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 Deoxyribonucleic acid (DNA) motif finding (discovery/mining) in 

biological chains is the most recent challenging and interesting trend in 

bioinformatics. It represents a crucial phase in most bioinformatics systems 

related to unravelling the secrets of gene functions. Despite the efforts made 

to date to produce robust algorithms, DNA motif finding remains a difficult 

task for researchers in this field. In general, biological pattern locating 

algorithms are categorized into two categories: probabilistic and numerical 

methods. In this paper, we provide a survey of exact DNA motif finding 

algorithms and their working principles with a suitable comparison among 

these algorithms to provide an essential step for researchers in this field. 

Keywords: 

Bioinformatics 

Data mining 

Deoxyribonucleic acid  

Motif discovery 

Motif mining This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Ali BasimYousif 

Department of Computer Science, College of Science, Mustansiriyah University 

Baghdad, Iraq 

Email: ali.basim.yousif@uomustansiriyah.edu.iq 

 

 

1. INTRODUCTION  

Bioinformatics is a multidisciplinary field that works at the interaction of biological sciences, 

statistics and information technology to analysis of genome, sequence information and predict the structure 

and function of cellular molecules that are used in formation genome. One of the challenging issues in the 

field of bioinformatics is motif finding/mining/discovery/identification, which is one of the researchers' 

intriguing sequence analysis concerns [1].  

A deoxyribonucleic acid (DNA) motif is a brief, repeating pattern of nucleotides inside a DNA 

sequence that serves a variety of biological purposes. A brief, repetitive, recurring sequence of nucleotides 

with biological significance is referred to as a DNA motif. Sequence motifs, often known as regulatory 

elements, may be found in eukaryotic genes' regulatory regions (RR). These patterns are crucial for 

identifying transcription factor binding sites (TF-BSs), which aids in understanding how genes are regulated 

[2]. While intergenic areas are very extensive and very varied, sequence motifs are frequently repeated and 

preserved, making it difficult to identify them. Therefore, the algorithms in this field vary significantly in the 

execution times, the amount of memory consumed, and the accuracy of the answers [3]. 

When there is a big problem (such as DNA motif finding in DNA sequences) and its solution has 

important applications, that problem will be the focus of researchers for several years to find a viable, if not 

optimal, solution. The initiation of finding a new solution to the problem of DNA motif discovery in its huge 

databases requires both knowledge of the nature of the problem and knowledge of previously implemented 

algorithms. This cannot be accomplished if there are no significant survey studies that collect, make 

available, and simplify the analysis of previous algorithms. According to our search, which spanned quite a 

long time, we did not find a survey covering the period of scientific research to find an efficient DNA motif 

discovery algorithm, which started in earnest in the 1990s. Therefore, this paper aims to achieve several goals 

https://creativecommons.org/licenses/by-sa/4.0/
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as it combines the concepts of bioinformatics, DNA, ribonucleic acid (RNA), and protein structures, methods 

of representation, and the general architecture of DNA motif discovery systems; and finally, a main goal is to 

review all the important algorithms in this field to be a comprehensive platform for researchers. These 

objectives will put their mark on the structure and composition of this paper, as will be noted in the 

remaining sections of the paper. 

 

 

2. DNA, RNA AND PROTEIN COMPOSITIONS 

DNA is a molecule composed of polynucleotide chains that coil round every different to shape a 

double helix. DNA keeps the genetic coding for an organism in four arranged bases. DNA chemically 

consists of a phosphate, sugar and one of four nucleotides of guanine (G), cytosine (C), adenine (A) and 

thymine (T). There are three bonds of hydrogen between (C, G) pair while twice hydrogen bonds between 

(A, T) pair. Ribonucleic acid (RNA) is a chain of nitrogen bases, compared to DNA, RNA nitrogen bases 

include rings of ribose rather than deoxyribose and uracil (U) rather than thymine (T). RNA is transcribed 

from DNA by RNA polymerase (enzyme) and then processed by other proteins [2]. 

