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 In Peru, there are many companies linked to the category of heavy machinery 

maintenance, in which, on the one hand, although it is true they generate a 

record of events linked to equipment maintenance indicators, on the other 

hand they do not make efficient use of these data generating operational 

patterns, through machine learning, that contribute to the improvement of 

processes linked to the service. In this sense, the objective of this article is to 

generate a tool based on automatic learning algorithms that allows predicting 

the location of faults in hydraulic excavators, in order to improve the 

management of the maintenance service. When developing the research, it 

was obtained that the algorithm that assembles bagged trees presents an 

accuracy of 97.15%, showing a level of specificity of 99.04%, an accuracy of 

98.56% and a sensitivity of 97.12%. Therefore, the predictive model using the 

ensemble bagged trees algorithm shows significant performance in locating 

the system where failures occur in hydraulic excavator fleets. It is concluded 

then that it was possible to improve aspects associated with the planning and 

availability of supplies or components of the maintenance service, also 

optimizing the continuity and response capacity in the maintenance process. 
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1. INTRODUCTION  

The costs related to the maintenance of a machine in general, and the lack of operation of this within the 

chain of the production process, represent around 15% to 60% of total production costs [1]-[3]. Hydraulic 

excavators, as well as other machines used in the mineral extraction process, must be permanently monitored so 

that they do not stop their operation abruptly, since the impact on the production level is significant [4]-[8]. The 

purpose of the maintenance strategies of a machine is to improve the metrics or indicators of the equipment's 

operability, such as availability, reliability and maintainability [9]-[11]. An alternative for the early detection of 

failures in machines that intervene in the mining extraction process is predictive maintenance, which uses 

historical data of criticality of each component of the machine and that through statistical techniques, it is possible 

to approximate possible failures [12]-[14]. Today, with the amount of data that can be measured or monitored in 

machines, it is possible to apply machine learning algorithms in order to generate patterns and trends of operational 

behavior [15]-[20]. Artificial intelligence, as well as data mining, and the ability to transmit information from 
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machines that operate in an industrial environment at this time represent technological tools that contribute to the 

prediction of failures [21]-[25]. In this fourth industrial revolution or also called industry 4.0, it is relevant that all 

production processes, as well as the machines and tools involved, are linked to maintenance strategies based on 

machine learning algorithms, whether classification or regression must guarantee the continuity of the process 

avoiding failures or unscheduled stops, which generates low productivity and economic losses [26]-[28]. 

Ensemble bagged trees, is part of the learning of classification, which is a technique of construction of sets, 

which by means of a data sample several samples are randomly extracted, that is, each variable can be chosen from 

the original population, so that each variable is equally likely to be selected in each interaction of the process. Once 

the samples are formed, the models are trained separately, obtaining the final output prediction of all the sub-models. 

This method is used as a way to reduce the variance of the base estimator (decision tree), by introducing 

randomization in its construction procedure and then making a set from it [29]-[31]. In the context of the 

aforementioned, this article aims to determine the classification algorithm and its metrics (sensitivity, specificity, 

precision and accuracy) for the predictive model of the location of failures in hydraulic excavators, order to improve 

planning of the maintenance service of these machinery used in mineral extraction production processes in Peru. 

 

 

2. LITERARY REVIEW 

Industry 4.0, has as one of its fundamental principles to give a relevant value to the data that is produce 

or generate in a production or service process in order to extract significant information from them they [32], 

[33]. So also in based on innovation offers great potential in the processes, one of these being the one linked 

to the bodybuilding sector, which has not ignored this reality so that a large percentage of companies with this 

line of business are putting into practice to achieve the autonomy of processes in order to reduce time and costs 

[34]. Artificial intelligence (AI) is part of data science, whose purpose is to condition, process, analyze and 

reveal through data what lies behind natural, human and social phenomena from a multidimensional, flexible 

and dynamic perspective [35], [36]. From artificial intelligence it was possible to structure automatic learning 

algorithms, that is, through automatic learning, computers reach a certain level of autonomy that allows 

prediction through regression or classification models from the monitoring and acquisition of data from a 

process or a machine, under any context of work or operation [37].  

