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 Today’s hardware platforms have parallel processing capabilities and many 

parallel programming models have been developed. It is necessary to 

research an efficient implementation of compute-intensive applications using 

available platforms. Dense matrix-matrix multiplication is an important 

kernel that is used in many applications, while it is computationally 

intensive, especially for large matrix sizes. To improve the performance of this 

kernel, we implement it on the graphics processing unit (GPU) platform using 

the tiling technique with different tile sizes. Our experimental results show the 

tiling approach improves speed by 56.89% (2.32× faster) against 

straightforward (STF). And tile size of 32 has the highest speed compared to 

other tile sizes of 8 and 16. 
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1. INTRODUCTION  

Processor vendors have been developing single instruction multiple data (SIMD) extinctions to 

improve the performance of multimedia applications. SIMD was developed as a data level parallelism (DLP) 

solution in parallelism. For example, Intel has introduced MMX, SSE, and AVX/AVX2 since 1996. In the 

beginning, SIMD registers were 64-bit and each new extinction doubled it to 128, 256-bit. So, in SIMD 

technology AVX and AVX2 could provide at least 256-bit registers. On the other hand, inline-assembly, 

intrinsic functions, and auto-vectorization also known as vector class has been applied for SIMD 

programming [1], [2]. 

Dense matrix-matrix multiplication (DMMM) is an important kernel that is used in many applications 

such as weka data mining and network analysis [3]-[5]. This kernel is computationally intensive, for example 

for a matrix size of 8000 with floating-point numbers, it approximately takes 789 seconds as can be seen in 

Figure 1. Many researchers have worked on the high-performance implementation of MMM [4], [6], [7]. Some 

cases have been performed on CPU platforms [8], [9], while other implementations have been performed on 

graphics processing unit (GPU) platforms. There are some software optimization techniques in both CPU and 

GPU implementation such as instruction-level parallelism (ILP), data-level parallelism (DLP), and thread level 

parallelism (TLP) [8]. In addition, the tiling technique has already been used, while due to hardware limitations 

tiling sizes up to 16 have been applied [10]. To evaluate the effect of different tile sizes on the performance, we 

have applied tile sizes of 8, 16, and 32 on the GPU Kepler architecture. Our experimental results show that the 

tile size of 32 has the highest speedup compare to the other tile sizes. The paper is organized as follows. We 

discuss related works in section 2. In section 3 the DMMM is represented using different techniques such as 

https://creativecommons.org/licenses/by-sa/4.0/


Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Matrix-matrix multiplication on graphics processing unit platform … (Rahman Ghasempour Balagafshe) 

1013 

tiling and shared memory. Section 4 illustrates our methodology, the selected benchmarks, and the test-bed 

machine in detail. Finally, conclusions are presented in section 5. 

 

 

 
 

Figure 1. Execution time of dense matrix-matrix multiplication KERNEL on CPU platform,  

Intel Core i3, 2.0 GHz 

 

 

2. RELATED WORK 

Matrix-matrix multiplication or in brief MMM is a binary operation that multiplies an entire row of 

matrix A into an entire column of matrix B to produce each element of matrix C. There are different ways to 

implement this kernel such as basic mapping, matrix transposition, loop interchange and blocking, see Figure 2. 

In a basic implementation, shown in Figure 2(a), the cost of fetching matrix B column has a bad great impact on 

overall performance. While for the transposed method that we can see in Figure 2(b), the only extra cost is 

transposing Matrix B. However, in loop interchange and blocking the data reuses gain much better performance 

compared to basic and transposed methods which are shown in Figure 2(c) and Figure 2(d) respectively. MMM 

speedup has been the major goal of many studies [8], [11]-[15] and is still ongoing today. BLAS [13], [16] is a 

basic linear algebra subprogram (BLAS) that provides a standard blocking method for matrix multiplication. It 

has been widely used in many libraries, like ATLAS, and NVIDIA cuBLAS [8]. 
 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 

Figure 2. Mapping matrix-matrix multiplication for (a) basic, (b) loop interchange, (c) transposed, and  

