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quality of these systems and scheduling maintenance action. This paper proposes a
PdM model that utilizes machine learning to predict the system’s operational status
after M active steps based on L previous observations implemented by a feedforward
neural network (FFNN). We use quantization and encoding schemes to reduce the
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PdMs the future, based on the previous L readings of quality of service (QoS) requirements

Predictive maintenance of WSN. We also demonstrate the relation between complexity and accuracy. We

systems found that larger M leads to higher complexity and larger prediction error, where

QoS of WSN larger L entails higher complexity and smaller prediction error. We also investigate
how quantization and encoding can reduce complexity to implement a real-time PdM
system.
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1. INTRODUCTION

Predictive maintenance (PdM) is concerned with collecting data and estimating the operationally of
the system under observation. PAM enables the users to evaluate the operating conditions and diagnose faults
of the system. It also helps estimate the time of the next failure and approximate the remaining life-time
of the system. PdM maximizes the system life cycle and minimizes unplanned downtime, so it also has a
significant positive impact on the system’s reliability under monitoring and production quality. Furthermore,
PdM significantly reduces the cost of maintenance [1]].

Wireless sensors networks (WSNs) and internet of things (IoT) [2] technologies are crucial tools used
in the development and enhancement of PAM. They enable large-scale data acquisition from sensors distributed
on machines, factories, and sites under observation. Effective PAM requires the availability of an active sensing
scheme to collect the measurements to describe the working conditions of the maintained systems. The types
of sensors and their numbers, distribution, and reliability play a key role in PAM’s productivity and quality. The
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sensing and monitoring process should be continuous, periodic, and remote to guarantee the amount and the
accuracy of the data needed for precise prediction and decision [3].

Many researchers and designers of the PdAM system use the WSNs and IoT as the backbone of their
approaches. WSNs provide their solutions with an automatic monitoring system that does not require manual
measurements in dangerous and harsh industrial environments. Moreover, wireless communications used with
WSNs make it easy to deploy and configure PdM systems. Still, it may suffer from some drawbacks: limited
energy resources, security, bandwidth, and limited processing capacity [4].

Besides WSNs and IoT, machine learning (ML) and deep learning (DL) [5] also are essential tools
utilized in the improvement and imperfection of PdAM. Neural networks are the foundation of ML/DL; they
accept inputs in a two or one-dimensional form; and the output is either a categorical response in the clas-
sification model or a continuous response in the case of the regression model. Recently, many ML and DL
approaches have emerged, such methods can deal with huge, multi-dimensional, and multi-variate data, and
they can realize the relationships within. However, it is essential to use the appropriate approach and develop
efficient prediction and classification methods to earn high performance and attain PdM’s objectives [6].

This paper proposes a PAM approach consists of a prediction model and ML algorithm. The prediction
model estimates the forward probability distribution of the operational status of the monitored system, the
information about the monitored system is summarized in a multi-variant time series. The model estimates the
probability that the system is still fully operational in the next M steps; it checks that the operability in the
next M steps is guaranteed with given reliability determined by predefined parameter €. The proposed model
is implemented by an ML algorithm based on feedforward neural network (FFNN).

This study uses the proposed approach as a PAM for WSNs. The input of PdM is the previous L
observations of the QoS parameters; the QoS parameters of the WSN include packet loss (reliability), delay,
throughput, and energy consumption; they are represented as a multi-variant times series. The output is a vector
that represents the status of WSN after M steps from the present time instance. We also implement quantization
and special encoding schemes to reduce the complexity and memory usage of the model to make it compatible
with the limited resources of WSNs.

The remainder of the paper is organized as follows: (i) In section 2, we provide a literature overview
of the related work; (ii) In section 3, we present a formal presentation of the problem and the model; (iii) In
section 4, we customize the model as PAM system for WSNs; (iv) In section 5, we describe the set up of the
training data set; (v) In section 6, we give the numerical results of a detailed performance of the algorithm
under different scenarios; and (vi) In section 7, we state some conclusions and give some commentary on the
future.

2.  RELATED WORK

Some researchers credit the invention of PdM to the Rio Grande Railway Company in the *40s of the
20'" century [[7]. The research are valuable surveys of architectures, approaches, and purposes of PAM systems;
they have shown that PdM represents an essential feature of smart manufacturing systems, known as the fourth
industrial revolution (industry 4.0) [1]], [8]], [9]. Presently, PdM is a hot research topic in the industry, covering
all engineering fields ranging from civil engineering to structural engineering.