Liu et al. [38], the author states that, through the historical record of faults in the machinery used in 

mineral extraction processes, it is possible to predict the operating behavior of the machine, through patterns 

based on algorithms of machine learning, both supervised and unsupervised. In this regard in [39], the author 

points out that predictive maintenance strategies in excavation machines traditionally used are based on the 

collection of historical data manually, however, from the insertion of artificial intelligence to the industrial 

sector, the techniques and mechanisms aimed at improving the performance of machines are oriented towards 

the use of neural networks and machine learning. In Alhilali et al. [40], the authors point out that supervised 

learning consists of an algorithm establishing a behavior pattern from a set of input and output data. In Qarabsh 

et al. [41], the author points out that in the current context of industry 4.0, industrial maintenance must evolve 

towards a model that integrates networks with sensors that allow the transfer of electrical signals in real time, 

supporting the internet of things (IoT) and artificial intelligence. In it is pointed out that ensemble methods try 

to improve the performance of machine learning models by improving their accuracy in order to solve a 

particular problem, within this method is the ensemble bagged trees classification algorithm, which is a 

powerful statistical method for estimating a quantity from a sample of data [42], [43]. 

 

 

3. RESEARCH METHOD 

The research design is of a non-experimental type, because initially tests were carried out to search 

for patterns of the collected data (historical criticality of hydraulic excavator systems) based on various 

automatic learning algorithms, with the purpose of Identify which of all the analyzed algorithms show better 

results for sensitivity, specificity, precision and accuracy (algorithm performance metrics). After determining 

the algorithm with the best performance, the results of the fault classification model were obtained with respect 

to the system where said fault is located (the systems that make up the hydraulic excavator will be called 

algorithm classes). Table 1 shows the algorithm classes with their respective coding. 
 

 

Table 1. Coding of algorithm classes 
RN° Code Class 

1 DS Drive system 
2 RS Refrigeration system 

3 IS Intake system 

4 LS Lubrication system 
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4. DESCRIPTION AND DEVELOPMENT 

4.1.  Description 

The development of the research was carried out on a study population composed of Caterpillar brand 

hydraulic excavators with a capacity of 75TN, whose number is 126 excavators. Also, because it was possible 

to acquire and record data from all the excavators that make up the population, for this investigation it was 

considered that the sample is equal to the population. Figure 1 shows the architecture of the predictive model 

determination using the classification algorithm, which aims to locate the system in which faults occur in a 

hydraulic excavator. 

It should be noted that, although the hydraulic excavator is composed of 9 systems, the selection of 

the four systems called algorithm classes (motor, cooling, admission and lubrication) was made based on the 

data collected. In which the criticality, frequency of failures and operating conditions of the machinery, that is, 

resources were selected and directed in the systems where it is most necessary to improve the reliability and 

availability of the hydraulic excavator. In Figure 2, the traditional testing process for fault detection and 

identification is shown. 

Likewise, from these test processes on fault identification data are generated and stored on the location 

of faults in a historical way, so that a large volume of structured data is generated. And whose utility will be 

centered on a supersivated learning algorithm, to perform a fault classification process with respect to each 

excavator machine. In Figure 3, the data obtained in the maintenance service process is displayed. 
 

 

  
 

Figure 1. Architecture of the predictive model determination 
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Figure 2. Caterpillar 75TN excavator in failure detection and evaluation process 
 

 

 
 

Figure 3. Generation and storage of historical structured data on the maintenance service 
 

 

Table 2 shows the criticality values obtained in the data collection period of each system. In which it 

is specified that these indicators refer to failure frequency, mean time between failures (MTBF), medium time 

to repair (MTTR) and level of criticality. With respect to the frequency of failures, a greater value is presented 

in the management system, while with respect to the MTBF and MTTR indicators, they are presented in the 

auxiliary systems and the management system, respectively. 
 

 

Table 2. Criticity analysis of hydraulic excavator systems 

Systems 
Failure frequency 

(I1) 

MTBF 

(I2) 

MTTR 

(I3) 

Criticality condition 

(I4) 

Drive System 832 214.81 41.23 3 

Refrigeration system 572 273.43 33 2 

Intake system 348 305.76 25.3 2 

Lubrication system 260 331.26 22.46 2 

Starting and charging system 79 655.98 15.33 1 

Fuel system 53 676.98 9.89 1 

Exhaust system 52 678.9 9 1 

Control system 47 683.4 9.05 1 

Auxiliary systems 39 691.5 8.97 1 

 

 

4.2.  Development 

Through the MATLAB R2021a software and the classification learner and statistics and machine 

learning toolbox 12.1 tools, the predictive model with the highest accuracy in locating failures in hydraulic 

excavators is identified. The results generated by the Matlab R2021a software are shown in Table 3. According 

to Table 3, of all the supervised learning algorithms, the best classification model for the location of failures in 

hydraulic excavators is given by the ensemble bagged trees algorithm, with an accuracy (validation) of 97.1%. 

