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 Body balance test is one of the methods of assessing vestibular level. 

However, the results are still qualitative, depending on the subjectivity of the 

doctor. This study proposes a new, low-cost method to quantitatively 

determine the degree of body imbalance. The proposal includes a low-cost 
laser source, a proposed rectangular paper frame, a camera, and a computer. 

The rectangular frame is mounted on the patient. The laser source is fixed 

and projected onto this rectangular frame. The laser projection point is taken 

as the origin point to evaluate the movement of the frame, which is also the 
movement of the patient’s body. This rectangular frame is pre-marked with 

points to get more accuracy of the position of the laser point. Therefore, this 

measurement is not affected by the position of the camera during recording. 

The video is then procecced by computer to determine the position of laser 
point, it is also presented the movement of the patient’s body. Initial trials 

were conducted on vestibular and normal patients. The results show that 

there is a clear difference in the balance of the vestibular and healthy people. 

The proposed method can be used to support quantitative screening for 
vestibular disease. 
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1. INTRODUCTION  

Vestibular disorders are becoming popular all around the world. According to this postural measure, 

about 35% of US individuals aged 40 and up exhibited signs of balance dysfunction, this ratio rises 

dramatically with age, reaching 85% of those aged 80 and up [1]-[3]. The vestibular disease has a significant 

impact on the patient’s everyday’s life [4]. Furthermore, long-term vestibular problems are linked to a variety 

of serious illnesses, including stroke, hypotension, and heart attack [5], [6]. As a result, there is an urgent 

need for the therapy, which is driven by the incidence and severity of vestibular diseases.  

According to literature, the most well-known procedures for diagnosing vestibular problems are 

hearing tests, eye movement tests and balance tests [7]-[9]. In the hearing tests, we need earphones, 

electrodes, and a quiet room [7], [10]. Despite the fact that it produces precise findings, it takes time for 

doctor to inspect every single patient. Eye movement tests are another way to check for vestibular problems. 

If a patient displays significant anomalies in voluntary and reflexive eye movements, a referral to neurology 

or neuroophthalmology may be necessary [2]. A few examples of this approach can be 

Electronystagmography (ENG), Videonystagmography (VNG) [11], rotation tests [7], benign paroxysmal 

positional vertigo (BPPV) of the posterior semicircular canal [12], Electrovestibulography (EVestG) [13]. 

Another method requires averaging of muscle activity thus are termed vestibular evoked myogenic potentials 

https://creativecommons.org/licenses/by-sa/4.0/
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(VEMPs) [14], [15]. Although these methods give accurate findings; but it is expensive and complicated, 

making it unsuitable for screening.  

There are several method to determine human’s body movement. In [16], video head impulse test is 

used in elderly individuals, hence can detect vestibular disorder in the elderly. Red, green, and blue (RGB) 

videos of 3D body models is used in assess general movement [17]. In children, the typical approach to 

estimate the balance deficits is timed one leg stance task [18]-[20], or based on the physical fitness outcomes 

[21], or based on model-based clustering [22], or based on cognitive process [23]. 

Vestibular disorders often make patients unable to keep their balance. When patients have vestibular 

dysfunction, visual information may be sufficient to eliminate imbalance and maintain stable posture. When 

the visual input is removed, this is the main idea of the Romberg test [24], [25]. Bodily instability due to lack 

of vision is easily exposed, especially when requiring the patient to stand in particular positions, which 

produce different information about the position of the joints [26]. Therefore, balance testing has long been 

considered one of the best methods for detecting vestibular disorders. In a balance test, the test is done for a 

short time to determine how well the body is able to balance. The Romberg test comes in two different 

versions: the original test and the tandem Romberg test. In the original Romberg test, the patient stands with 

his feet together and his arms crossed in front of his body. The patient tries to keep his balance with his eyes 

open and then closed. Vestibular level is assessed based on how long the patient can balance with eyes 

closed. The tandem Romberg test is a modification of the patient's standing position from the original 

Romberg test. In this test, the patient stands with both feet in a heel-to-toe position, one leg straight in front 

of the other, first with eyes open and then with eyes closed. The patient's arms are crossed in front of his 

chest and his open palm rests on the opposite shoulder. The findings of the Romberg test were refined to 

provide an objective assessment of postural stability [27], [28]. The Romberg test can be used as a rapid 

screening tool for vestibular disease in the clinic [29]. However, it still has significant disadvantages such as 

the inability to accurately detect the patient's sway [30], [31]. In particular, it does not create a database that 

records the patient's status quantitatively through the tests. 