In civil engineering, the researchers proposed a PAM system in [10] to monitor railway tunnels, where
the author of [11] used image processing to design a PdM system to detect and classify road distresses. PAM
systems are also used in mechanical engineering, wherein [[12], the researchers presented a PAM solution for
metallic structure against corrosion. Also, in electrical engineering, Massaro et al. [13]] described how to exploit
various technologies to design a PAM system for energy router building equipments. Ullah ez al. [[14] used the
thermal images and machine learning approach to develop a PdM system for power substation equipments.

DL and ML techniques are essential tools to ease humanitarian activities; Their applications include:
natural language processing [[15], self-driving cars [16], human motion detection [17], [18]], health care [[19],
and so many other applications. There are several techniques of DL and ML utilized in designing PdM systems,
most of them implemented by feedforwarded neural networks (FFNNs). Khumprom et al. [20] used FFNN for
the prognostics of aircraft gas turbine engines and provide a data-driven model, where the complexity of the
model increases with the amount of the collected data. Each piece of data is related to a different feature of the
system under observation, and they reduced the complexity by cutting down on the amount of data by using an
appropriate selection of the features and dimension reduction.
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The PdM approach proposed in [21] is based on restricted Boltzmann machine (RBM) and support
vector machine (SVM) algorithms; they used image-recognition and time series forecasting to classify the
collected data as normal or abnormal. It is a fast training model because it consists of just one layer, making it
unsuitable for a massive amount of data and noisy environments. Convolutional neural network (CNN) model
is used in [22]; the authors modified the idea of convolution (used widely in image processing) by adding a
dislocated time series (DTS). DTS discovers the relationships among the signals with different intervals in
periodic mechanical signals. This technique uses shared weights to make use of neighborhoods, and the output
spends on the current observations rather than the previous ones.

Tahsien et al. [23] presented a survey of research that implemented ML/DL techniques to improve
the functionality of WSNs and IoT systems; their central aspect is network intrusion detection. Liu and Cerpa
[24] used Naive Bayes (NB) model, FFNN, and logistic regression (LR) classifier. Their approach predicts
the probability of successful reception of the next packet; the inputs of the model are packet reception ratio
(PRR), and physical feature of previous packets includes: signal to noise ratio (SNR), received signal strength
indicator (RSSI) and link quality indicator (LQI).

Kulin et al. [25] proposed an ML model to predict the performance of WSNs in terms of reliability.
Their model is based on regression trees, linear regression, and neural networks. The input of the model is a
vector of the number of detected nodes (d), inter-packet-interval (IPI), number of received packets (RP), and
number of erroneous packets/frames (errP). The output is the estimation of packet loss rate (PLR). Akbas et al.
[26] utilized the neural network model (NN) to predict the life-time of sensors based on transmission power
level and internode distance. An in-depth learning approach was proposed in [27] to estimate the energy con-
sumption (EC) and packet delivery ratio (PDR) depending on ten input features (distance, actual transmissions,
and queue size).

This paper presents a mathmatical analysis of a prediction model for PdMs, and we use it with ML
algorithm to build a PdM system for WSNs; most of the studies above use WSNs as the backbone and the key
component of PAM [4], [28]], to the best of our knowledge, there are very few studies interested in finding PdAM
for WSN, most of them dominating intrusion detection of IoT systems. In this study, WSN is not only a tool
but also the PdM system’s subject; the proposde approach takes the QoS and limited resources of WSN into
account.

3. THE SYSTEM MODEL

This paper proposes a PdAM approach consists of: (i) Prediction model estimates the forward probabil-
ity distribution of the operational status of the monitored system, the information about the monitored system
entered into the model in the form of a multi-variant time series. The model estimates the operational status of
the system during the next M steps; it checks that the operability in the next M steps is guaranteed with given
reliability determined by predefined parameter e. (ii) ML algorithm to implement the prediction model. The
proposed model is implemented by an ML algorithm based on FFNN.

3.1. Predicting the forward probability distribution

Let us assume that the information about the monitored system is summarized in times series z (k) ,
this time series can result from direct measurements or pre-processed data obtained by data fusion. Evaluation
on the system state can be summarized as follows:

- If (k) > A then the system is malfunctioning and urgent maintenance action is required;
- If (k) < A then the system operates normally.

Based on the observations z(k — 1), z(k — 2), ..., z(k — L 4 1)the underlying challenge is to estimate
the probability that the system is still fully operational in the next M steps:

Platk+ M)<Ajx(k+M-1)<A, .. zk) <Alz(k—1)=4,...,ax(k—L+1=j) (1

or more precisely, to check whether operability in the next M steps is guaranteed with given reliability deter-
mined by parameter € i.e. in (2).