Likewise, the comparative analysis of the classification algorithms is carried out according to their performance 

metrics (sensitivity, specificity, precision and accuracy). In Figure 4 the ensemble bagged trees algorithm is 

the one with the best sensitivity value of 0.97, which means that this algorithm is the one that best expresses 
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how well the model can detect true positive rates (TPR). This refers to the proportion of positive cases that 

were correctly identified by the algorithm. 

 

 

Table 3. Choice of algorithm according to its accuracy 
Class Accuracy 

Tree: Fine Tree 74.8% 
SVM: Cubic SVM 77.33% 

SVM: Fine Gaussian SVM 74.66% 

Ensemble: Bagged Trees 97.1% 

Neuronal Network: Medium Neuronal Network 81.10% 

Neuronal Network: Wide Neuronal Network 90.90% 

Neuronal Network: Trilayered Neuronal Network 78.00% 

 

 

In Figure 4 shows the confusion matrix, in relation to the sensitivity metric, which indicates the rate 

of true positives (TPR) and the rate of false negatives (FNR) of the predictive model. As shown in Figure 4 in 

the double support (DS) model, 97.5% of positive samples are correctly classified as positive, while 2.5% of 

positive samples are erroneously classified as negative in right stance (RS). In the IS model, 95.9% of positive 

samples are correctly classified as positive, while 4.1% of positive samples are erroneously classified as 

negative in left stance (LS). In the LS model, 96.7% of positive samples are correctly classified as positive, 

while 3.3% of positive samples are erroneously classified as negative in IS. And in the RS model, 98.4% of 

positive samples are correctly classified as positive, while 1.6% of positive samples are erroneously classified 

as negative in LS. 

Although all the sensitivity levels shown in Figure 4 are high, it is highlighted that of the 4 classes on 

which the predictive model acted, the RS class shows the best percentage of sensitivity (98.4%), this means that 

in this class the predictive model has the greatest ability to discriminate between a true positive rate (TPR) from 

a false negative rate (FNR). Also, it can be indicated that the percentage of the determined false negative rates are 

considered as low. In Figure 5 shows the confusion matrix, in relation to the accuracy metric, which indicates the 

positive predictive value (PPV) and the false detection or false discovery rate (FDR) of the predictive model. As 

shown in Figure 6 in the DS model, 100% of samples have the probability that a positive and significant finding 

is true, while 2.4% of the sample has the conditional probability that a false finding reflects a true effect on SR. 

In the IS model, 96.7% of samples have the probability that a positive and significant finding is true, while 4% of 

the sample have the conditional probability that a false finding reflects a true effect on LS. In the LS model, 94.4% 

of samples have the probability that a positive and significant finding is true, while 3.3% of the sample has the 

conditional probability that a false finding reflects a true effect on IS. And in the RS model, 97.6% of samples 

have the probability that a positive and significant finding is true, while 1.6% of the sample have the conditional 

probability that a false finding reflects a true effect on LS. Another aspect to take into account are the levels of 

accuracy, which turned out to be high, however, of the 4 classes on which the predictive model acted, the DS 

class shows the best percentage of accuracy (100.0%), this means that in this class the predictive model has the 

best ability to assess the probability of a significant result reflecting a true difference. 
 

 

 
 

Figure 4. Confusion matrix in relation to 

the sensitivity metric 

 
 

Figure 5. Confusion matrix in relation to the accuracy 

metric 
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Next, Table 4 shows the results of sensitivity, specificity, precision and accuracy (performance 

metrics of the algorithm) of the predictive model, for each class. This Table 4 shows that the four metrics show 

relatively high values in the 4 classes, finding the general average of the specificity with a yield of 99.04%. 

The precision with a yield of 98.56%, the sensitivity with a yield of 97.12% and the accuracy of the predictive 

model with 97.15% performance. 

 

 

Table 4. Ensemble bagged trees classification algorithm metrics 
Class Sensitivity Specificity Precision Accuracy 

Drive system 97.54% 100.00% 99.38% 100.00% 
Refrigeration system 95.87% 98.90% 98.15% 96.67% 

Intake system 96.69% 98.08% 97.74% 94.35% 
Lubrication system 98.36% 99.18% 98.97% 97.56% 

Total 97.12% 99.04% 98.56% 97.15% 

 

 

Determined the classification algorithm and its metrics (sensitivity, specificity, precision and 

accuracy). Using the following Figure 6 shows the procedure of the application of the predictive model in the 

location of failures in hydraulic excavators in a service company. As shown in Figure 6, the application of the 

predictive model seeks to generate a positive effect in the management of the maintenance service, optimizing 

its continuity, capacity and availability, in this way a correct and uninterrupted operation will be obtained at a 

reasonable cost and with correct resources dimensioned. 

