
TELKOMNIKA, Vol. 11, No. 10, October 2013, pp. 5711 ~ 5717
ISSN: 2302-4046
  5711

Received April 28, 2013; Revised June 30, 2013; Accepted July 14, 2013

An Efficient Association Rules Algorithm Based on
Compressed Matrix

Zhiyong Wang
Shandong Youth University of Political Science, Jinan 250103, Shandong, China

e-mail: 83161982@qq.com

Abstract
This paper analyses the classic Apriori algorithm as well as some disadvantages of the improved

algorithms, based on which the paper improves the Boolean matrix. A row and a column are added on the
former Boolean matrix to store the row vector of weight and account of the column vector. According to the
quality of Apriori algorithm, Boolean matrix is largely compressed, which greatly reduces the complexity of
space. At the same time, we adopt the method of weighting vector inner-product to find frequent K-
itemsets so as to get the association rules. The complexity of space and time is developed to a large
extent by the improved algorithm. In the end, the paper gives the computing procedure of the improved
algorithm and by experiments, it proves that the algorithm is effective.

Keywords: Apriori Algorithm, Association Rules, Compressed Boolean Matrix, Frequent Itemsets

Copyright © 2013 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

Apriori algorithm is the most classic among the association rules algorithm. This
algorithm mines frequent itemsets through Boolean association rules, which is divided into two
steps: connection and pruning. In the process of solving algorithm of frequent itemsets, it needs
to scan the database many times, which may produce a large number of candidate itemsets.

In view of this, people have made a lot of improvements to the Apriori algorithm.
Requirements for the improved algorithm in the paper [1] itemsets need to be orderly
arrangement according to the dictionary, and compression on Boolean matrix is not complete
and still needs a lot of space in the calculation process. The improved algorithm based on
literature [2] only converts the database to a Boolean matrix, and is calculated with the method
of vector inner-product frequent itemsets. There is no compression on Boolean matrix and no
introduction about the weight concept. Improved algorithm of paper [3, 4] adds a new column in
the Boolean matrix, but only the row vector compression and no compression on the columns.
The improved algorithm of literature [7] is a kind of algorithm based on the sort of matrix
algorithm and this improved algorithm has certain advantages in generating frequent itemsets,
but there isn't much improvement for data compression, and Boolean matrix sorting process
also costs more time. Improved algorithm in reference [8] is generated by 2-itemsets support
matrix, which avoids the invalid 2-itemsets and solves its bottleneck problem, but during
generating frequent itemsets, it still needs repeating the scanning of matrix, and the only
solving efficiency of 2-itemsets is more obvious.

As mentioned above, based on the current study, this paper has made the
improvements in the Apriori algorithm. On one hand, it compresses the row vector and column
vector of Boolean matrix in two directions; in addition, it introduces the weighted vector inner
product and the algorithm of frequent itemsets.

2. Compressing Boolean Matrix
2.1. Boolean Matrix Natures and Formalization

Apriori algorithm has the following properties [5, 6]:
Quality 1 All the subset of the frequent itemsets are also frequent.
Quality 2 All superset of infrequent itemsets are infrequent.

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 10, October 2013 : 5711 – 5717

5712

Quality 3 Noting KL for the number of frequent K  itemsets, if 1
K

L K  , then there

is frequent  1K   itemsets in the transaction database, and vice versa, frequent

 1K   itemsets is not existing [9].

Through the form of a matrix, Boolean matrix represents the transaction in the
database; each value in the matrix is a Boolean value (0 or 1). In the matrix, each row
represents a transaction iT , each column represents one item jI . Formal description is as

follows:

 ij m n
M T


 ,

1

0

j i

ij
j i

I T
T

I T

  
, among them 1,2,3, ,i m    ; 1,2,3, ,j n    .

In the matrix M , if the transaction iT includes jI , then 1ijT  , otherwise 0ijT  . Such as

transaction set T is as follows. This is shown in Table 1.

Table 1. The Transaction Set T
TID Item Sets

1T 1 3 5 6, , ,I I I I

2T
1 2 3, ,I I I

3T
5I

4T
1 2 3, ,I I I

5T
6I

6T
2 5 6, ,I I I

7T
1 2 3, ,I I I

8T
2 3 4, ,I I I

By the Boolean matrix, the representation is as follows:

1 2 3 4 5 6

1

2

3

4

5

6

7

8

1 0 1 0 1 1

1 1 1 0 0 0

0 0 0 0 1 0

1 1 1 0 0 0

0 0 0 0 0 1

0 1 0 0 1 1

1 1 1 0 0 0

0 1 1 1 0 0

I I I I I I

T

T

T

M T

T

T

T

T

 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2. Processing of Boolean Matrix Compression
The compression of Boolean matrix is divided into two aspects: row vector compression

and column vector compression.
Boolean matrix compression algorithm is as follows [3, 5]:

Step 1: Improve representation method of the Boolean matrix. Add a column ()iw on

the right side of the Boolean matrix, and add a line (the sum) on the bottom of Boolean matrix.