Proteins are complex and big molecules that perform multiple key functions in the organism. There 

are 20 distinctive kinds of amino acids that may be combined into proteins which are adenine (A), thymine 

(T), cytosine (C), guanine (G), isoleucine (I), phenylalanine (F), serine (S), glutamine (Q), histidine (H), 

asparagine (N), aspartic acid (D), arginine (R), glutamic acid (E), lysine (K), leucine (L), valine (V), 

tryptophan (W), tyrosine (Y), methionine (M) and proline (P) [3]. 

Gene expression is the technique via which the genetic coding and the nucleotide series of a gene 

are used to direct protein synthesis and convey the cell structures. The procedure of the gene expression 

includes two essential levels which are the transcription and the translation. Transcription is the technique of 

copying a section of DNA into RNA. The sections of DNA are copied into RNA molecules that can encode 

proteins are sections to supply messenger RNA (mRNA). Other sections of DNA are copied into RNA 

molecule known as non-coding RNAs. Translation can be regarded as the entire procedure of ordering and 

joining the amino acids in a protein depending on the interpretation of an mRNA base sequence. Figure 1 

displays the transcription and translation of gene expression [4]. 

 

 

 
 

Figure 1. Transcription and translation of gene expression [4] 

 

 

The motifs are common sequences of DNA, RNA, or protein bases that imply the presence of 

biological characteristics. Motifs might be constituted in DNA, RNA and protein chains [5]. There are many 

types of motifs based on the aspects used for categorization. In this paper, we’ll concentrate on two kinds of 

motifs simple/monad and structure which are produced depending on the arrangement of the motif template. 

The simple motif does not contain gaps and it is easy to discovery in comparison with structure motifs. The 

structure motif contains gaps and be more complex than simple motif [6]. 

Motif template is containing a series of nucleotides and gaps which include lower and upper 

numbers of ‘don’t care’ bases. A simple motif composed of bases according to the sequence under 

consideration; DNA, RNA or protein sequence. The general structure of motif template is represented by the 

following backus naur form (BNF) [7]: 

 

𝑆1{[𝑙1, 𝑢1]𝑆2{[𝑙2, 𝑢2]𝑆3}{. 𝑆𝑛[𝑙𝑛, 𝑢𝑛]}𝑆𝑛 + 1}  (1) 

 

consider the following example for protein motif: KVVVKMKMMMQ [9], [10], AVCCWWE [6], [8] EC. It 

is a complex motif which includes triple simple motifs of protein bases which match the following pattern, 

  DNA  RNA Protein 

Information coded in the 

sequence of base pairs in DNA 

is passed to molecules of RNA 

DNA can 

 replicate 

Information in RNA is passed to 

proteins. It never passes from 

Proteins to nucleic acids 
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S1{[l1, u1] S2 {[l2, u2]S3 such that: 

- S1 is KVVVKMKMMMQ, i.e., a simple motif consisting of 11 bases. 

- S2 is AVCCWWE, i.e., a simple motif consisting of 7 bases. 

- S3 is EC, i.e., a simple motif consisting of 2 bases. 

- [9], [10] is a gap; the distance between two simple motifs, its lower number of unspecified bases is 

9bases and its upper number of unspecified bases is 10 bases.  

- [6], [8] is the second gap; the distance between two simple motifs, its lower number of unspecified 

bases is 6 bases and its upper number of unspecified bases is 8 bases. 

The lower limit is an integer number that must be less or equal upper bound. Motif templates usually 

used as input for motif discovery systems to find the motifs matching the entered template. Motif 

representation can be one of two common methods; the string-based representation and matrix-based 

representation. The string-based representation is named pattern or consensus. The second one includes 

position frequency matrix (PFM), position weight matrix (PWM) or profile. In consensus string, the most 

repeated nucleotide in each location of the consensus sequence is provided. The four DNA bases, (A, C, G, 

T) are extended to IUPAC characters. For example, the sequence “AATRNG” is a consensus where “R” 

means a purine (A or G) and “N” means any base. Table 1 and Table 2 depict the IUPAC base codes [8]. 

