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Abstract 
The modeling of heteroskedasticities and kurtosises of electricity prices is crucial to forecast the 

future distribution of electricity prices, to understand the behavior of derivatives pricing and to quantify the 
risk in electricity markets. A GARCH model with t-innovations, which is solved by maximum likelihood 
estimation, is proposed. The model can explicitly address the relationship with system loads, seasonalities, 
heteroskedasticities, and kurtosises of electricity prices. The empirical analysis based on the historical data 
of the PJM electricity market shows that the system load squares have a significant effect on the average 
daily electricity prices, there exist volatility clustering and weekly, semi-monthly, monthly, bimonthly, 
quarterly and semi-annual periods, and the variances and kurtosises of electricity prices manifest clearly 
time-varying characteristics. The model holds parsimonious scale of estimated parameters, less 
computational costs, easy to select the orders and high practical application value.   
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1. Introduction 

Deregulated electricity markets continue to confound international financial economists. 
With the rapid growth of derivative securities, the modeling and management of price risk have 
become important topics both in power industry and in academic community. The pricing in 
deregulated electricity markets is based on marginal generation costs of the last power plant 
that is required to cover the demand. Electricity prices are influenced not only by the objective 
factors such as weather condition, system load, production/operation costs, available generation 
capacity and transmission network congestion, but also by the subjective factors such as market 
trading rules, participants’ bidding strategies and their psychological reactions to price changes 
[1]. All of these factors make an accurate price forecasting become a complex issue. The price 
forecasting models can be classified in long- and short-term ones. The long-term price 
forecasting can be achieved by simulating the competitive rules, mainly including game theory 
and simulation models. With the statistical analysis for a large number of historical data, the 
mathematical model to reflect price continuous changes can be established and short-term price 
forecasting can be obtained, mainly including time series analysis (TSA), artificial neural 
network (ANN) and hybrid prediction approaches [2]. 

Because of the adaptive ability to uncertain fuzzy systems, ANN has been widely used 
for nonlinear multivariate problems [3]. In [4, 5], the electricity spot prices in California, Iran and 
Spain electricity markets were predicted by using three layer feedforward ANNs based on the 
training methods of back propagation and/or Levenberg-Marquardt algorithms. In [6, 7], the 
performances of Gaussian radial basis function and traditional ANNs were compared, indicting 
that Gaussian radial basis function ANN is more suitable for short-term electricity price forecasts 
because of its faster learning speed and better approximation capability. In [8-12], short-term 
electricity price forecasting approachs using combination of fuzzy logic, Kalman filter, support 
vector machine and ANN were proposed respectively, the results show that significantly 
improved prediction performance can be achieved by using the hybrid forecasting methods. 
However, the lower learning speed and parameters not to be easily adjusted have impeded 
ANNs’ application in practice. 

TSA has the advantage of analytical tractability. The continuous changes of time series 
can be accurately reflected with a relatively small amount of historical data. Autoregressive 
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moving average (ARMA) and autoregressive moving average with exogenous variables 
(ARMAX) models are two commonly used methods. In [13], an ARMAX model with load as an 
exogenous explanatory variable was used to predict the next 24-hour spot prices in the 
Pennsylvania-New Jersey-Maryland (PJM) electricity markets. Considering the non-constant 
means and variances for most electricity price series, a spot price forecasting method based on 
autoregressive integrated moving average (ARIMA) model was proposed in [14]. Cuaresma et 
al. [15] have noted that each hour of days is also an important factor to influence electricity spot 
prices, and an ARMA-based period-decoupled price forecasting model was proposed, showing 
greatly improved prediction accuracy for the price spikes. The electricity price forecasting 
methods using combination of ARIMA with predicted errors improvement and/or wavelet 
transfer funtion were respectively proposed in [16] and [17]. A period-decoupled electricity price 
forecasting method based on transfer function model, taking the effect of load on electricity price 
and the non-stationary properties of price series into account, was presented in [18], and further 
improved the prediction accuracy. However, with the assumption that the electricity price series 
distribution is normal with constant variance, these models in [13-18] can not effectively deal 
with the heteroscedasticity. Moreover, the more estimated parameters and computational costs 
have also impeded their heavy use in practice. 

