr=3 Nm, as shown in Figure 4(b), for the approximation signal 𝑎7, the 
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oscillations amplitudes increase to 23.93 V and 27.22 V at the same time as the previous case. The details 

signal 𝑑7 reaches 152.4 V and 172.5V respectively at t=1.97 s and t=2.564 s. 

 

 

 
(a) 

 

 
(b) 

 

Figure 4. Wavelet analyses of auxiliary winding voltage for two broken bars in case of (a) unloaded machine 

and (b) Cr=3 Nm 
 

 

 

Multiple oscillations with different width shown in Figure 5 are produced by five broken bars. In the 

case of an unloaded machine in Figure 5(a), the oscillations appear at 𝑎7 from t=1.54 s with an amplitude of 

4.451 V until t=3.5 s that corresponds to the amplitude of 47.96 V. The detail 𝑑7 presents the same variation 

and has different amplitudes and width starting from t=1.558 s with 21.76 V until t=3.55 s corresponding to 

an amplitude of 121.6 V. At t=2.96 s, an oscillation amplitude attends 136.8 V. In the case of Cr=3 Nm 

presented in Figure 5(b), a clear perturbation appears with the evolution of 𝑎7 over the time. From t=1.572 s 

to t=3.559 s, the oscillations present an amplitude of 29.31 V and 27.8 V respectively. The maximum 

amplitude reaches 61.02 V at t=2.96 s. Moreover, 𝑑7 shows the largest variation at t=3.1 s with an amplitude 
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of 421.5 V. Other one starts from t=1.57 s to t=3.536 s. Their amplitudes are 127.7 V and 190.8 V 

respectively. 

 

 

 
(a) 

 

 
(b) 

 

Figure 5. Wavelet analyses of auxiliary winding voltage for five broken bars in case of (a) unloaded machine 

and (b) Cr=3 Nm 

 

 

The breakage of two adjacent bars causes the breakage of an end ring. In this case, Figure 6 shows 

the variation that occurs in the auxiliary winding voltage within the approximation and the details signals. 

For an unloaded machine in Figure 6(a), three oscillations in 𝑎7 with different width and amplitude as  

4.445 V, 6.581 V and 6.142 V appear at t=1.943 s, t=2.573 s and t=2.93 s respectively. The oscillations 

presented in the detail 𝑑7 occur at t=1.955 s with an amplitude of 23.84 V until t=2.961 s that corresponds to 

an amplitude of 74.56 V. For Cr=3 Nm Figure 6(b), the oscillations amplitude increase. The signal 𝑎7 present 

three oscillations with an amplitude around 25 V. The signal 𝑑7shows larger oscillations with an amplitude 

that reaches 162 V at t=2.186 s. 
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(a) 

 

 
(b) 

 

Figure 6. Wavelet analyses of auxiliary winding voltage for two broken bars with one broken end ring in case 

of (a) unloaded machine and (b) Cr=3 Nm 

 

 

5. CONCLUSION 

This paper has introduced a new method to diagnose rotor broken bar and end rings fault in 

induction motor fed by an inverter. The method is based on the application of discrete wavelet transform to 

the auxiliary winding voltage of an inserted coil between two phases in the machine stator side. The method 

is tested on MATLAB software under different faulty conditions. The simulation results show the 

effectiveness of this approach to provide a time-frequency localization and prove the ability of the proposed 

signal for the failures extraction even in the case of an unloaded condition.  
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