M:Plx(k+M)<A z(k+M-1)<A,...,
z(k)Alz(k—1)=4d,...,2(k — L +1) = j) >1—c¢ (2)
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By introducing the notations:

2t (k) = (w(k+ M), z(k+ M —1),...2(k))

z (k)= (z(k—-1),...,x(k—L+1)) ©)
one can write this probability in a more compact form, where set B is defined as: B :=: z; < A, ...,z < A
vV 1<i<M.
M : P(z* (k) € Bla~ (k) = (i,..,)) > 1—¢ (4)
Introducing the following two vectors:
s = (sgl), sél) =(1,0) > haz' €B
52 = (552), séz) =(0,1) —» haz" ¢ B )
one can form a training set as (6).
T = {(a7(k),s(k)),k =1,... K}, s(k) € {sV),s*} (6)

3.2. FFNN algorithm

We use FFNN to implement the ML algorithm. FFNNs have the most straight forward architec-
ture. They have inputs, outputs, and numbers of hidden layers between them; as the number of hidden layers
increases, the data moves in one direction from the input layer to the output layer. This study uses backprop-
agation (BP) as a training algorithm. It is one of the most fundamental and common training algorithms. The
estimated output is calculated based on the activation function. Then, it calculates the estimation error based
on the loss function. It goes backward to update the weights based on the gradient of the loss function.

The efficiency of FFNN depends on several factors such as the selection of appropriate activation
function, selection of proper training algorithm, the suitable structure of hidden layers, size of the training set,
and the accurate description of the problem [29]]. Unfortunately, there are no standard rules for selecting, com-
paring, and testing the solutions; the user’s satisfaction in accuracy and complexity is the primary benchmark.

The training set in (6) is used to train the corresponding FFNN, where the input-output mapping of the
FFNN is y = Net(z, w), where vector w refers to the weights of the network subject to learning. The weights
can then be optimized by the backpropagation (BP) algorithms as:

K
1 - 2
Wopt :mzn?;H s (k) — Net (z (k),w)| (7)
yielding:
1 2 2
7 Z || s (k) — Net (z= (k),w)||” = E | s— Net(z™ ,w)|| (8)
k=1
and then:
Wopt : MInE || s — Net(z™, w) |> = Net(z~ ,w) = E(s|z") )
subject to (§):
v _ (10 P(z* € Blz™)
E(sle™) = ( 01 ) ( Pzt € BYja) (10)

where:
Ei(slz™) = P(z" € Blz™)

, (1D

Ey(slz™) = P(z" € B%x™)
as a result, after learning, at the output of the FFNN, one can observe the estimated conditioned probabilities
once the past observations are given in the input. If P(z* € B|x~) > 1 — ¢ then there are at least M
steps to failure. Figure 1 shows the structure of FFNN consists of three hidden layers; the input is 8 previous
observations.
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Inputlayer  Hidden layer1 Hidden layer 2 Hidden layer 3

Output layer
x(k—1)
x(k—2) —
x (k)= P(xt €B|x)
) 19 P(xt € Bx")
x(k—L+1

Figure 1. FFNN of three hidden layers and L=8 previous observations window

4. CUSTOMIZED PDM FOR WSNS

In this section, the proposed model is customized as a PAM for WSNs. WSN consists of some small
nodes and one or more BS to form a data collection system; the nodes communicate with each other and with the
BS via a wireless radio transceiver attached to them. The nodes are rigged up with application-specific sensors
to measure or track a specific physical phenomenon; they have a limited-capacity central processing unit.
These nodes often operate on batteries as a limited-energy source; besides that, they usually work in harsh and
complex environments [30]. Designers and operators of WSN should consider their limited resources (memory
and processing capabilities), limited communication bandwidth, limited energy, and other restrictions.

In the face of any limitations, any system’s performance should satisfy the minimum level of services
and requirements, known as quality-of-service (QoS); in the case of WSN, QoS’s include reliability, energy
efficiency, security, accuracy, delay, and-so-forth. Maintenance procedures may include selecting new heads
of clusters and leaders of chains, rearrangement of clusters and chains, new sensors deployments, controlling
ON/OFF schemes, and many other procedures that enhance the performance of WSNs. The limited resources
of WSNs require a low complexity PdM; to reduce the complexity, we use quantization and encoding schemes.