Up to now electrical energy cannot be stored economically and therefore demand for 
electrical energy has an untempered effect on electricity prices. In particular, electricity price 
exhibits considerably richer structure than load curve and has the following characteristics: 
mean reversion, multiple seasonalities, stochastic volatility and extreme behavior with fast-
reverting spikes. Therefore understanding the pricing dynamcs of electricity is of vital 
importance for all market players’ survival under deregulated environment. In this paper, a 
multicycle GARCH model with t-innovations (hereinafter refer to as “t-innovation GARCH”) is 
proposed, in which the heteroscedasticities, kurtosises/fat-tails and multiple seasonalities of 
electricity prices are described by time-varying variances, time-varying degrees of freedom and 
sinusoidal functions. The proposed model holds the advantages of less computational costs and 
parsimonious scale of estimated parameters. Moreover, the time trend, multiple seasonalities, 
conditional heteroscedasticities, conditonal kurtosises and relationship among loads and spot 
prices can be explicitly taken into account. The empirical analysis based on the historical data of 
the PJM electricity market shows that system load squares have a significant effect on the 
average daily electricity prices, there exist volatility clustering and weekly, semi-monthly, 
monthly, bimonthly, quarterly and semi-annual periods, and the variances and kurtosises of 
electricity prices manifest clearly time-varying characteristics. 
 
 
2. Model and Solution Method 
2.1. T-innovation GARCH Model 

Electricity price forecasting model can be viewed as a multi-input single-output system, 
in which the output variable is the electricity price and the input variables are the impact factors 
of electricity price such as fuel prices, seasonality, climate, load and bidding strategies of market 
participants. Moreover, in this paper, the system will be delineated by a t-innovation GARCH 
model. Considering the market clearing prices and system loads are publicly available in each 
market all over the world. Therefore, the system loads at periods t, t-1, … and electricity prices 

at periods t-1, t-2, … are selected as the input variables. Assuming that tp , 2
td , te  and tz  

denote the spot price, system load square, residual and standardized residual at period t, 
respectively, then the t-innovation GARCH model can be formulated as follows:  

 
2( ) ( ) ( ) ( )t t t tp f t γ B d φ B p κ B ε= + + +  (1) 
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where B  is the backshift operator, m  denotes the number of changing cycles of electricity price 
series per year, th  denotes conditional variance of te , 1tI -  denotes an available information set 

till period 1t - , u , p  and q  represent respectively the lagged orders of 2
td , tp  and tε  in the 

mean equation, hr  and hs  denote the lagged orders of th  and 2
tε  in the conditional variance 

equation, ( )f t  denotes the time trend and seasonal changes, wkdd  is a dummy variable that 

takes a value of 1 if the observation is in weekday and zero otherwise, 

0 1 2 11 1 21 2( , , , , , , , , )m mα α α α α α α α= L L , 1( , , )uγ γ γ= L , 1( , , )pφ φ φ= L , 1( , , )qκ κ κ= L , 1( , , )vθ θ θ= L  and 

0 11 1 21 2( , , , , , , )
h hr sβ β β β β β= L L  are the estimated parameters. With this general formulation for the 

sinusoidal function we allow for the possibility of having many cycles per year, and the 
amplitude and location of the peak of each cycle can be respectively captured by 1iα  and 

2iα . 0 1 20, , 0, [1, ], [1, ]i j h hβ β β i r j s> ³ " Î Î are needed to guarantee the strictly positive for the 

conditional variance and the process not to degenerate. 
 