In this study, we proposed a method that have the ability to overcome the disadvantages of the 

previous approach that it does not depend on the observation and the objective of doctors. Our proposed 

method can evaluate the patient’s balance quantitatively, which is more accurate and less time cosuming. In 

our method, we propose a low-cost and flexible computer-aided Romberg test assesment system that can 

assess the patient's balance through the Romberg test and store the data for future purposes. Our system 

includes a laser pointer, a small rectangular paper frame, a camera and a computer, which we will talk in 

detail in the next part. The system automatically provides quantitative results on people’s balance disorder 

and this data can be kept for assessing the patient's ability to recover during treatment and later. Our paper 

has four section: section 1 is the introduction, section 2 provides our proposed method, section 3 evaluates 

the experiment, and section 4 concludes the paper. 

 

 

2. RESEARCH METHOD 

2.1.  Designed system 

The proposed system for use during the Romberg test is presented in Figure 1, for automated 

quantitative assessment of body balance. Components of the system include: a low-cost laser pointer, a small 

rectangular paper frame, a camera, and a personal computer for data processing. The process of performing a 

body balance assessment is performed: 

- The paper frame is attached to the back of the patient’s body. 

- A red laser pointer is projected onto the frame and held steady during measurement. This laser point is used 

as a reference point for motion. 

- The camera records the frame's movement relative to the reference laser point. 

- The video data is then processed to determine the movement of the frame relative to the reference laser 

point, which is also the movement of the body.  

As shown in Figure 1, the proposed frame is attached to the patient’s back [32]. Thus, when the 

patient moves, frame also moves, the camera records this movement [33], [34]. This is known as Marker-

based technique [35], [36], the frame in this study is considered as a marker, which is attached to the target 

region, such as limb, joint, or body part. And the position and orientation of the target region will be tracked. 

This technique is widely applied in sports, rehabilitation, and biomechanical [37]-[44]. 

In order to facilitate processing, the frame is designed with a white background and blue border. 

This makes the image easily identifiable in case the patient wears a shirt of the same color with the 

background. To calculate the movement of the laser point on the frame more accurately, on the white 

background of the frame 15 pairs of black dots are designed, each pair is 1cm apart as shown in Figure 2. 
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Figure 1. The proposed system components Figure 2. The proposed rectangle frame 
 

 

As mentioned, the laser point is fixed and the frame moves with the body and we need to determine 

this motion to evaluate the imbalance in the Romberg test. If we consider the frame to be fixed, the motion of 

the laser point on the frame is the body's movement but in the opposite direction. The camera records a video 

of the frame, including the laser point on the frame, at 30-second intervals. Video is then processed to 

accurately determine the motion of the laser point on the frame. It is also the movement of the body. 
 

2.2.  Key steps and algorithms 

The proposed processing algorithm is used to determine the movement of the reference laser point 

on the frame. To do this, the video is extracted into a series of images. Then the proposed blue frame area is 

extracted. Next, the background of the frame is extracted and distorted back to a rectangular shape (in case 

the camera moves in different positions during the rotation, causing the frame to no longer retain its 

rectangular shape). The proposed frame is surrounded by a blue outline to facilitate frame recognition if the 

patient is wearing a shirt of the same color as the background color of the frame. The laser point will be 

extracted from each rectangular frame. In each frame, virtual joins are connected between the two premark 

points of each pair. The position of the laser point to the first virtual ramp is calculated as the distance of the 

laser point to the position of the first left virtual join, plus the number of pairs of further left premark points. 

This calculation is illustrated in Figure 3. 
 

2.2.1. Tracking frame 

Figure 4 describes the proposed rectangular frame extraction algorithm. As mentioned, the 

advantage of this method is that the recording is flexible, which can use any type of camera (we use the 

camera available on Iphone phones, recording speed 30 frames per second), the camera does not required to 

be fixed, as long as the proposed rectangular frame is always recorded in the video for analysis. The video 

captures the movement of a rectangular frame mounted on the body, along with a red laser source projected 

onto the rectangular frame as a red dot. RGB color image sequence extracted from video. Then the 

rectangular frame image is separated from the image. To facilitate the separation of this rectangular frame, 

the outer border of the rectangular frame will be bounded by a blue border, which facilitates the correct 

separation of the frame in case the patient wears a shirt of the same color as the background of the proposed 

frame (here in white color). Rectangular frame with blue border, white background and black pairs' dots. If 

the brightness is changed during recording the video, the RGB image will give different R, G, and B color 

values, it will be difficult to detect the blue border. During movie shooting, the brightness of the environment 

may be changed, so RGB color images need to be converted to hue, saturation and value (HSV) space. The 

original RGB image as shown in Figure 5(a) is converted to an HSV image, creating a color threshold to 

extract the blue area. The blue contour of the rectangular frame will be extracted, the result shown in  

Figure 5(b). The determination of the laser point area is performed similarly to the blue frame extraction step, 

but according to the color range of the laser point area as shown in Figure 5(c). Then determine the center of 

this area and take this point as the coordinate of the laser point.  