 

 

Table 1. The IUPAC nucleotide code with corresponding DNA bases 
The IUPAC nucleotide code  The Base 

A  Adenine 
C  Cytosine 

G  Guanine 

T (or U)  Thymine (or Uracil) 
R  A or G 

Y  C or T 

S  G or C 
W  A or T 

K  G or T 

M  A or C 
B  C or G or T 

D  A or G or T 

H  A or C or T 
V  A or C or G 

N  any base 

 

 

Table 2. Amino acid codes (IUPAC) 
The IUPAC Amino Acid code The Amino Acid 

A Alanine 

C Cysteine 

D Aspartic Acid 
E Glutamic Acid 

F Phenylalanine 

G Glycine 
H Histidine 

I Isoleucine 

K Lysine 
L Leucine 

M Methionine 

N Asparagine 
P Proline 

Q Glutamine 

R Arginine 
S Serine 

T Threonine 
V Valine 

W Tryptophan 

Y Tyrosine 

 

 

Positional weight matrix (PWM) is a method that used for the illustration of motifs in biological 

strings. It is a 2D matrix where each location contains a binding site or a motif identifier. The values inside 

the matrix deliver the chance of every character on the position of each inside a listing of motif positions. 

Figure 2 presents an example of popular models for motif representing [9]. 
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Figure 2. Motifs representing forms [9] 

 

 

3. MOTIF DISCOVERY 

Motif discovery/motif mining in the sequences of biological data is defined as the process of finding 

one or more of sequence components, (‘motifs’) in nucleotide sequence which have shared biological 

operations and activities. It is interesting problem for researchers due to its importance in many 

bioinformatics applications such as transcription factor binding site (TFBS) [10]-[13]. Motif discovery 

process is usually divided into three modules/stages; data preprocessing, motif mining, and post-processing. 

 

3.1.  Data preprocessing 

After the process of obtaining the datasets and motif template, the preprocessing step has two 

ramifications; motif template preprocessing and dataset preprocessing. Motif template preprocessing is 

conducted by performing two processes which are parsing of motif template and removing typo errors. 

Khafaji and Kassim [12], presented techniques to preprocess datasets that dedicated for motif mining such as 

adjusting the grammar of motif template before mining session in addition to visualize the motifs or datasets. 

Datasets may require coding process or changing from one representation to another according to the 

specification of mining algorithm. Some of the bio data representations include extra data such as IDs, and 

comments, that need some operations of preprocessing before discovery process. 

 

3.2.  Motif mining 

In this stage, an algorithm for motif discovery should be adopted and according to the adopted 

algorithm the method of representing the dataset and mined motifs will be determined such as consensus 

string, and positional weight matrix. The motif mining algorithm will discover the motifs hidden in the 

database according to the constraints of the motif template. This paper concentrates on the motif mining 

algorithms. 

 

 

 

ETS1 binding sites 

 
  1   2   3  4   5   6   7   8  9  10 11 
 

Site1 A  G  C  G  G  A  A  G  C  G  C 
Site2 A  G  A  G  G  A  T  G  T  G  G 
Site3 G  C  C  G  G  A  T  G  C  G  G 

Site4 G  C  A  G  G  A  A  G  C  A  T 

Site5 A  C  A  G  G  A  T  G  G  G  T 
Site6 C  C  G  G  G  A  A  G  C  C  A 

Site7 C  C  A  G  G  A  A  A  T  G  C 

Site8 C  G  C  G  G  A  A  A  T  G  T 
Site9 G  C  A  G  G  A  A  G  T  T  C 
Site10 G  G  A  G  G  A  A  A  T  G G 

 

Sequence representation 
Consensus   G  C  A  G  G  A  A  G   T   G  C 

 