Each value of new column iw stores the corresponding number of repeating row vector. The

value in the new row sum stores the corresponding number of nonzero elements in the column.
For example, the improved matrix M is as follows:

TELKOMNIKA ISSN: 2302-4046 

An Efficient Association Rules Algorithm Based on Compressed Matrix (Zhiyong Wang)

5713

1 2 3 4 5 6

1

2

3

4

5

6

7

8

1 0 1 0 1 1

1 1 1 0 0 0

0 0 0 0 1 0

1 1 1 0 0 0

0 0 0 0 0 1

0 1 0 0 1 1

1 1 1 0 0 0

0 1 1 1 0 0

4 5 5 1 3 3

iI I I I I I W

T

T

T

T
M

T

T

T

T

sum

 
 
 
 
 
 
    
 
 
 
 
 
 
  

We sum nonzero elements of each column, putting into the corresponding sum with

none value on iw .

Step 2: In Boolean matrix, the summation of nonzero elements in each column [5], that
is, the supporting count of item jI , which means the value of the sum is the corresponding

supporting count of item jI . According to the natures of 1 and 2, set for the minimum support

count as min_ sup port _ count ,when item supporting count is less than min_ sup port _ count , all

itemsets containing the jI are infrequent itemsets. So the column can be removed directly,

which will not affect the solution of frequent itemsets. If set min_ sup port _ count 2 , according

to the sum of the values in the line, the support count of 4I is 1. Thus it can be deleted, which

will not affect the solution of frequent itemsets. After deleting, the Matrix is expressed as follows:

1 2 3 5 6

1

2

3

4

5

6

7

8

1 0 1 1 1

1 1 1 0 0

0 0 0 1 0

1 1 1 0 0

0 0 0 0 1

0 1 0 1 1

1 1 1 0 0

0 1 1 0 0

4 5 5 3 3

iI I I I I W

T

T

T

T
M

T

T

T

T

sum

 
 
 
 
 
 
    
 
 
 
 
 
 
  

Step 3: Calculate the repeating number of rows in the matrix vector, put the results of

calculation in the corresponding value of the column, delete unnecessary repeating row vector,
and retain only one line, making the row vector in the matrix without repeating such as matrix
M , 2T , 4T and 7T regarded as the repeating row vector. The number of repeating row vector is

3, deleting 4T and 7T , keeping 2T only. After arrangement, the Matrix can be expressed as

follows:

1 2 3 5 6

1

2

3

5

6

8

1 0 1 1 1 1

1 1 1 0 0 3

0 0 0 1 0 1
'

0 0 0 0 1 1

0 1 0 1 1 1

0 1 1 0 0 1

4 5 5 3 3

iI I I I I w

T

T

T
M

T

T

T

sum

 
 
 
 
 
   
 
 
 
 
 
 

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 10, October 2013 : 5711 – 5717

5714

After the above three-step compression, matrix M is improved into matrix 'M , and the
space for the matrix will reduce further.

3. Inner-Product of Weight Vector for Frequent Itemsets

The vector quantity of Boolean matrix M is defined as 1 2(, , , , ,)j nM I I I I      , in which

the vector quantity of item jI is defined as 1 2(, , ,)T
j j j njI T T T  [10].

Definition 1 the inner-product of vector iI and jI is defined as:

1 1 2 2, { , , , }i j i j i j i j ni njI I I I T T T T T T         (1)

Definition 2 the inner-product of vector iI , jI ,…, kI is defined as:

1 1 1 2 2, , , ... { ... , ... ,..., ... }i j k i j k i j k i j k ni nj nkI I I I I I T T T T T T T T T                (2)

The  presents logic and arithmetic in the above.
The computing method of using inner-product of weight vector for frequent itemsets is

as follows [1, 6].

Quality 4 The supporting count of 2-itemsets  ,i jI I ()i j can be got by the vector

inner-product of iI and jI , that is

11 2 2_ () ...
jij i j i i j ni njsupport count I I I T T T T T T         (3)

The supporting count of K-itemsets  , ,...,i j kI I I ()i j k  can be got by the vector

inner-product of , ,...,i j kI I I , that is

... 1 1 1 2 2_ () ,ij k i j k i j k i j k ni nj nksupport count I I I I T T T T T T T T T                 (4)

For the compression matrix 'M , quality 4 needs to be improved and to introduce

weights, which means to compress the last column iw in the compressed matrix 'M .