4.1. Quantized FFNN

WSNs are limited resource systems in terms of energy, memory, and processing capabilities. To make
our model compatible with such circumstances, we implement a quantization algorithm to speed up the training
process and reduce the complexity of the model. Quantization enhances training speed and complexity, but it
weakens the accuracy, so the user has to trade-off complexity with accuracy. Usually, variables and weights
are represented as floating-point numbers; the quantization function converts them to integers, fixed-point, or
integer numbers; such representations are more efficient regarding memory usage and computation speed [31]],
[32]. Uniform or deterministic quantization function calculates the quantization level (¢) of the real values r as
follows [32]]:

, 1
q (r) = sign (r) .A. {A + QJ (12)
where A is the resolution or the quantization step.

Such functions are known as equidistant quantization. The quantization range is divided equally
between quantization levels, so such functions are used in case of uniform distributions of the samples; when the
distribution is not uniform, non-equidistant quantization is used; the authors of [33]] used Lloyd-Max algorithm
to determine the best quantization in such cases, it takes the PDF of samples distribution on account to minimize
the mean square quantization error ¢. Finding the optimal quantized level g; of sample r is an iterative process
where:

oyl
! fc”l f(r) dr

Ci

13)

in (9), ¢;and ¢; 1 are the regions of the proposed quantization level ¢;, and f (r) is the PDF of the samples, the
goal is the minimization of (o), which is:
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2 SN 2
o, = Z/ (r—q)° f(r)dr (14)
i=1"ci

where Q is the numbers of the quantization levels.

4.2. Sparsity of FFNN

Memory is a crucial concern when dealing with FFNN for WSNs; many techniques have been used to
improve the memory efficiency of ML/DL algorithms; some of them concern memory requirements of infer-
ence, others concern the memory requirements of training. Sparse FFNN is a common and efficient technique
used widely to enhance DL/ML algorithms [34]. In sparse FFNN, the input features are represented as a sparse
vector; most spare vector elements are zeros, which need fewer computations and less memory space. Be-
sides memory efficiency, sparsity improves the complexity and the computations of the FFNN. Unfortunately,
at the same time, it degrades the accuracy of FFNN; the designer has to trade-off between the sparsity level
and accuracy [35]. In this study, we use a straightforward encoding scheme used in [33]]. It is compatible and
complementary with the quantization algorithm, each quantization level is encoded into an orthonormal vector
set:

1 ifi=1I

— 5q; 1 8q(1) = ,i=11,2,...,
e a: sali) 0 otherwise { @
by the encoding (3) becomes:
a7 (k) := ($q(sarys SA(harr—1ys -+ 55), T~ (k) 1= (G(a_1)» - 5(o—1.41)) 5)

5. SETUP OF THE DATASET

The dataset used for training, validation, and testing is imported from [36]. The researchers collected
the data experimentally as described in their paper [37]]. They used IEEE 802.15.4 link implemented on TinyOS
to connect two TelosB motes, each mote uses a TT CC2420 radio transceiver with 250 kbps. The researchers
trace the packet delivery performance under several pre-configured stack parameters; these parameters are
related to physical, MAC, and application layers. We have generated an observations table consisting of 10000
entries. Each entry summarizes the average measured parameters of 300 packets; we have fixed the power
transmission level at -19 dBm and change the other pre-configured parameters for the possible combination
shown in Table [I| Besides the pre-configured parameters, the observations table has several packet delivery
performance measured parameters corresponding to each combination of pre-configured parameters, as shown
in Table[2] A short sample of the observations table is shown in Table 3]

Table 1. Pre-configured parameters

Parameters Acronym  Values Comments

Inter-Arrival Time IAT (ms) 10, 15, 20, 25, 30, 35, 40,50  Pre-configured
Packet PayLoad PL (bytes) 20, 35, 50, 65, 80, 95, 110 Pre-configured
Maximum Queue Size QS 1, 30, 60 Pre-configured
Maximum Transmission attempt NMT 1,3,5 Pre-configured
Retry delay DR 30, 60 Pre-configured
Power of transmission Ptx 19 Pre-configured
Distance D 10,20,35 Pre-configured

Table 2. Measured parameters

Parameters Acronym  Values Comments
Actual Queue Size AQS actual values (0-60) measured
Buffer OverFlow OF actual values (0-1) measured
Actual Transmission attempt Na actual values (0-5) measured
Actualacknowledged transmission ACK measured
Received Signal Strength Indicator RSSI measured
Noise Floor NF measured
Link Quality Indicator LQI measured
Packet arrival time Tarr measured
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Table 3. Sample of observations table
Torr 125304 130758 137716 146187 156155