When creating color thresholds in HSV images, some other objects with the same color range as the 

blue border will also be extracted. Therefore, at this step, it is necessary to apply some conditions to 

accurately determine the proposed framework. The condition here is that the selected frame must have a 

quadrangular shape and the laser point must be in that extraction region. From the binary image after the blue 

filter as shown in Figure 5(b), contours are used to define the shape of the extracted region. The contour is 

the coordinates of the points along the boundary of the object. Select the object as a quadrilateral, with the 

coordinates of the four vertices of the quadrilateral being the top left, bottom left, top right, and bottom right 

points. The coordinates of the vertices of the quadrilateral are compared with the coordinates of the laser 

point. The proposed frame is the quadrilateral to satisfy the condition containing laser point. Figure 5(d) 

shows the extracted frame.  



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

A novel fast-qualitative balance test method of screening for vestibular disorder patients (Tran Anh Vu) 

913 

 
 

Figure 3. The flowchart of method 
 

 

However, this frame can be distorted, not rectangular due to the camera angle. Therefore, this 

quadrangular frame needs to be re-calibrated into a rectangle according to the original scale. To increase 

accuracy, the blue border is removed, leaving only the white background inside. The same treatment as to 

find the background area. The four vertices of the background area are rescaled to create a rectangle as 

shown in Figure 5(e). 
 

 

 
 

Figure 4. Flowchart of croping background frame algorithm 
 

 

  
(a) 

 

(b) 
 

  
(c) 

 

(d) 
 

 
(e) 

 

Figure 5. The tracking background frame steps: (a) image extracted from video, (b) mask of filtered blue 

area, (c) mask of extracted laser point, (d) the extracted area with laser point and black dots inside 
 

 

2.2.2. Movement determination 

The process of movement determination is given in Figure 6. As mentioned, in order to increase 

flexibility and reduce the complexity of the setup process, the proposed option allows users to move the 

camera during the recording process, as long as the proposed rectangular paper frame always recorded. In 

order to increase the accuracy in calculating the displacement of the laser point on the proposed background 

frame, this frame consists of 15 pairs of black dots, each 1 cm apart, which are considered as reference 
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coordinates on the frame. The black dots and the center coordinates of these black dots will be extracted and 

calculated from the background frame image in Figure 5(e). The background image in Figure 5(e) is 

converted from an RGB image to a grayscale image and creates a histogram as shown in Figure 7(a) to serve 

to separate the black points according to their gray threshold on the histogram. Since lighting conditions can 

change during recording, which will affect the gray level value of the pixels in the image, the selection of the 

threshold to separate the black dots will be dynamically selected. Since the total number of pixels of the 

black dots is quite small compared to the total number of pixels of the extracted frame (about 100000 pixels), 

the gray threshold value is chosen under the condition that the total number of pixels has a gray level value 

from 0 to the value selected threshold is about 8000 pixels. The mask of black points is shown in Figure 7(b). 

After the center coordinates of the black points are determined, virtual lines connect between the central 

coordinates of the upper and lower pairs of black dots. These virtual lines are used as reference lines to 

calculate the distance of the laser position from the origin (first virtual line on the left), as shown in  

Figure 7(c). 
 

 

 
 

Figure 6. The flowchart of movement determination algorithm 
 

 

This distance as shown in Figure 8, is calculated by counting the number of virtual lines from the 

second left line to the laser point (N) and adding the distance from the center coordinate of the laser point to 

its nearest left virtual line (∆d/∆D). The result of measuring the distance from the laser point to the left first 

virtual line is shown in Figure 9. Since the laser point is fixed, the proposed background frame is attached to 

the object, so the relative motion of the laser point on the frameis also the motion of the object. 
 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = (𝑁 +  
∆𝑑

∆𝐷
) × 1𝑐𝑚  

 

Where N lines are also N centimeters because the distance between the lines is 1 centimeter. 

 ∆𝑑: Number of pixel from center of laser point to its nearest left virtual line.  

∆D: Total number of pixel between its nearest left and right virtual lines.  
 

 

 
(a) 

 

  
(b) (c) 

 

Figure 7. Determination of the position of the laser point on the proposed frame, (a) histogram of the detected 

background frame, (b) the binary image of background frame after thresholding step, and (c) virtual lines 

between corresponding upper and lower black dots 
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Figure 8. Laser point distance calculation 
 

Figure 9. Distance of laser point to the first line 

on the left 
 

 

3. EXPERIMENTS 

3.1.  Examining accuracy 

Compared to the marker-less technique [45], [46], the marker-based technique has the advantage of 

high accuracy and stability in object tracking by identifying based on physical marker [47]. However, it is 

necessary to estimate the camera’s pose (including position and rotation) in reality to refer to the obtained 

image [36], [46]. As a result, when camera moves from its initial position, it will cause disruption in the 

frame sequence [46]. In other words, the portability of the camera is limited. 

