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ABSTRACT

The genetic algorithm (GA) is an adaptive metaheuristic search method based on the
process of evolution and natural selection theory. It is an efficient algorithm used for
solving the combinatorial optimization problems, e.g., travel salesman problem (TSP),
linear ordering problem (LOP), and job-shop scheduling problem (JSP). The simple
GA applied takes a long time to reach the optimal solution, the configuration of the GA
parameters is vital for a successful GA search and convergence to optimal solutions, it
includes population size, crossover operator, and mutation operator rates. Also, very
recently, many research papers involved the GA in coding theory, In particular, in
the decoding linear block codes case, which has heavily contributed to reducing the
complexity, and guaranting the convergence of searching in fewer iterations. In this
paper, an efficient method based on the genetic algorithm is proposed, and it is used
for computing the Automorphisms groups of low density parity check (LDPC) codes,
the results of the aforementioned method show a significant efficiency in finding an
important set of Automorphisms set of LDPC codes.
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1. INTRODUCTION AND PRILIMINARIES
There are varying methods in coding theory which addresses its application, one of them is through de-

termining the Automorphisms groups of codes, they allow us to determine the structure of the codes, classifying
them and help the decoding algorithm. This remains a challenge since determining the whole automorphisms
groups of codes is difficult, except finite simple groups which have been realized using the sporadic groups [1]
(e.g, the aumorphism group of golay codes are mathieu groups).

Recalling that the hamming distance between any two codewords (vectors) c, c’ in Fn
2 is defined to be

the number of coordinates in which c and c’ differ. A binary linear [n,k,d]-code C over F2 is a k-dementional
subspace of the vector space Fn

2 , where:

d = d(C) = min
c̸=c′∈C

d(c, c′) = min
c∈C\{0}

wt(c) (1)

and its generator matrix G is a k × n matrix whose rows is the basis of C.
Let C be a binary linear code and G its generator matrix, considering the action of the symmetric

group Sn on the G columns. For all σ in Sn, denote by G.σ the matrix obtained from the permutation of the G
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columns. Let σ ∈ Sn, c = (c1, c2, . . . , cn) ∈ C:

σ(c) = σ(c1, c2, . . . , cn) = (cσ(1), cσ(2), . . . , cσ(n)) (2)

σ(C) = {σ(c), c ∈ C} (3)

any permutation of the G columns which maps the rows of G into rows of the same matrix, is called an
automorphism of C. The set of all automorphism permutations forms a subgroup of Sn, denoted by Aut(C):

Aut(C) = {σ ∈ C, σ(C) = C} (4)

let A be a group, A is an Automorphism group of C if A ⊆ Aut(C) and A is the Automorphism group of C if
A = Aut(C) [2].

This paper, mainly focuses on the computation of the automrphisms groups of LDPC codes. The sec-
tion 2, includes some definitions, details, also it presents related works using genetic algorithm (GA). In section
3, the GA-based method is described, including the fitness function, stochastic crossbreeding, and stochastic
operators. The results are presented in section 4. Section 5 is devoted to the conclusion and perspectives.

2. RELATED WORKS
2.1. Low density parity check codes

Gallager devised the low density parity check (LDPC) codes, often known as Gallager codes, in 1962,
they are class of linear block codes, defined by sparse parity check matrices, where each column contains a
small fixed number wc of ls and each row contains a small fixed number wr > wc of ls [3]. Due to the
limited characteristics of computers at that times, this class of linear code was absent till 1990s where they
have been reinvented through the Macky and Neal works, its has been shown that LDPC codes performance
is near to Shannon limit performance with belief propagation algorithm (BPA) [4]. There are characteristics
that distinguish LDPC codes from Turbo codes, such as superior performance when the block length is large,
enormous flexibility, easy description and subsequent theoretical venerability, decreased decoding complexity,
and so on [5].

There is an algebraic representation, the LDPC code is denoted as (n,wc, wr), where n is the binary
linear code length, wc is the number of 1s in the column of the sparse parity check matrix (i.e. the column
weight), and wr is the number of 1s in the row in of the sparse parity check matrix (i.e. the row weight) as
illustrated in Figure 1, if wc and wr are invariant, it’s called regular LDPC codes, else it’s called irregular LDPC
codes. Both of the two must satisfy this following condition:

cHT = 0 (5)

where c is a codeword and H is the sparse parity check matrix. There is another representation for LDPC codes
which is trough Tanner graphs (graphical representation of the sparse parity check matrix), they contain two
class of nodes, variables nodes, they represent the sparse parity check matrix columns, and check nodes, they
represent the sparse parity check matrix rows. for each nonzero hij of H, an edge will be presented between
check node i and variable node j as illustrated in Figure 2.