2.2. Parameters Calibration 

Before parameters calibration, assumption on the distribution of innovations needs to be 
made. Assuming that the probability density function (PDF) for the standardized residual tz , a 

white nose process with zero mean and constant variance equal to 1, is consistent with a 
student-t distribution, then the conditional PDF of te  can be expressed as [19]: 
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where Γ  is a Gamma function, tη  is the conditional degree of freedom corresponding to the 

distribution of tz , ηU  and ηL  denote the upper and lower limits of tη , ηr , sh  and vh  are 

respectively the lagged orders of the innovations, residual squares and degrees of freedom in 
the conditional freedom degree equation, 0 11 1 21 2 31 3( , , , , , , , , , )

η η ηr s vδ δ δ δ δ δ δ δ= L L L  are the parameters 

to be estimated. 
Let ( , , , , , , )ξ α φ θ γ κ β δ= , then the log-likelihood function for all observations corresponding 

to te  is given by: 
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where 1( ) ln ( )t t tl ξ g ε I -=  is the log-likelihood function for one observation at period t. By 

maximizing the ( )L ξ , the estimated values of parameters ξ , ξ , can be obtained. It is important 

to note that the log-likelihood function ( )L ξ  is highly nonlinear. Therefore the starting values of 

parameters ξ  must be selected with care. In order to improve the accuracy of estimation, a 
successive approximation method, namely using the parameters estimated from simpler models 
as starting values for more complex one, is used in this paper. 
 
2.3. Model Checking 

Under large sample, the distribution of the maximum likelihood estimation ξ  can be 
approximated by normal distribution: 
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where 0ξ  is the truth values of the estimated parameters ξ , H is a Hessian matrix. A consistent 

estimate of 0( )ξH  can be obtained by evaluating '( )L ξ ξ ξ¶ ¶ ¶  at ξ . After calculating the 

variance of ξ , the significance of estimated parameters can be tested using t-statistics. 
The Nyblom-statistic, holding the advantage that its asymptotic distribution only 

depends on the number of estimated parameters, is used to test the constancy of the proposed 
model [20]. The Nyblom-statistic NW  can be expressed as: 
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The Nyblom-statistic can be also used to test the constancy of a single estimated 

parameter. The Nyblom-statistic ,N kW  corresponding to the kth estimated parameter is given by: 

 
2

,
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= å  (6) 

 

where ktS  is  the kth element of tS , kkV  is the kth diagonal element of V . 

Cramer-Von Mises statistic can be used to test if the distribution of innovations is 
consistent with student-t distribution. Let ( )NF z  denote the cumulative distribution function 

(CDF) of student-t, ( )F z  denote the CDF of the innovations. Then Cramer-Von Mises statistic 

can be formulated as: 
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2.4. Forecasting Accuracy Evaluation 

Generally speaking, the electricity price forecasting model is one with time-varying 
parameters, and its parameters should be modified by the new available data in order to 
improve the forecasting accuracy. In this paper, the mean absolute percentage error (MAPE) is 
used to evaluate the forecasting accuracy. It can be calculated as following: 

 
µ

1

1 n tt

tt

p p
MAPE

n p=

-
= å  (8) 

 

where µ
tp  and tp  respectively refer to the forecasted and actual realized electricity prices at 

period t , n  is the period number to be forecasted.  
 
 
3. Empirical Results 

The PJM electricity market is organized as a day-ahead one. Participants submit their 
buying and selling bid curves for each of the next 24 hours. Then the market operator 
aggregates bids for each hour and determines market clearing prices and volumes for each 
hour of the following day. In this paper, a total of 1197 observations of average daily electricity 
spot prices in dollars per megawatt hour ($/MWh) and average daily loads in gigawatt (Gw) are 
employed to validate the performance of the t-innovation GARCH model. The sample period 
begins on 1 Jun., 2007 and ends on 9 Sep., 2010. Table 1 presents some descriptive statistics 
for the average daily electricity spot price and system load series. It can be seen from Table 1 
that electricity prices and system loads are quite volatile, highly non-normal, clearly skewed 
rightward, and with median well below the mean. In fact the nulls of normality of electricity price 
and system load series are rejected with the Jarque-Bera test. This is typical of electricity spot 
prices in a competitive market.  