TAT 10 15 10 15 50
PL 20 35 65 95 110
Qs 1 1 30 1 60

NMT 1 1 5 1 5
DR 30 30 30 60 60
Py 19 19 19 19 19
D 10 10 10 20 35
OF 0 0 0 0 0
Q 0.41 0.23 25.7 0.01 0.08

ACk 0.59 0.77 0.723 0.99 1
Na 0.593 0.77 0723 0.993 1.02

RSSI  -75167 98567  9.29 1631 -22.943
NF 540767 7057  -61.0533 -88.9367  -93.71
LQI 63.08  82.3467 77.2833  106.13 106

We have used the pre-configured and measured parameters to calculate the QoS requirements of the
WSN. Energy efficiency, throughput, delay, and packet loss as in [27], [37].

- Packet error rate (P E'R): measures the reliability of the system; it depends on the queuing characteristics
(Buffering) of the nodes and the quality of the link parameters (RSSI, NF,and LQI)

N4y — ACK
ppp Na—ACK (16)
Ny

- Energy efficiency (En): determines the energy needed to transmits one beneficial bet; it depends on
PFER, power transmission level, the payload of the packet, length of the header, and transmission rate:

_ Py x(PL+PH)+Tt
B PL(1 - PER)
PH is the length of the header/trailer, which is (11-31 bytes) in IEEE 802.15.4 [38]], 7't is the transmis-
sion time which is 0.004ms in the case of 250kb/s.

- Throughput (T'p) is the number of beneficial bets received per unit of time; it depends on PL, PE R, and
transmission service time (71's), as:

En a7)

PL(1 — PER
Tp= % (18)

where :

Ts=C+Tt+(NaxDg) (19)

and C' is a constant depends on the protocol and the specification of the radio system; it is = 13.5 ms in
the circumstances of the experiment [38]].

- Delay is the time elapsed from packet generation to successful packet reception; LQI and queuing
characteristics of the nodes are crucial issues when investigating delay. Researchers mostly use queuing
system model to state the delay of WSNs; we use system utilization p as a metric to quantify the delay,
where p = T's/I AT and as p — 1 delay increases.

The four calculated QoS requirements (PE R, En, T'p and p) are arranged into a 10000%4 input feature
table; each entry corresponds to an entry of the observations table. The packet arrival time (7., ) is reformatted
as a time series and added as a fifth column to the input features table. QoS metrics are contradictory; improving
reliability decreases energy efficiency, and improving energy efficiency reduces throughput, and so on; the user
should trade-off among these metrics. To define the operational status of the WSN, we define a range of each
metric as follows:

at < PER<a~- pBt < En< -
yP<Tp <~ ot <p<d-

A predictive maintenance system for wireless sensor networks: a machine ... (Mohammed Almazaideh)



1054 ) ISSN: 2502-4752

If the four metrics are within the specified range, then the operational state of WSN is “OK” cor-
responding to s(*) = (1,0) as defined in (5), which means that no maintenance is needed; otherwise, the
operational statue is “NOK” corresponding to s(2) = (0, 1) as defined in , which means that maintenance
is needed. The operational status for each entry of the input features table represents an entry of the output
table of the FFNN, concatenation of the input features table, and the output table forms the dataset of training,
testing, and validation of the FFNN. Table ] shows a short sample of the training set.

Table 4. Sample of the training dataset

Torr PER En Th Ru OK OF])VOK
44488657  0.005618  0.084072  19.98877 3.1304 1 0
44544439  0.003333  0.08388 19.99833 1.0876 1 0
44559087 0 0.0836 20 0.87008 0 1
44597021 0 0.080343 35 1.74016 1 0
44607076  0.006667  0.080882  34.99222  1.450133 1 0

In the next stage, the entries of the training dataset are quantized by the Lloyd-Max algorithm by 8
quantization levels. Each quantized entry is encoded into an 8-bits binary vector, as described in section 4.3.
The numerical numbers representing the QoS parameters at instant (¢) are converted to a 1 % 4 x 8 sparse vector.
Each vector has four 1’s indicate the quantization level of each QoS requirement. Table [5] shows a sample of
the data set after quantization and encoding.