 H =

Figure 1. A sparse parity check matrix of
some LDPC code

Figure 2. A tanner graph of the left LDPC
code
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2.2. Genetic algorithm
The GA is a type of evolutionary algorithm that belongs to the family of algorithms known as genetic

algorithms. A GA’s population evolves via genetic operators inspired by biology’s evolutionary process [6],
Darwin recognized that species evolution is driven by two processes: the process of selection and reproduction
The reproduction of the fittest and most vigorous individuals is provided by selection, while reproduction is
a phase in which evolution takes place. Travel salesman problem (TSP), job-shop scheduling problem (JSP),
bandwidth-reduction problem (BRP), and linear ordering problem (LOP) are examples of permutation prob-
lems. [7], [8] which is a class of combinatorial optimization problems, the task is to arrange some genes
(objects) in chromosome, with no duplicates, in a certain order that optimizes an objective function, where the
representation of the chromosomes depend on types of the optimization problems [9], [10].

GA addresses the permutation issue by searching fast via the search space. It employs the selection,
crossover, and mutation operators to produce superior chromosomes at the lowest possible cost [11]. The effi-
ciency of using evolutionary algorithms to solve combinatorial optimization problems has been demonstrated
[12]-[16]. It exists powerful algorithms, a nature-inspired algorithms like gaining-sharing knowledge based
algorithm (GSK) [17]-[19] which it has shown better results in solving optimization problems. The GA has
several advantages such as:
− Uses only the objective function’s evaluation, regardless of its nature (continuity, differentiability...), as a

result of which there is more flexibility and a broader variety of applications.
− Instead of a single iteration as in standard algorithms, generation adopts a parallel form by operating on

several points at once.
− Probabilistic transition rules (selection, crossover, and mutation probability) rather than deterministic ones.

Many research have indicated that exhibiting a comprehension of the GA parameters’ interaction
process, notably crossover probability, mutation probability, and population size, is the most important factor
in evaluating the process. These factors are connected to each other in some way that impacts the GA efficiency.
The optimal circumstance to use GA is when there is variety in the starting population with a high crossover
chance and a low mutation probability [20].

It is important to note that the traditional crossover operator can not be applied to perform of per-
mutation problems solution due to chromosomes arrangement of the genes is crucial, and no genes should be
duplicated or missing [11]. Also, In comparison to other scenarios, it is more computationally expensive. The
reason for this is that for offspring with duplicate numbers, a legalization step is necessary after each substring
exchange. In such a case, the time required to complete a crossover operation increases fast as chromosome
size increases, which can reduce the efficiency of permutation-based GAs [21]. Liu and Kroll in their research
article [22] developed a genetic algorithm did not use the crossover operator. It is important to note again, that
GA has been used to find Automorphisms set for some block codes like bose–chaudhuri–hocquenghem (BCH)
and quadratic residue (QR) codes of small length [23], also to compute the minimum distance of linear block
codes [24].

3. GENETIC ALGORITHM-BASED METHOD
In this section of the article, the genetic algorithm-based method is proposed, which uses an encoding

that consists of treating an individual (permutation) as a sequence of numbers from 1 to the length of the code
n. Also, these proposed method components work as explained in the next subsections. These components
of the algorithm, which are the fitness function, which is used in the calculation of an individual’s fitness
value, those fitness values are crucial in the choosing and construction of the individuals of the next generation
through operators. The search space consists of n! individuals, each with n digits. The selection, crossover,
and mutation operators will be explained and illustrated with figures. Then an overall organigram that shows
how the algorithm works will be presented, identifying inputs and outputs.

3.1. The search space and fitness function
Let C be a binary linear code of length n, since our problem of finding the stabilizers set belongs to the

optimization problems, the size of search space is linked to the code length n, This search space where the our
proposed method will search, contains n! permutations. For all permutation σ ∈ Sn, each permutation will be
associated to its corresponding permutation matrix, so every permutation of codewords will be in matrix form,
including calculation of fitness values Pσ:
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Pσ = σ(In) (6)

Mc ⊂ C is a codewords set, such that, ∀ci ∈ Mc:

ciH
T = 0 (7)

MSc
is matrix where its rows formed by codewords:

MSc
=


c1
c2
...
ck

 =


c11 c12 . . . c1n
c21 c22 . . . c2n

...
...