 
 

Table 1. Descriptive Statistics of the Sample Data 

Statistics Price($/MWh) Load(GW) 

Mean 53.52041 81.19221 

Median 49.97068 79.89221 

Maximum 189.6557 115.7839 

Minimum 24.87494 58.34586 

Std. Dev. 20.20158 10.50560 

Skewness 1.420081 0.375318 

Jarque-Bera 
(p-value) 

1046.748 
(0.0000) 

36.78506 
(0.0000) 

 
 
Analyzing the correlation coefficient, partial correlation coefficient and time trend chart 

of the sample data, the values of , , , , , , , ,h hm p q u r s r s vh h h  in the t-innovation GARCH model can 

be identified. In our situation, they are equal to 52, 1, 3, 1, 1, 1, 1, 1, 1 respectively. Table 2 
shows the results of maximum likelihood estimation. Investigating the estimated results in Table 
2, the following conclusions can be derived:  

1) The MAPE 6.005% of our t-innovation GARCH model is approximately equal to that 
of the models of references [13-18], but the number of estimated parameters is only 27, which is 
less than the models of references [13-18]. To some extent this reduces the model complexity, 
improves the computing speed and strengthens the practical application ability of the model. 



                       ISSN: 2302-4046 

TELKOMNIKA Vol. 11, No. 10, October 2013 : 5675 – 5683 

5680

2) The t-statistics for 1 2, , (2,4,6,12,24,52)i i i Îa a  are significant at the 95% confidence 

level. This shows that there exists weekly, semi-monthly, monthly, bimonthly, quarterly and 
semi-annual cycles in the sample periods. The amplitude of the peak for the weekly cycle is 
larger than others. 

3) The t-statistic for 2a  is significant at the 99% confidence level. This shows that the 

impacts of system loads on the average daily electricity spot prices for weekday and weekend 
are more different. 

 
 

Table 2. Estimated results of t-innovation GARCH model 
parameters estimated Std. Err. t statistics p-value Nyblom statistics 

0a  0.7896 0.3436 2.298 0.0215 0.1215 

2a  -1.8039 0.3178 -5.677 0.0000 0.1992 

0γ  0.0063 0.0002 36.738 0.0000 0.1834 

1γ  -0.0061 0.0002 -35.857 0.0000 0.1200 

1φ  0.9820 0.0035 281.29 0.0000 0.1537 

12a  0.3155 0.0830 3.802 0.0001 0.0369 

22a  277.59 4.7365 58.607 0.0000 0.0257 

14a  -0.1373 0.0408 -3.636 0.0008 0.0929 

24a  -323.35 4.6496 -69.544 0.0000 0.0284 

16a  0.0886 0.0417 2.125 0.0336 0.2719 

26a  -18.198 4.8807 -3.728 0.0002 0.0809 

112a  -0.0996 0.0510 -1.950 0.0511 0.0936 

212a  17.334 2.5088 6.909 0.0000 0.2947 

124a  -0.1744 0.0797 -2.190 0.0286 0.1081 

224a  -81.445 1.0991 -74.102 0.0000 0.0740 

152a  0.9759 0.1489 6.554 0.0000 0.0784 

252a  -94.757 0.1964 -482.38 0.0000 0.3484 

1κ  -0.2657 0.0293 -9.081 0.0000 0.3268 

2κ  -0.2383 0.0312 -7.641 0.0000 0.2640 

3κ  -0.1781 0.0275 -6.497 0.0000 0.4698 

0b  0.2532 0.1118 2.264 0.0236 0.1864 

11b  0.8228 0.0270 30.436 0.0000 0.5669 

21b  0.2140 0.0388 5.515 0.0000 0.5727 

0d  -1.2305 0.4080 -3.016 0.0026 0.1779 

11d  0.1850 0.0465 3.981 0.0001 0.0736 

21d  -0.0046 0.0013 -3.605 0.0003 0.0756 

31d  0.4441 0.1592 2.790 0.0053 0.2525 

Maximum Log-likelihood -3319.20 MAPE 6.005% 

Cramer-Von Mises Statistics 0.259435 Nyblom Statistics 9.47040 

 
 
4) The t-statistics for 0γ  and 1γ  are significant at the 99% confidence level, indicating 

that 2
td  has a marked impact on the average daily electricity spot prices. However, when 2

td  is 

incorporated in the mean equation, the sign of 2a  changes from positive to negative. This 

shows that there exists some substitution effect between wkdd  and 2
td . 