(d) blocking techniques 
 

 

Zachariadis et al. [17] proposed a GPU-based framework for sparse general MMM (spGEMM) 

computation. Their methodology groups elements into tiles and uses the fast MM of tensor core units (TCUs) 

to multiply the tiles. Srivastava et al. [18] introduce C2SR, as a new architecture that allows different parallel 

processing engines (PEs) to access the data in a vectorized and streaming manner leading to high utilization 

of the available memory bandwidth. Their SpGEMM accelerator (MatRaptor), efficiently implements the 

row-wise product approach and fully exploits the C2SR format to achieve better performance. Park et al. [19] 

proposed an approach to improve and adjust the parallel double-precision general matrix-matrix 

multiplication routine for new intel cores such as Knights landing and xeon scalable processors. The authors 
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proposed that performance improvements are achieved in the case of smaller matrix multiplications on the 

SKL clusters. Masliah et al. [20] proposed a method to compute many small general dense matrix-matrix 

multiplication and its performance portability for a wide range of computer architectures. The dense matrix-

matrix multiplication (DMMM) has been implemented on different platforms using different techniques, 

some of these are depicted in Table 1. The ILP and TLP and a combination of these techniques have been 

used [10], [21]. The SIMD technique, OpenCL, and sub-blocks have been applied for DMMM 

implementation [8], [9], [22]-[24]. 
 

 

Table 1. Different platforms and techniques have been used for dense matrix-matrix multiplication kernels, 

the T refers to Tiling, and T&U refers to tiling and unroll 

 [8] [21] [22] [10] [4] [9] 

GPU Platform 

GeForce 

GTX 

580 

GeForce 8800 

GTX & 

Tesla C870 

GeForce 
GTX 280 

GeForce 8800 
GTX 

GeForce 
8800GTX & 

8800GTS & 

8600GTS & 
Quadro FX5600 

Tesla 
C1060 

CUDA Cores 512 

128 

& 
128 

240 128 
128 & 96 & 32 

&128 
240 

Single precision 

Theatrical peak 
performance 

(GFlops) 

1581.06 

345.6 

& 

345.6 

622.08 345.6 

345.6 & 

230.04 & 

92.8 & 345.6 

624 

Memory bandwidth 

(GB/s) 
192.4 

86.4 
& 

76.8 

141.7 86.4 
86.4 & 63.36 & 

32 & 76.8 
102.4 

M

e

t
h

o

d 

Tiling Yes Yes --- Yes Yes yes 
Tile and unroll --- Yes --- Yes  Yes 

Rectangular 

Blocking 
--- --- yes --- Yes Yes 

Square 

Blocking 
Yes Yes --- Yes --- Yes 

Maximum matrix 

size 
8192 4096 8192 4096 11264 16384 

Maximum GFlops not mentioned 43 393 
46(T) - 

91(T&U) 
206 383 

 

 

3. PROPOSED APPROACH 

Considering we have two square matrices size of N×N (called matrix A and matrix B) the 

multiplication result is going to be stored in the same size matrix C. Also, each element of matrix C would be an 

inner product of an entire row A and an entire column B. As shown in Figure 3, in the straightforward matrix-

matrix multiplication form, the code consists of three nested loops iterating over the 3 dimensions i, j, and k. 
 
 

 

 

Figure 3. DMMM basic code 

 

 

3.1.  Step 1 

Straight-forward mapping DMMM on CUDA needs each thread to produce one element of matrix C 

by producing an entire row of matrix A into an entire column of matrix B. We will transmit the number of 

grid and block needed to process, and also manually change block dimensions size (number of threads in a 

block) and grid dimensions size (number of blocks in a grid) [5] to assign one element to each matrix C 

element. For example, for a matrix size of 2048×2048 if we chose a block size of 64 threads (setting block 

dimension to 8×8, we will need 65536 blocks for a total coverage of matrix C elements. 

for (i=0; i<N; i++) 

for (j=0; j<N; j++) 

      C[i] [j] =0; 

for (k=0; k<N; k++) 

C[i] [j] =C[i] [j] +A[i] [k] × B[j] 

[k]; 
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3.2.  Step 2 

Tiling is a method for improving DMMM, also it has been used by many researchers as mentioned 

in Table 1, in tiling we divide big matrices into sub-matrices, considering their sizes are m×m and multiply 

an entire row of A sub-matrices as a with an entire column of B sub-matrices as b to produce an entire sub-

matrix of C as mentioned in (1), see Figure 4 for more details. 
 