Table 5. Sample of the dataset after quantization and encoding
Tarr PER En Th Ru OoP
44488657 10000000 00000010 00100000 00010000 10
44544439 01000000 00001000 01000000 00010000 10
44559087 10000000 00100000 00010000 01000000 01
44597021 10000000 00000010 00000100 00000010 01
44607076 00100000 00000010 00000010 00000001 10

6. IMPLEMTATION AND RESULTS

We implemented the proposed model using the deep learning toolbox of MATLAB2020b; we used
the dataset explained in the previous section. In the first experiment, we investigate the effect of quantization
and encoding on the accuracy and complexity of the PAM system. To get more use of the sparsity of the input
vector; the FFNN deals with each binary input vector (as the sample is shown in Table [ as a black and white
pattern, where the ones appear as white points in a black line, Figure 2] shows a sample of these patterns.

Figure 2. Samples of the input vector as black and white patterns

In this experiment, we use the accuracy as a performance metric, Acc = R/T Where R is the number
of correct predictions, and 7" is the number of the data set. Figure[3|shows the complexity of the algorithm under
different numbers of hidden layers; we measure the complexity by the execution time of the training process.
The figure demonstrates that the algorithm uses quantized and encoded data takes less time than the one raw
data, regardless of the number of header layers. The quantized and encoded data ensures better complexity
because of the sparsity enlightened in section 4.3. Both algorithms show an ascending tone of training time as
the number of hidden increases. The irregularity noticed in both curves is justified by the randomness of initial
values of the training process’s weight and biases.
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Figure 3. Complexity of original data and quantized and encoded data

In Figure @] one notices that the raw (original) data show better accuracy than the quantized and
encoded data; this happens because besides the prediction error, there is also quantization error explained in
section 4.2. With quantized and encoded data, the input data appear as a lookup table, so one notices the low
variance of accuracy with quantized and encoded data regardless of the number of the hidden layers. The
algorithm uses the raw data exhibits better accuracy as the number of hidden layers increases
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Figure 4. Accuracy of original data and quantized and encoded data

In the third experiment, we investigate the relationship between the performance and the number
of future time steps M ; two metrics are used to clarify the performance; mean square error (MSE) and the
execution time presenter of the complexity. The output of the FFNN is a binary vector (ops) consists of M
elements, the vector (ops) states the operational status of the WSN, ops(m) = {m1, ma,...,mu},

1
m; = 0

for example, if M = 8,then ops can be ops = {1,1,1,1,1,0,0,0}, this means that the system will be faulty
after five operational steps, and maintenance should take place.

The system will be OK untill step i.
The system will be fualty after i steps.
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Figure [5 clarifies the performance of the model under different values of M/ = (1 — 10), where the
number of hidden layers is set to ten layers, and the number of previous observations is set to 3. The left y-axis
characterizes the M S E, where the right y-axis characterizes the execution time. The figure shows that as M
increases, both the execution time and the M S F increase.

Figure [6] demonstrates the effect of the number of previous observations k on M SE and execution
time. The number of the hidden layer is set to ten, and M is set to 5. The left y-axis represents the M SFE, and
the right y-axis represents the execution time; a large k means less M S E but a longer execution time.

Performance vs M

0.2 : T 180
—6— MSE
—#— Execution time
0.195 | - 160
- 140
019 |
—120 g
0.185 |- 2
W
—~100 g
7048 ;1
-80 £
0175 g
<60 &
017 |-
— 40
0.165 | d20
q
016 | | | | | | | | 0
1 2 3 4 5 6 7 8 9 10

Number of the future steps (M)

Figure 5. The relation among M SE, execution time, and M

Performance vs L

0.23 : . : 600
—e—MSE
—+#— Exceution time
0.22
- 500
0.21
, 400 o
02 - 2
a2,
-]
=
- E
% 019 - 300 -
= S
]
o
0.18 2
— 200 &
017
- 100
0.16
0.15 ! ! : ! ! ! I ! 0
1 2 3 4 5 6 7 8 9 10

Number of the previous observations (L)

Figure 6. The relation among M SE, execution time, and L

7. CONCLUSION

In this paper, we used the FFNN machine learning model to build a PAM system for WSN. It predicts
the operational status (“OK” or faulty) after M time steps based on L previous readings of QoS requirements
of the WSN. We used real estate data set of one-hop WSN. We also used quantization and encoding schemes
to make the system incoherent with the limited resources of the WSN. We revealed that the complexity of
systems is improved by quantization, encoding, smale M and small L. The accuracy is improved by using
the raw (original data), small M, and large k. We will extend our approach to include multi-hop WSN and
implement it by other machine and deep learning models.
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