Our proposed method can effectively solve the limitation. To prove this, we performed a test as 

shown in Figure 10. Firstly, the laser source is projected onto the frame and kept in a stationary state. Place 

the camera at the first position (𝛼 =  90°), then move the camera to the left in turn with distances (d) with 

the corresponding angles (𝛼). The result is shown in Table 1.  
 

 

 
 

Figure 10. Experiment to test the flexibility of the proposed method 
 

 

Table 1. Test results 
d (cm) 0 20 40 60 80 100 120 140 160 

Angle (𝛼) 90° 78.69° 68.20° 59.04° 51.34° 45° 39.81° 35.54° 32.01° 
Distance (cm) 4.92 4.92 4.92 4.92 4.92 4.92 4.90 4.87 X 

 

 

From Table 1, it can be seen clearly that except for the measument limit at d = 160 cm, the other 

positions give quite similar results. A difference of 0.05 cm per a range angle (55°) (from d = 0 to 140 cm) is 

considered very small. This proves that our proposed method is not affected by the position of the camera 

during recording. 
 

3.2.  Experimental setup 

As illustrated in Figure 2, the experiment was performed by using a portable camera, a red laser 

source, and a proposed rectangle frame. Height is the main factor influencing the body's sway [48]. Hence, in 

this study, the proposed frame was sticked to the volunteer's back, at around 0.53-0.56 (for female) and 0.53-

0.59 (for male) of human’s height. At this position, people have the strongest sway [32], [33]. During the test, 

the red laser source is anchored to the ground and projected onto the white region of the proposed frame. In 

this study, we use Iphone 7plus’s camera to record the video for experiment, which has resolution of 

1080x1920 pixel, and 30 frames per second.  

The tests were carried out in a room with normal lighting, temperature, and sound, which had no 

negative impact on the patient's state during the procedure. The video was captured with the attached frame 

for 30 seconds after the objects started standing in tandem Romberg stance with closed eyes. The relative 

motions of the laser point in the frame are the patient's sway. 
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3.3.  Experimental result and discussion 

The test was performed on a group of volunteers consisting of 35 healthy volunteers (no vertigo 

symptoms) and 3 patients with vestibular symptoms (headache, insomnia, dizziness), who were diagnosed by 

a doctor. Movement data of volunteers were collected and analyzed through 30-second videos. This data 

represents the position of the laser point relative to the origin. The data are normalized by converting the 

origin to the average value of the entire 30 seconds data segment. 

The change in the position of the body over time is shown in Figure 11. It can be seen that the 

amplitude of the body position fluctuations is larger in vestibular patients than that in healthy volunteers. 

Each dataset for each volunteer contains N=900 samples (30 samples x 30 fps) measured in time series. 
 

 

 
 

Figure 11. The position of the body’s center of healthy volunteer and patient 
 

 

According to study [34], [49]-[51], this data can be converted to more meaningful parameters: mean 

distance (MD), root mean square (RMS) distance. Figure 12 is a graph showing the difference in MD of 

healthy volunteers and patients. The average of MD values and its standard deviation (the black dashed lines) 

of healthy volunteers is 0.67 cm ± 0.17 cm, those values for patients is 1.7 cm ± 0.1 cm. This figure shows 

that the value of the mean distance of the group of patients is higher than that of the healthy volunteers group. 

Figure 13 shows the difference in RMS distance of healthy volunteers and patients. The average of 

RMS values and its standard deviation (the black dashed lines) of healthy volunteers is 0.84 cm ± 0.22 cm, 

those values for patients is 2.04 cm ± 0.11 cm. This figure shows that the value of the RMS distance of the 

group of patients is higher than that of the healthy volunteers group. With the preliminary research resutls 

showed, patients with balance disorder and healthy people can be classified through the proposed method. 
 

 

   
 

Figure 12. Mean distance 
 

Figure 13. RMS distance 
 

 

4. CONCLUSION 

Our study demonstrated an image-processing-based technique for detecting and categorizing 

individuals with balance disorders. This method uses a simple, low-cost system, consisting of a red laser 

source, a proposed rectangular paper frame, a camera, and image processing software. The stationary laser 

source projects laser point onto the frame mounted on the patient's back. The camera may move as much as 

necessary in order to capture the frame properly. The black dots that are marked on the frame will reduce 

mistakes when the frame is slanted on viode or bent when mounted to the patient’s back. The system was 
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performed on vestibular patients and healthy people using a Romberg test. According to preliminary findings, 

the suggested method can correctly recognize human body movement during the Romberg test. It can also 

identify between two groups of people: sick and healthy people. As a result, this approach can be used to 

screen for vestibular diseases. The main advantages of this technology are its low cost, the flexibility of the 

measurement setting, and the fact that the person performing the test (videographer) does not require high 

medical expertise. 
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