 
IUPAC V     V  S  M  G  G  A  A  G  Y  G   N 
 

Ci   32.3 58.2  44.2  100  100  100  62.0  62.0  41.4   41.6  18.4 

An advance PWM 

 
 1     2       3       4      5       6      7      8      9      10      11 
 

A      3     0       6       0      0      10     7      3      0       1        1 

C      3     6       3       0      0       0      0      0      4       1        3 

G      4     4       1      10    10      0      0      7      1       7        3 

T      0      0       0       0      0      0      3       0      5      1         3 

Raw PWM (Position Frequency 

Matrix) 
1    2      3      4     5      6     7     8     9     10    11 
 

A      3     0       6       0      0      10     7       3      0      1        1 

C      3     6       3       0      0       0      0       0      4      1        3 

G      4     4       1      10    10      0      0       7      1      7        3 

T      0      0       0       0      0      0       3       0      5     1        3 
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3.3.  Post-processing 

Post-processing, also called post-mining, reporting, and visualization, is the last stage that evaluates 

and presents the results of motif discovery in forms that can be utilized by the decision maker, such as tables, 

graphs, charts, and/or colored text. Post-processing can combine one or more visualization methods. Most of 

the results of the motif discovery system are presented as a record for each discovered motif. This record 

consists of many fields, such as the basis of the motif sequence, motif length, and the start and last position of 

the motif in the dataset. Figure 3 illustrates a general architecture for motif discovery systems, including the 

three stages. According to the mentioned figure, the pre-processing of datasets can be executed separately to 

manipulate the available datasets that will be used in the future mining session. Motif template preprocessing 

is an interactive process related to the entered user template. 

 

 

 
 

Figure 3. General architecture of the motif discovery system [10] 

 

 

4. EXACT DNA MOTIF DISCOVERY ALGORITHMS 
Mainly, there are two kinds of algorithms for motif discovery; the probabilistic approach and the 

enumerative approach. The motif mining algorithms related to the first approach usually need a small number 

of arguments. Furthermore, they depend on base distributions for the sites that are available in binding space 

to determine the existence of the motif. In the enumeration approach, the discovery process depends on 

calculating word similarities in consensus sequences [14]. Exact motif mining algorithms usually belong to 

the enumeration approach. Table 3 presents a number of algorithms that are concerned with this topic and for 

a period of time that is not short. The Researches conducted during the period 1998 to 2005 are almost 

similar in behavior and data structures used. Table 3 lists these algorithms with the reference numbers [15]-

[24]. 

The Voting algorithm Chin and Leung [25] is one of the distinguished algorithms such that it 

manipulates unprecedented motif lengths that the previous algorithms did not manipulate due to the time and 

space consumed for the mining process. The algorithm works admirably for synthesis and the actual dataset. 

Sze and Zhao [26] produced an improved pattern-driven algorithm that assures finding the significant motifs 

in a time that depends on the length of the motif to be mined and the size of the DNA sequence under mining. 

A qualitative leap in motif mining algorithms occurred with the design of the algorithm called 

SMOTIF that regarded as one of the early works in this field. It is designed by Zhang and Zaki [27], 

SMOTIF is robust algorithm to discover structured motifs for one or more sequences. The algorithm can 

efficiently search for both patterns and profiles. SMOTIF can search for wide interval gaps, long terminal 

repeats (LTR) retrotransposons and find potential composite transcription factor binding sites. 
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Zhang and Zaki [28], proposed an efficient algorithm to mine structured motifs called EXMOTIF 

according to a given sequence in addition to the motif template. It discovers all occurrences of structure 

motifs that have quorum q. The experiments showed that EXMOTIF is efficient in terms of both time 

and space and outperforms RISO algorithm which proposed by Carvalho et al. [30], in mining the single or 

complex transcription factor binding sites (TFs). EXMOTIF is a robust algorithm for discovering complex 

motifs, especially in DNA chains. 

Halachev and Shiri [33], studied the features of genomes and proposed an efficient algorithm to 

discover structural motifs named exact match, overlapping structured motif search (EMOS). It depends on 

the suffix tree index. Numerous experiments were performed to evaluate EMOS. To evaluate EMOS and 

compare its performance with the SMOTIF algorithm [27], many cases were attempted, in some of which its 

performance was comparable to SMOTIF, but in most cases the search time of EMOS was faster than 

SMOTIF. 