𝑐(0,0) = 𝑎(0,0) × 𝑏(0,0) + 𝑎(0,1) × 𝑏(1,0)+. . . . . . . . . . +𝑎 (0 ,
𝑁

𝑚
− 1) × 𝑏 (

𝑁

𝑚
− 1 , 0) + 𝑎 (0 ,

𝑁

𝑚
) × 𝑏 (

𝑁

𝑚 
, 0) (1) 

 

 

 
 

Figure 4. DMMM using tile methodology 
 

 

Each C sub-matrix will be the sum of the product of all a and b sub-matrices, the number of middle 

sum (sum of sub-matrices) is directly connected with m (tile dimension) as it gets bigger middle sum 

decreases by a factor of ((N/m) − 1) ×(N/m). Tiling in DMMM creates 2 more inner loops which compute a 

product of a sub-matrix of A and a sub-matrix of B and replace the old result of matrix C with a new one after 

updating. Avoiding divergence and avoiding Bank Conflicts by coalescing memory access is another positive 

aspect of tiling [25]. Conceptually in straight forward DMMM threads can execute concurrently or 

independently, and in no particular order, to avoid this mess we will use __syncthreads() to make sure any 

thread would complete its job before starting another one. In the tiled kernel, we will use shared memory to 

increase reusability and reduce the traffic to global memory. Every thread in a tile will load m elements of 

each row of matrix A and m elements of each column of matrix B into the shared memory. These elements 

are used in the calculation of the dot product, each element will be used m times (for a tile size of m×m) 

therefore the number of global memory access will be divided per m see Figure 5. 
 

 

 
 

Figure 5. Tiling and shared memory kernel 
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Moreover, in CUDA each multiprocessor runs in a SIMD manner. In each clock cycle, all stream 

processors of a multiprocessor execute the same instruction while operating on different data. Besides this, 

threads in a block are grouped by Warps and the executions of warps are implemented by SIMD hardware [5].  

 

 

4. RESULTS AND DISCUSSION 

To compare the performance of different tile size effects, we will fill our two matrices with random 

floating-point numbers from files we have created before. This is done on the CPU side of our application. 

After that, two matrices will be passed to devise memory to run the kernel function and measure it in detail. 

We will use speed up and floating-point operation per seconds (FLOPS) as well as Achieved IOPS, Pipeline 

utilization, Branch statistics and memory statistics. 

 

4.1.  Selected benchmark 

We selected Nvidia Nsight visual studio edition [26]. For CUDA version 3.5. It provides a variety 

type of benchmarking for CUDA kernels. 

 

4.2.  Experimental test-bed 

We accelerate the computation of matrix multiplication with one platform, consisting of two parts 

host (CPU) and device (GPU). You can see the detail in Table 2. As mentioned before, we are going to 

discuss tile size impacts on DMMM and also the percentage of load/store, number of integer operation, and 

global memory request (GMR) in kernel launches for different tile sizes. In Figure 6 kernel speedup over 

sequential DMMM size of 4096×4096 has been shown, for tile size of 16×16 speed up increment compared 

to tile size of 8×8 is admissible but for tile size of 32×32 speed up is not what is accepted for it. Due to 

Nvidia Nsight, there are some differences in the number of integer additions, global memory request, 

achieved occupancy, and some other factors. 