...
...

ck1 ck2 . . . ckn

 (8)

applying the action of Sn on MSc
,∀σ ∈ Sn s.t:

σ(MSc
) = MSc

Pσ =


cσ(11) cσ(12) . . . cσ(1n)
cσ(21) cσ(22) . . . cσ(2n)

...
...

...
...

cσ(k1) cσ(k2) . . . cσ(kn)

 (9)

σ(MSc
)HT =


s1
s2
...
sk

 ,where H is the sparse parity-check matrix (10)

The permutation of MSc
columns will generate another matrix of codewords if σ(MSc

)HT = 0 (5).
The selection of best permutations (individuals) will be based on the fitness values of permutations using the
fitness function which is defined as follows:

fσ =

k∑
i=1

wt(si) (11)

where si is the syndrome of a codeword ci [25], and wt is the weight. The selection operator will need the
values of each permutation which is calculated using the fitness function (11) in order to select that permutation
or not.

The Figure 3 shows the crossover operator which bases on the composition, which is chosen in order
to ensure that all produced individuals within the search space and elements of Sn without relying on mutation
due to the mutation operator probability of which is very low. Also, our method will use the mutation operator
that consists a swapping of two gene’s position of an individual as figured in the Figure 4, this mutation type is
chosen to enhance the convergence of the algorithm and to obtain new individual fitness of which are better.

2 3 1 5 7 4 6 8

3 1 8 7 2 6 4 5

P1 = Parent 1

1 8 3 2 4 7 6 5

1 2 8 6 3 4 5 7

P2 = Parent 1

Offspring 1 = P1  P2

Offspring 2 = P2  P1

Figure 3. Crossover operator
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2 3 1 5 7 4 6 8Chromosome

Mutated chromosome 2 4 1 5 7 3 6 8

Figure 4. Mutation operator

3.2. The method inputs and outputs

The following is how the GA-based method works:
Inputs:

− A codewords set MSc

− The initial population size Ni

− The number of generations Ng

− The crossover probability pc

− The mutation probability pm

Outputs:

− The Automorphisms permutations set

The Figure 5 is the genetic algorithm-based method organigram where the selection operator uses the
fitness function values (6), and the stochastic crossover and the stochastic mutation operators are explained in
Figures 3 and 4.

Figure 5. Genetic algorithm-based method organigram
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4. RESULTS AND DISCUSSION
The results are obtained using parameters cited in Table 1. The permutation is presented as a list

where the positions are numerated from 1 to the length of LDPC code. Every error correcting code has an
automorphisms group, therefore the set of automorphism permutations set exist for LDPC codes. Figure 6
contains 160 automorphisms permutations produced by our GA-based method for [8,4,2] LDPC code and 12
automorphisms permutations for [16,8,3] LDPC code listed in the Figure 7.

Table 1. Paramters of GA-based method
Parameter Value
Initial population size 200
Selection elitism
Crossover rate 0.85
Mutation rate 0.02
Number of generations 30

Figure 6. Automorphisms set of [8,4,2] LDPC code

Figure 7. Automorphisms set of [16,8,4] LDPC code

To be mentioned, each combination of two automorphisms permutations is an automorphism permu-
tation, if the set contains all generators of automorphisms group, then we can obtain the others automorphisms
permutations easily. The Table 2 shows statistical measures of 32 runs of GA-based method for [8,4,2] LDPC
code, which shows the efficiency of our method for finding an important automorphisms set, in some runs, we
get an important number of automorphisms in few number generations (set of 160 Automorphisms permuta-
tions in 8 generations).

Table 2. The statistical measures
Mean Median Standard deviation Best Worst
151.09 152.5 11.09 160 104
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5. CONCLUSION
In this paper, the genetic algorithm-based method has been proposed for finding an important auto-

morphisms set of a given LDPC code, which can be used in improving their decoding algorithms (the hard
decision algorithm and the soft decision algorithm). It showed good results for LDPC codes in the short block
length regime. Our future work is to optimize our method and its genetic parameters, and combining it with
the GSK algorithm in order to process long LDPC codes.
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