Sharov and Ko [34], designed an algorithm named CisFinder. It deals with large chains of more than 

50 Mb with considerable processing speed, especially when the desired motif is short. To operate CisFinder, 

the nucleotide replacement matrix for each n-mer word should be determined in addition to the construction 

of PFMs. To generate non-redundant motifs, the PFM extends across adjacent base and gap areas, followed 

by a clustering process. However, the characteristics of CisFinder can be summarized as shown in:  

i) It extracts all represented motifs and describes them with PFMs; ii) It can successfully manipulate long 

chains; iii) Because of its faster motif discovery execution time, it works interactively and runs the analysis 

several times after resetting the parameters; iv) It plays its role by reducing the enrichment of DNA motifs. 

These characteristics are the main factors to making CisFinder superior to the PMS3P algorithm which 

proposed by Sharma and Rajasekaran [35], and RecMotif algorithm which proposed by Sun et al. [36]. 

Sun et al. [37], proposed the so-called ListMotif, a sample-driven algorithm that creates a list of 

motif instances using substrings from the data. ListMotif is memory efficient and time efficient by avoiding 

recalculation of the Hamming distance between substrings. The results of synthetic data tests show that 

ListMotif can detect long and weak motifs compared to some previously proposed algorithms. 

Kuksa and Pavlovic [38], proposed stemming algorithm to find motifs in sequences. The algorithm 

reduces computational complexity shows a powerful run-time improvement compared to current motif search 

algorithms MITRA which proposed by Eskin and Pevzner [19], and PMS Prune which proposed by Pisanti et 

al. [29], and RISOTTO which proposed by Davila et al. [31], for long motifs. The proposed algorithm can be 

applied to other cases and difficult problems in DNA sequences analysis. 

Bailey [39], produced an algorithm named discriminative regular expression motif elicitation 

(DREME). DREME can locate short and middle DNA motifs of eukaryotic transcription factors. Also, it is 

optimized to search extremely big ChIP-seq databases in minutes therefore it is regarded as quick and 

scalable algorithm. It includes two loops; to discover many non-redundant motifs in a set of chains, the 

external loop specifies the most important motifs through heuristic motif searches, and the best motifs found 

replace their appearance with special characters. The search process is then repeated many times until the 

value of the new motif falls below the determined significance threshold. 

Sun et al. [40], proposed a tree-based motif discovery algorithm (tree motif) capable of detecting 

longer motifs than existing methods in terms of accuracy and execution time. A Tree Motif transforms the 

graphic representation of a motif into a tree-structured representation. In this representation, the tree that 

branches at each node in each sequence represents the motif instance. The tree construction method is based 

on the discovery of novel motifs. Tree motif performance has been demonstrated in both synthetic and real 

biological data. Provable algorithm which proposed by Chen and Wang [41], depends on generating a wide 

range of candidates, and then it makes a pruning process to exclude improvable candidates to be discovered 

motif according to the restrictions of the motif template. PMS4 algorithm which proposed by Rajasekaran 

and Dinh [42], and PMS5 algorithm which proposed by Dinh et al. [43], and PMS6 algorithm which 

proposed by Bandyopadhyay et al. [44], were designed depending on the search tree data structure. 

Therefore, their performance is described by the term of the difference in traversing the tree and its size in 

memory.  