Quality 5 The weighted vector inner-product of iI and jI is defined as:

1 1 1 2 2 2, { (), (), , ()}i j i j i j i j n ni njI I I I w T T w T T w T T            (5)

The weighted vector inner-product of iI and jI is defined as:

1 1 1 1 2 2 2, , , ... { (...), (...),..., (...)}i j k i j k i j k i j k n ni nj nkI I I I I I w T T T w T T T w T T T                   . (6)

The supporting count of 2-itemsets  ,i jI I ()i j :

1 1 1 2 2 2_ () () () ()ij i j i j i j n ni njsupport count I I I w T T w T T w T T              (7)

The supporting count of K-itemsets  , ,...,i j kI I I ()i j k  :

... 1 1 1 1 2 2 2_ () ... (...) (...) ... (...)ij k i j k i j k i j k n ni nj nksupport count I I I I w T T T w T T T w T T T                    . (8)

TELKOMNIKA ISSN: 2302-4046 

An Efficient Association Rules Algorithm Based on Compressed Matrix (Zhiyong Wang)

5715

4. Algorithm Thought
(1) Scanning the database, transaction sets can be converted to Boolean matrix,

marked M .
(2) According to the above matrix compression algorithm, compress matrix M ,

rearrange, and get matrix 'M .

(3) Put combination 2
nC onto the column vector of the rearranging matrix 'M , and

according to the quality 5 of supporting count, calculate support count of 2-itemsets, the
itemsets of which is greater than min_ sup port _ count is collection of frequent 2-itemsets, 2L .

(4) According to the quality of 1, 2, 3, if there is a frequent 3-itemsets, certainly it is a
superset of frequent 2-itemsets. So the recounted frequent 2-itemsets contains frequent item;
delete other infrequent items, recount the number of the same row vector, and rearrange the
compression matrix 'M .

(5) Put combination 3
nC onto the column vector of the rearranging matrix 'M , and

according to the quality 5, calculate support count of 2-itemsets, the support count of which is
greater than min_ sup port _ count is collection of frequent 3-itemsets, 3L .

(6) Similar to 4 and 5, continue statistics frequent items in the generated frequent (k-1)-
itemsets, delete the other items, recount the number of the same row vector in the matrix 'M ,
and compress matrix 'M . After arrangement of the matrix composite, calculate support count of
k-itemsets according to the quality 5, the one of which more than min_ sup port _ count is

frequent k–itemsets, kL . So repeatedly, until the concentration of 1kL K  , that is 1KL k  ,

the kL is the maximum frequent itemsets.

5. Case Analyses

(1) Scanning the database, convert the transaction sets T into Boolean matrix M .
(2) According to the above compression algorithm, compressing matrix M , matrix is

obtained

1 2 3 5 6

1

2

3

5

6

8

1 0 1 1 1 1

1 1 1 0 0 3

0 0 0 1 0 1
'

0 0 0 0 1 1

0 1 0 1 1 1

0 1 1 0 0 1

4 5 5 3 3

iI I I I I w

T

T

T
M

T

T

T

sum

 
 
 
 
 
   
 
 
 
 
  

(3) Putting combination 2
nC onto the column vector of the rearranging matrix 'M and

according to the quality 5, calculate the support count of each 2-itemsets.

12support_count()=1 (1 0) 3 (1 1) 1 (0 0) 1 (0 0) 1 (0 1) 1 (0 1) 3I                   ;

For others, in a similar way there are  13support _ count 4I  ;  15support _ count 1I  ;

 16support _ count 1I  ;  23support _ count 3I  ;  25support _ count 1I  ;  26support _ count 1I  ;

 35support _ count 1I  ;  36support _ count 1I  ;  56support _ count 1I  . If setting

min_ sup port _ count 2 , then 12 13 23, ,I I I will be collection of frequent 2-itemsets.

(4) According to the quality of 1, 2, 3, if there is a frequent 3-itemsets, certainly it is a
superset of frequent 2–itemsets, and contains 1 2 3, ,I I I only. So make compression processing

on matrix M , and delete the item 5 6,I I in the matrix. After adding up the number of repeating

row vector, we can get

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 10, October 2013 : 5711 – 5717

5716

1 2 3

1

2

3

6

8

1 0 1 1

1 1 1 3

'' 0 0 0 2

0 1 0 1

0 1 1 1

4 5 5

iI I I W

T

T

M T

T

T

sum

 
 
 
 
 

  
 
 
 
 
 

(5) Making 3
nC combination in three columns of matrix, and according to the quality 5,

calculate the support count of each 3-itemsets,

 123support _count 1 (1 0 1)+3 (1 1 1)+2 (0 0 0)+1 (0 1 0)+1 (0 1 1)=3I                 ,

That means 123I is the collection of frequent 3-itemsets. According to quality 3, for

3 4L  , the collection of frequent 4-itemsets does not exist.

