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Abstract 
The Artificial Bee Colony (ABC) algorithm is an active field of optimization based on swarm 

intelligence in recent years. Inspired by the mutation strategies used in Differential Evolution (DE) 
algorithm, this paper introduced three types strategies (“rand”, “best”, and “current-to-best”) and one or two 
numbers of disturbance vectors to ABC algorithm. Although individual mutation strategies in DE have been 
used in ABC algorithm by some researchers in different occasions, there have not a comprehensive 
application and comparison of the mutation strategies used in ABC algorithm. In this paper, these 
improved ABC algorithms can be analyzed by a set of testing functions including the rapidity of the 
convergence. The results show that those improvements based on DE achieve better performance in the 
whole than basic ABC algorithm.  
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1. Introduction 

Optimization is one of attractive fields in not only academic research but also 
engineering practice. Most problems in real world can be reduced to solve a class of 
optimization problems. Usually, a class of unconstrained optimization task can be formulated as 
follows: 

 

1 2minf( ), [ , ,..., ]Dx x x x x
 

 (1) 

 
where x


is optimized variable and D is the number of parameters to be optimized.  As the 

complexity of the optimization problem increasing, traditional optimization methods cannot solve 
such problems well. 

Recently, biological-inspired optimization algorithms have been proposed to solve such 
as high-dimension, nonlinear optimization problem in real world. The ant colony optimization 
(ACO) is inspired by assignment and cooperation among different colonies to solve optimization 
problems [1]. The particle swarm optimization (PSO) is a meta-heuristic search method based 
on social behavior of birds and has been widely used to solve various optimization problems [2] 
[3]. 

The Differential Evolution (DE) algorithm which is simulating biology evolution process 
has been one of competitive form evolution algorithm [4] [5]. It has been successful in solving 
high-dimension, non-linear, large-scale, multimodal optimized problems using DE algorithms 
and their variants. The performance of the DE algorithms is relying on three stages: mutation, 
crossover and selection. According to different mutation strategies and adopted number of 
difference vector, the frequently used mutation strategies in literature include DE/rand/1, 
DE/rand/2, DE/best/1, DE/best/2, DE/current-to-best/1, and DE/current-to-best/2.The detailed 
analysis and comparisons can be described in [6]. Each DE algorithm variants may be effective 
over some problems and poor over other problems. It is not possible to make one DE algorithm 
always available over all problems [7]. 
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The Artificial Bee Colony (ABC) algorithm is a meta-heuristic algorithm introduced by 
Karaboga in 2005 [8]. A result about the performance about ABC, PSO, and DE show that ABC 
is better than or similar to those above listed in [9]. The standard ABC algorithm divided into 
three stages, such as employed bees stage, onlooker bees stage, and scout bees stage, by 
imitating foraging behavior of bee colony.  The Bee Swarm Intelligence has been showed by 
division of labor and local interacting among bee colony. To achieve more nectar, each 
employed bee in bee colony adjusts its searching direction according to its visual information in 
the neighborhood of the one in its memory. 

The standard ABC algorithm is easy to implement and fewer parameters. However, the 
searching strategies used in standard ABC is more getting trapped into local optimization in 
solving multimodal problems or slower convergence speed in solving unimodal problems. In 
order to improve the performance of ABC, some mutation strategies in DE will be used and 
some analysis and comparison will also be made simultaneously in this paper. 

The rest of this paper is organized as follows. Section 2 introduces the basic ABC 
algorithm and some variants. A comprehensive improved ABC algorithms based on the 
mutation strategies used in DE algorithm are elaborated in Section 3. Experimental setting and 
results are presented in Section 4. Finally, conclusions are summarized in Section 5. 
 
 
2. Artificial Bee Colony Optimizer 

In this section, we outline the procedure of basic ABC algorithm and some variants of 
ABC algorithm. Meanwhile, some questions existing in the above have been proposed. 
 
2.1. Basic Artificial Bee Colony Optimizer 

ABC algorithm imitates the foraging behavior of honey bee. The individual of bee colony 
are classed into one of three types according the different division of labor, that is, employed 
bees, onlooker bees, and scout bees. 

Before searching in search space, the first thing we should do is initialization. The 
initialization in ABC algorithm is randomly producing food sources to cover the whole search 
space as much as it possibly can. The position of a food source represents a possible solution 

in the D-dimension search space. The position ix is produced as follows [11]: 

 
min max min(0,1)( )ij j j jx x rand x x    (2) 

 

where 1 2 ,( , , , , )i i i ij i Dx x x x x    is the D-dimension position vector of the ith food source; 

ijx is the jth component of the ith vector; (0,1)rand is a random number in the range [0, 1]. 