Most of the mentioned algorithms in this paper calibrate themselves for parallel processing with the 

need to make modifications to their steps and possibly the data structures used, but algorithm PairMotif 

which proposed by Yu et al. [45], was originally designed to be implemented in an environment that supports 

parallelism in terms of hardware of the computer system and software components which support multi-

thread sytem. The qPMS7 algorithm which proposed by Dinh et al. [46], was developed depending on search 

tree data structure. Nicolae and Rajasekaran [47], designed the PMS8 algorithm based on the qPMS7 

algorithm [46], the PMS8 is a robust algorithm to manipulate the planted motif search (PMS) problem. Its 

efficiency is obtained from the subtle coding, which involves several speedup services and distinguished 

memory management depending on cache locality. Another reason for the efficiency of PMS8 algorithm 
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[47], is its ability to produce neighborhoods for n of l-mers at a time, depending on suggested pruning 

conditions. PMS8 was compared with qPMS7 algorithm using datasets discussed in [46]. The results showed 

the equality or the domination of PMS8 algorithm in most experiments. 

 

 

Table 3. Exact motif finding algorithms 
Algorithm Year Operating Principle Reference  Algorithm Year Operating Principle Reference 

SPELLER 1998 Suffix tree [15]  Pampa 2007 tree search [32] 

Spelling 1998 Suffix tree [15]  EMOS 2008 Suffix tree [33] 
TravStrD 2000 tree based [16]  CisFinder 2009 position frequency 

matrices (PFMs) 

[34] 

TravStrR 2000 tree search [16]  PMS3P 2009 tree search [35] 
WINNOWER 2000 Graph theoretic [17]  RecMotif 2010 Reference 

sequence/vertex 

[36] 

SMILE 2002 Suffix tree [18]  ListMotif 2010 Graph theoretic [37] 
MITRA 2003 Prefix tree/mismatch 

tree and graph 

[19]  Stemming 2010 neighborhood 

generation 

[38] 

CENSUS 2004 tree search [20]  DREME 2011 Simple word based [39] 
Weeder 2004 Suffix tree [21]  TreeMotif 2011 Graph theoretic [40] 

cWINNOWER 2004 Graph theoretic [22]  Provable 2011 Modified candidate [41] 

PSMILE 2004 Suffix tree [23]  PMS4 2011 tree search [42] 
PMS1 2005 Radix sorting [24]  PMS5 2011 tree search [43] 

PMS2 2005 Radix sorting [24]  PMS6 2012 tree search [44] 

PMS3 2005 Radix sorting [24]  PairMotif 2012 Parallel computing [45] 
Voting 2005 Clustering [25]  qPMS7 2012 tree search [46] 

Improved 

Pattern-driven 

2006 pattern-driven approach [26]  PMS8 2014 Random sampling [47] 

SMOTIF 2006 Inverted index of 

symbol positions 

[27]  FMotif 2014 Suffix tree [48] 

EXMOTIF 2006 Inverted index of 
symbols and hash table 

[28]  SLI-REST 2014 Suffix tree [49] 

RISOTTO 2006 Box links and suffix 

tree 

[29]  qPMSPruneI 2014 tree search [50] 

RISO 2007 suffix tree [30]  qPMS9 2015 Random sampling [51] 

PMSi 2007 tree search [31]  qPMS10 2016 Random sampling [52] 

PMSP 2007 tree search [31]  ET-Motif 2016 Suffix tree [53] 
PMSPrune 2007 tree search [31]      

 

 

Jia et al. [48] proposed an algorithm named FMotif, which belongs to the enumeration category of 

algorithms for extracting motifs from sequences. The role of FMotif was tested using mouse ChIP-seq data 

sets for 12 deoxyribonucleic acid (DNA) binding TF involved in the pluripotency and self-renewal of mouse 

embryonic stem cells. Experiments have shown that FMotif has diminished execution time and it is of exact 

type when searching for motifs in (l, d) chain samples. Also, FMotif has satisfied performance in determining 

motifs in ChIP-rich areas. Generally, it showed a compromise among time, space, and accuracy. FMotif 

outperforms many algorithms such as SPELLER algorithm which proposed by Sagot [15], MITRA algorithm 

which proposed by Eskin and Pevzner [19], and WEEDER algorithm which proposed by Pavesi [21]. 

However, in spite of its accuracy and speed, it is slower than CisFinder algorithm [34]. FMotif algorithm 

[48], exchanges predominance in several experiments with SLI-REST algorithm which proposed by Cazaux 

and Rivals [49]. 