6. Algorithm Analyses

Space complexity analyses: The data of Apriori algorithm stored is the item value, and
in the process of solving the frequent itemsets, it takes up a large amount of space; the
improved Apriori algorithm with stored data is Boolean value, with compression processing
made in the Boolean matrix including two directions: row and column; Boolean matrix
compression processing is also constantly made in the process of solving the frequent itemsets,
avoiding the connection and pruning operation, greatly reducing the space complexity.

Time complexity analyses: The improved Apriori algorithm only needs to scan the
database for one time, through the column vector to solve Boolean matrix frequent k-itemsets,
avoiding the connection and pruning operation.

In order to test the effectiveness of the algorithm, a test environment has been set up as
follow: For 2G memory, CPU for the Intel (R) Core (TM) i5 2.67 GHz, the operating system on a
Windows XP. In this kind of computer, Apriori algorithm and the improved Apriori algorithm
realized. Experimental data are collected from the candidates’ seven-year application
information of one university students for an examination, nearly 32476 records, and 25 items.
The experimental results are shown in Figure 1. It can be seen that improved Apriori algorithm
is far superior to the Apriori algorithm.

Figure 1. The comparison between the Apriori algorithm and improved Apriori algorithm

TELKOMNIKA ISSN: 2302-4046 

An Efficient Association Rules Algorithm Based on Compressed Matrix (Zhiyong Wang)

5717

7. Conclusion
This paper analyses the classic Apriori algorithm and the shortages of some improved

algorithm. And based on this, it retreats them from two directions of rows and columns to
compress the Boolean matrix; in the process of solving the frequent itemsets it also constantly
does a great of compression, which greatly reduces the space complexity of the algorithm; in
the process of solving the frequent itemsets, there is the introduction about the association rules
algorithm for the inner-product method of weighted vector to evaluate frequent k-itemsets. This
improved algorithm compresses the data, reduces the number of database access, avoids the
connection and pruning process, greatly reduces the time complexity and space complexity of
the algorithm, and also improves the execution efficiency of the algorithm a great deal.

References
[1] QIAN Guangchao, JIA Ruiyu, ZHANG Ran, LI Longshu. One Optimized Method of Apriori Algorithm.

Computer Engineering. 2008; 34(23): 196-198.
[2] WANG Chengliang, WU Yanjuan. Research and Application of Efficient Association Rule Discovery

Algorithm of Chinese Medicine. Computer Engineering and Applications. 2010; 46(34): 119-122.
[3] ZENG Wandan, ZHOU Xubo, DAI Bo, CHANG Guiran, LI Chunping. An Association Mining Algorithm

Based on Matrix. Computer Engineering. 2006; 32(2): 45-47.
[4] ZHANG Yueqin. Research of Frequent Itemsets Mining Algorithm Based on 0-1 Matrix. Computer

Engineering and Design. 2009; 30(20): 4662-4664.
[5] PEI Guying. A Fast Algorithm for Mining of Association Rules Based on Boolean Matrix. Automation &

Instrumentation. 2009; 5: 16-18.
[6] ZHANG Wendong, YIN Jinhuan, JIA Xiaofei, HUANG Chao, YUAN Yanmei. Research of A Frequent

Itemsets Mining Algorithm Based on Vector. Journal of Shandong University (Natural Science). 2011;
46(3): 31-34.

[7] LV Taoxia, LIU Peiyu. Algorithm for Generating Strong Association Rules Based on Matrix. Application
Research of Computers. 2011; 28(4): 1301-1303.

[8] ZHANG Yuntao, YU Zhilou, ZHANG Huaxiang. Research on High Efficiency Mining Frequent Itemsets
on Association Rules. Computer Engineering and Applications. 2011; 47(3): 139-141.

[9] ZHANG Zhongping, LI Yan, YANG Jing. Frequent Itemsets Mining Algorithm Based on Matrix.
Computer Engineering. 2009; 35(1): 84-85.

[10] Wang Lifeng. An Efficient Association Rule Algorithm Based on Boolean Matrix. International Review
on Computers and Software. 2012; 7(2): 695-700.