After initialization, the search process is conducted by the employed bees, onlooker bees, and 
scout bees. In ABC, employed bees produce modification to the current food source in the 
neighbor of the food source according to its memory (that is similar to the mutation in DE).The 
modification can be described as follows: 
 

( )ij ij ij ij kjv x x x    (3) 

 

After producing iv , the fitness value is calculated for every iv : 

 
1/ (1 )i ifitness f        if  0if   

1 ( )iabs f      if  0if   (4) 

 

where if  is function value of the candidate solution iv . 

For onlooker bees, they always appear in the food source where abundant nectar 

amount is. So, the probability value iP  for every food source is described as follows: 
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


 (5) 

 
In onlooker bees’ stage, a random number in the range (0, 1) is produced for every food 

source. If probability value iP is greater than the random number, the onlooker bee becomes 

employed bee. After that, the onlooker bees’ search strategy for every food source is the same 
as the employed bees in (3). 

Whenever a food source is depleted by employed bees, the employed bees associated 
with it will abandon the food source, and become scout. The scout bees perform global 
exploration in search space and the search process can be defined as (2). The flowchart of 
basic ABC algorithm is given in Figure 1. 

 
 

Initial
Population

iter=1

Employed bees:
1. searching in the neighbor of the current food source
2. evaluate  the candidate solution

Probability calculation
for every food source

Onlooker bees:
1. choose a food source which is abundance in 
nectar amount according to the probability value
2. search strategy the same as employed bees 
using
3. evaluate the quality of the candidate solution

Scout bees:
1. abandon some food source, if  the quality of a 
food source and its neighbors are not enhanced for 
several trials
2. regenerate some food source for exploration

iter<iter_AMX

iter=iter+1

End of  ABC
 

 
Figure 1. Flowchart of the basic ABC. 

 
 

2.2. Some Variational ABC Algorithms 
Since it was first introduced in 2005 by D. Karaboga [8], it has attracted many attentions 

in recent years. In this section, some of the variations of ABC are briefly reviewed. 
A modified ABC algorithm which the frequency and the magnitude have perturbation is 

introduced by D. Karaboga [11]. In basic ABC, in order to produce a new solution, there is only 
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one parameter in ix to be changed. In [11], a modification rate is introduced to improve the 

convergence speed. Inspired by PSO, an improved ABC algorithm, GABC, is proposed by 
incorporating the information of global best solution to the current search space. The 
improvement of the search strategies enhances the exploitation ability which is poor at the basic 
ABC algorithm [12]. Literature [13-16] introduced some variants of ABC based “best” and “rand” 
strategies which are used in DE. These improvements which are based on DE are not a 
comprehensive versions and lack of crosswise comparison. So, in this paper, we will make use 
of six mutation strategies in DE to improve basic ABC algorithm. Meanwhile, a comprehensive 
comparison among the six improved ABC algorithm will be explained later. 
 
 
3. Improved ABC Algorithms based on DE 

There are six mutation strategies which are used in DE algorithm. The formulas can be 
expressed as follows [6]: 

 

“DE/rand/1:”   
1 2 3

, , , ,
( )i i ii G r G r G r G

V X F X X   
   

 (6) 

 

“DE/best/1:”   
1 2

, , , ,
( )i ii G best G r G r G

V X F X X   
   

 (7) 

 

“DE/current-to-best/1:” 
1 2

, , , , , ,
( ) ( )i ii G i G best G i G r G r G

V X F X X F X X      
     

 (8) 

 

“DE/rand/2:”
1 2 3 4 5

, , , , , ,
( ) ( )i i i i ii G r G r G r G r G r G

V X F X X F X X      
     

 (9) 

 

“DE/best/2:” 
1 2 3 4

, , , , , ,
( ) ( )i i i ii G best G r G r G r G r G

V X F X X F X X      
     

 (10) 

 

“DE/current-to-best/2:” 
1 2

, , , , , ,
( ) ( )i ii G i G best G i G r G r G

V X F X X F X X      
     

 

3 4, ,
( )i ir G r G

F X X  
 

 (11) 

 
In these mutation strategies, there are two aspects differentiate one DE from another. 

One is the variance type (“rand”,” best”), the other is the numbers of the disturbance vector (one 
or two). The DE/rand achieved good results in solving unimodal and separable functions. The 
difference between DE/rand/1 and DE/rand/2 is the number of disturbance vector. DE/rand/2 
gets better optimization ability in multimodal and non-separable problems than DE/rand/1. The 
greedy variants (“best” or “current-to-best”) introduce the best food source (solution) to the 
current population. The fast convergence speed can be achieved in solving optimization 
especially multimodal problems. But, on the other hand, the increasing of convergence speed 
may lead to some problems such as premature convergence in solving multimodal problems. 
DE/current-to-best which utilize not only the current solution (food source), but also the best 
solution reduce the chance premature relative to the DE/best. From the previous studies, it 
cannot be expected that an algorithm can find optimized solution for any type problems. Every 
mutation strategies in DE adapt to one class problem. 