Nicolae and S. Rajasekaran [51], preduced an efficient random algorithm for solving planted motif 

search (PMS) problemswhich is called qPMS9 [51]. The modification of qPMS9 leads to qPMS10 algorithm 

which proposed by Xiao et al. [52]. The qPMS10 deals with challenging (l,d)-motifs. It is a non-deterministic 

algorithm, therefore theoretical analysis shows that qPMS10 algorithm [52], is very reasonable compared to 

qPMS9 algorithm [51]. The experimental results depict its scalability to manipulate growing databases and 

its efficiency to mine large datasets. 

Al-Okaily and Huang [53], proposed an algorithm called ET-motif which depends mainly on a novel 

data structure named Error tree, which used for hamming distance and wildcards matching in DNA 

sequences. The proposed tree excluded the time and space required to balance the suffix tree used in some 

algorithms. ET-motif concentrates on reducing the space and time of motif mining process that are actually 

reduced according to specified factors. 

 

 

5. DISCUSSION 

As sequencing technology advances, the amount of biological sequence data in public databases has 

increased, making the discovery of motifs increasingly important in computer science and molecular biology. 
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Finding a motif presents some difficulties such as the motifs are not the same, the position of the motif is 

unknown, the arrangement of motif is unknown and the position of one motif in each arrangement is 

irrelevant to other motifs. There are two types of motif discovery algorithms that are enumerative approach 

and probabilistic approach. An enumerated approach depends on the description of a particular motif model 

counts and compares the frequencies of oligonucleotides in all possible motifs. This has several advantages 

such as the global optimality, short motifs, it helps to find motifs in the eukaryotic genome and the data 

structure is optimized, so the speed is high. The problems with this approach are common for example the 

transcription aspect motifs frequently have a few weakly restrained positions that want to be post-processed 

with the aid of using a few clustering systems, long time processing is another conflict because it tests each 

feasible substring within the enter dataset, there are multiple error motifs. 

There are many algorithms designed based on this approach. YMF is designed for the yeast genome 

and either cannot recognize long motifs or the number of degenerate positions is large. DREME is an 

identification motif recognition tool for detecting multiple short, non-redundant, statistically significant 

motifs in a short amount of time using a simplified form of regular expression words. DREME is compared 

to the MEME algorithm, and the results show that the DREME algorithm can correctly predict experimental 

ChIPseq sequence motifs with shorter execution times than MEME. The CisFinder algorithm tested on the 

TFs ChIPseq data was expressed in ES cells. CisFinder can accurately identify the PFM of the TFs binding 

motif and is faster than MEME, Weeder and RSAT. CisFinder can find low enhancement motifs, but does 

not support the output of motifs of a particular length. Weeder algorithm uses suffix trees to speed up word 

enumeration techniques, but is less efficient for long motifs. The FMotif algorithm can identify the length of 

unknown motifs in ChIP-rich areas. The graph-based method is the same simple-based method, but 

represents motif instances through graphs to facilitate search strategies. 

 

 

6. CONCLUSION 

The discovery of motifs is biologically considered important and it is the process of identifying and 

extracting the patterns needed to understand the complex biological mechanisms of an organism. The various 

techniques used in the various motif inference tool design paradigms show the growing efforts of researchers 

to develop efficient algorithms for predicting genomic function. The efficiency of these algorithms is 

measured by time complexity, which is influenced by the choice of data structure used in the design 

paradigm. There are two types of motif discovery algorithms which are the probabilistic approach and the 

enumeration approach. The algorithms are varying by many factors such as speed, memory consumption, the 

type of data structure used, the guarantee of finding all occurrences of the motif, the type and size of the 

motif to be discovered, and the size of the database. The enumeration methods are an exhaustive search and it 

is the only method that ensures finding all motifs. However, they are very slow and require a lot of 

parameters, therefore they become difficult to deal with either long motifs or big data. 
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