 

 

Table 2. GPU specifications 
 GeForce 920M (Kepler (cc 3.5) 

Load/Store unit 32 

Arithmetic 
FP32 unit 192 
SFU unit 32 

GPU Memory Size 1024MB 

Bus Width 64 bit 
Bandwidth 14.4 Gb/s 

GPU Clock 954 MHz 

Memory Clock 900MHz 
Streaming Multiprocessors (SMs) 2 

Max Thread per SM 2048 

Max active Block per SM 16 
Max active Warp per SM 64 

 

 

 
 

Figure 6. Speedup of the straightforward (STF) and tiling over serial 

 

 

As a result, in Table 3 you can see the influence factors on the final result of DMMM for matrix size 

of 4096×4096 in different tile sizes. In a straightforward (STF) kernel we have 3 integer multiplications, 3 

additions, one floating-point addition, and one multiplication, they are the arithmetic operations needed for 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Matrix-matrix multiplication on graphics processing unit platform … (Rahman Ghasempour Balagafshe) 

1017 

each multiplication of one element of matrix A and one element of matrix B, plus storing the result in matrix 

C. These operations need one load and one store for each C element separately. Respectively increasing tile 

number will decrease total Integer ADD operation, the “sum of all executed integer additions (IADD)” 

needed in kernel launch see Table 3, the total number of ADD operations for tile size of 8×8 in our code is 

5.3 times, in 16×16, 10.6 times and in 32×32 is 21.2 times lower than STF. In conclusion, by using a larger 

tile the ADD instructions would decrease dramatically, while MADD which stands for the sum of all 

executed integer multiply-add (IMAD) instructions and SHIFTs meaning the sum of all executed shift 

instructions, covering shift-right (SHR), shift-left (SHL), and funnel-shift (SHF) operations are fixed. Despite 

this our 32×32 tile size didn’t achieve the expected GFLOPS, The reason for this low efficiency is the 

arithmetic and load/store increments than other tile sizes [26].  

 

 

Table 3. Pipeline utilization for DMMM size of “4096×4096” 
 STF 8×8 16×16 32×32 

Load/Store 100% 100% 69.36% 73.57% 

Arithmetic 87.72% 31.85% 10.39% 11.64% 

Control flow 22.88% 23.13% 4.36% 2.74% 

Int. operation ADD 137,455,730,688 25,803,358,208 12,918,456,320 6,476,005,376 
Shared memory request NO 3,221,225,000 2,952,792,000 2,818,572,000 

GMR 4,295,492,000 537,395,200 268,959,700 137,742,000 
Achieved Active warps per SM 1.72 2.32 2.48 0.89 

Theatrical Active warps per SM 64 32 64 64 

Achieved Occupancy 2.69% 3.62% 3.88% 1.39% 
Reg per thread 14 25 25 25 

Static shared memory per block NO 512 bytes 2048 byte 8192 bytes 

Kernel time 5.9524sec 5.6916sec 3.1018sec 2.5658sec 

 

 

Figure 7 depicts floating-point operation per second for DMMM with the size of “4096×4096”. 

Maybe the greatest effect of tiling using shared memory methodology is its reduction in global memory 

access, as mentioned in the sections above a tile size of m×m can respectively decrease global memory 

access by a factor of m. But due to tile size limitations, the best output will have 32 times less global memory 

access request (GMR). According to the results obtained in Table 3, tile sizes of 8×8, 16×16, and 32×32 in 

sequence reduce GMR by 7.9, 15.9, and 31.1 times compared to the STF version. GMR is a bottleneck [5] 

for CUDA applications and reducing it directly improves total performance. Overall loop tiling is performed 

to maximize reusability and minimize the number of loads and stores. In 32×32 increases slightly which 

causes the decrease in performance. 

 

 

 
 

Figure 7. Floating-point operation per second for DMMM size of “4096×4096” 

 

 

5. CONCLUSION 

The dense matrix-matrix multiplication is the main kernel in many applications and there are 

different kinds of implementations on the CPU and GPU platforms. We have used the tiling technique to 

improve the performance of the kernel on the GPU platform and evaluate the effect of different tile sizes on 

performance. Our experimental results show the tiling technique improves the performance and the tile size 

of 32 has the highest speedup compared to other tile sizes. 
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