 

 

 
 

Figure 6. Procedure for the application of the predictive model in the location of failures  

 

 

4.3.  Discussions 

The results are similar to those obtained in [7] where it is observed that the machine learning algorithm 

correctly classifies the failure data in their respective systems (hydraulic, electrical, motor, mechanical, 

lubrication and refrigeration). Therefore, when applying this technological tool, it is possible to reduce the time 

spent in the process of classifying the failure data of the PC4000-6 fleet of machines, making use of a machine 

learning algorithm with an accuracy of 85%. In this way A support tool can be available to maintenance 

personnel to enable them to quickly obtain adequate information in order to seek strategies to improve the 

maintenance management of the PC4000-6 machine fleet. 

As indicated in [24], the use of a predictive model using machine learning algorithms is carried out in 

order to be able to more profitably manage the maintenance of the asset in the operation of the mining trucks, 

for which a ROC (AUC) of almost 100% (value = 1) allows to visualize the effectiveness of each type of 
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labeling in the algorithm. In Baptista et al. [12] supervised learning of machine learning was used to predict 

the state of the induction motor bearings, the model gave a prediction percentage of 80% in serious failures, 

97% of minor failures, 82% moderate failures and 100% healthy. In Abdullahi et al. [3] the algorithm 

programmed in MATLAB allows to detect faults and identify their nature in induction electric motors. In this 

way, failures are detected in their initial stages, so there is enough time to plan and schedule corrective actions 

(corrective maintenance), minimizing downtime and the negative effect on production, guaranteeing better 

quality of repairs. The Hu et al. [6] manages to detect and diagnose the operating modes and faults of a motor 

by means of machine learning with an accuracy of 98.06%, thereby achieving the correct detection of 13 of the 

15 operating modes or failure, providing this This is an advantage to the system, since it would quickly warn 

of a triad of failures with the consequent advance warning and observation status of an evolution towards 

failure. 

Likewise, in the research carried out in [10] a precision of 90.3% and 84.5% has been obtained, thus 

fulfilling the objective of creating an artificial intelligence that self-diagnoses the state of the actuator with a 

certain precision and potentially more efficient than manual diagnostics could be done by any operator. The 

aforementioned study demonstrates the great potential of machine learning techniques, and how they can 

improve the performance of a wide variety of activities. In Jiang et al. [14] it is pointed out that the use of the 

machine learning technique with MATLAB, manages to improve predictive maintenance, therefore, it also 

optimizes the availability and service precision of the Komatsu 830E and 930E electric mining trucks. The 

research determines that the most critical systems in Komatsu trucks are mainly in the electrical propulsion 

system, specifically in the drive wheels. As Zeng et al. [4], the solution developed using machine learning 

algorithms allows predicting the appearance of the different failure modes described in the FMECA of a ship's 

combustion engine. The tasks of prediction and detection of anomalies are totally independent, so the latter can 

be carried out both for future moments (data from the prediction), present (real time) or past (a posteriori 

analysis). 

 

 

4 CONCLUSION  

The improvement of continuity management processes, capacity and availability of maintenance 

services, through technological tools, seek to provide operational support, with an effective cost and with 

correctly dimensioned resources that achieve the satisfaction of their strategic objectives in the organizations 

or companies of service, which will be reflected in customer satisfaction. Thus, through the investigation, it 

was determined that the predictive model with the ensemble bagged trees algorithm grants an accuracy of 

97.15% in the location of the system in which the failures in hydraulic excavators occur, thus contributing to 

planning and availability of resources in the maintenance process, also optimizing the continuity, capacity and 

availability of the maintenance service. Since, in maintenance services, the demand for components and 

supplies that could possibly be useful to carry out a change or installation quickly is not anticipated, especially 

when it comes to a fleet, for this reason the contribution of the ensemble bagged trees classification algorithm 

since it specifies to 97.15% the location of the system where the fault is found, due to the criticality condition, 

frequency of failures and operating conditions of the machinery. By performing predictive maintenance, not 

only can the current status of the machinery be analyzed, but also more precise maintenance can be planned, 

reducing unplanned production downtime and unwanted costs, due to failures not detected by techniques 

preventive maintenance, all this generates satisfaction in customer service. 
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