5) The t-statistic for 11b  in the conditional variance equation is positive and significant at 

the 99% confidence interval, indicating that the volatility of electricity prices is strongly 
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persistent. The impacts of prior period volatility on current period volatility show a gradually 
weakening trend, because the value of 11b  is less than 1. As shown in Figure 1, there clearly 

exists volatility clustering, demonstrating that high conditional variance is followed by high 
conditional variance.  
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Figure 1. Conditional heteroskedasticities of price series 

 
 
6) The t-statistic of 21b  in the conditional variance equation is positive and significant at 

the 99% confidence interval, indicating that the volatility of electricity prices will be strengthened 
by external shocks. The sum of 11b  and 21b  is close to 1, indicating that there may exist an 

integrated GARCH effect for the average daily electricity prices. The impacts of volatility of prior 
periods and external shocks on current period volatility have longer persistence. 

7) The t-statistics of 11d  and 21d  are siginificant at the 99% confidence interval, 

indicating that the conditional degrees of freedom of student-t distribution manifest obviously 
time-varying features. The innovations and their squares have a significant impact on the 
conditional degrees of freedom. 

8) The t-statistic of 31d  is significant at the 99% confidence interval, indicating that the 

conditional freedom degrees are more strongly persistent. The impacts of the freedom degrees 
of prior periods on the one of current period show a gradually weakening trend. There exists 
obvious volatility clustering appearance, but the influencing strength is weaker than the 
conditional variance ( 31 11<d b ). It can be seen from Figure 2, the conditional freedom degrees 

are mainly between 2 and 8, indicating that there exist obvious kurtosises and fat-tails in the 
electricity price series.  

9) The Cramer-Von Mises statistic 0.259 is less than the critical limit 0.333 at the 99% 
confidence level, indicating that the student-t distribution is fully consistent with the actual 
distribution of innovations, as shown in Figure 3. 

10) The Nyblom-statistics of all estimated parameters are less than the critical limit at 
the 99% confidence level, but the one for the whole model, 9.4704, is slightly larger than the 
critical limit at the 99% confidence level, indicating that there exists some instability for the 

above model. When removed wkdd  or replace 2
td  with td  from the mean equation, the Nyblom-

statistic of the whole model will be less than the critical limit at the 99% confidence level, but the 

MAPE will increase about 0.3%. One possible explanation is that only using wkdd  and 2
td  is not 

accurately described the relationship of loads and electricity prices. So how to more reasonably 
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address the influencing factor of system loads will be the main problem to be solved in future 
research work. 
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Figure 2. Probability density of degrees of freedom 

 
 

-2 0 -1 0 0 1 0 2 0
0 .0 0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .1 0

0 .1 2

0 .1 4

0 .1 6

R e s id u a ls

Pr
ob

ab
il

it
y 

D
en

si
ty

 F
un

ct
io

n

A c tu a l
S tu d en t-t

 
Figure 3. Probability density of the innovations 

 
 

4. Conclusion 
With comprehensive consideration of the changing rules and influencing factors of the 

electricity spot prices, a GARCH model with t-innovations is proposed, in which the multiple 
seasonalities, heteroskedasticities and kurtosises/fat-tails of electricity prices are described by 
sinusoidal functions, time-varying variances and time-varying degrees of freedom respectively. 
The proposed model holds the advantages of less computational costs and parsimonious scale 
of estimated parameters. Moreover, the heteroscedasticities, time trend, kurtosises/fat-tails, 
multiple seasonalities and relationship among loads and spot prices can be fully taken into 
account. The empirical analysis based on the historical data of the PJM electricity market from 1 
Jun., 2007 to 9 Sep., 2010 shows that the system load squares have a significant effect on the 
average daily electricity spot prices, there exist volatility clustering and weekly, semi-monthly, 
monthly, bimonthly, quarterly and semi-annual periods, and the variances and kurtosises of 
electricity prices manifest clearly time-varying features. How to more reasonably address the 
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relationship among loads and spot prices and further improve the goodness of fit of the 
proposed model is a relevant subject to future research work. 
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