In basic ABC, employed bees find new food source which is similar to mutation 
strategies in DE. Inspired by this, we will import the six mutation strategies to the basic ABC 
algorithm and make analysis and comparisons systemati-cally and completely. The improved 
ABC algorithms based on DE are described as follows: 

 

“ABC/rand/1:” 
1 , 32

, , ,( )
r mi m r m r mV X X X   

   
 (12) 
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“ABC/best/1:” 
1 2, , , ,( )i m best m r m r mV X F X X   

   
 (13) 

 

“ABC/current-to-best/1:” 
1 2, , , , , ,( ) ( )i m i m best m i m r m r mV X X X X X       

     
 (14) 

 

“ABC/rand/2:” 
1 2 3 4 5, , , , , ,( ) ( )i m r m r m r m r m r mV X X X X X       

     
 (15) 

 

“ABC/best/2:” 
1 2 3 4, , , , , ,( ) ( )i m best m r m r m r m r mV X X X X X       

     
 (16) 

 

“ABC/current-to-best/2:” 
1 2, , , , , ,( ) ( )i m i m best m i m r m r mV X X X X X       

     
 

3 4, ,( )r m r mX X  
 

 (17) 

 
In order to test and verify the ability (12) – (17) in solving unimodal and multimodal 

problems, we will make multi-group experiments for different type of test functions.  
 

 
4. Experiment Arrangement and Results 
 
4.1. Test Functions 

In this section, a set of basic test functions (unimodal and multimodal) will be used to 
test six improved ABC algorithms (12)-(17). The testing functions are listed in table1. 

 
 

Table 1. Basic Function 
Function Global min Search range Formula 

Shpere(UM) 0 [-100,100]D 
2

1
( )

n

ii
f x x


   

Rosenbrock(UM) 0 [-2.048,2.048] D 
1 2 2 2

11
( ) [100( ) ( 1) ]

n

i i ii
f x x x x




     

Ackley(MM) 0 [-32.768,32.768] D 

2

1

1

1
( ) 20exp( 0.2 )

1
exp( cos(2 )) 20

n

ii

n

ii

f x x
n

x e
n







  

  





 

Griewank(MM) 0 [-600,600] D 
2

11

1
( ) cos( ) 1

4000

n n i
i ii

x
f x x

i


    

Weierstrass(MM) 0 [-0.5,0.5] D 

max

1 0

max

0

( ) ( [ cos(2 ( 0.5))])

[ cos( cos(2 0.5))], 0.5, 3, max 20

D k k k
ii k

k k k k

k

f x a b x

D a a b a b k




 



 

   

 


 

Rastrigin(MM) 0 [-5.12,5.12] D 
2

1
( ) [ 10cos (2 )+10]

n

i ii
f x x x


   

Schwefel(MM) 0 [-500,500] D 
1

( ) * 418.982887 ( sin( ))
n

i ii
f x n x x


   

 
 

4.2. Parameter Settings and Arrangement 
The experiments will be divided into three parts. First, aimed at these testing functions 

in table1, the population size was 10, and the maximum function evaluations was 30,000 for 10-
dimension. All experiments were repeated 30 times. In order to compare our algorithms to other 
existed algorithms based swarm intelligence, what the parameter setting we used was the same 
as [11]. The experimental results are listed in Table2. Second, the comparisons for convergence 
ability among the six improved ABC were shown in Figure 2 – Figure 13. Finally, in order to 
investigate the adaptability for every improved ABC algorithms, the ability for optimizing every 
testing function by all six improved ABC algorithms will be showed in Figure 14 – Figure 21.  
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4.3. Experimental Results 
In table 2, we compare the optimization ability of the six improved ABC algorithms for 

unimodal and multimodal problems. For unimodal problem, ABC/…/2 outperforms better mean 
and standard deviation than ABC/…/1. Under the same disturbance vector, the introduction of 
best information can get better convergence results than “rand” strategy. We also find that there 
exist certain risks getting into premature for the “best” strategy. The experimental results also 
show that ABC/current-to-best performs better than other ABC variants on almost multimodal 
function. 

   For Unimodal function, the graph of convergence can be drawn in Fig 1-Fig7. Under 
the same strategy (“best” or “rand”), the two disturbance vector will be achieve faster 
convergence speed than one disturbance vector. The “current-to-best” strategy which is 
incorporating the current solution acquires stable result in multimodal experiments. From the 
view of the final outcome in solving multimodal, the “current-to-best” strategy does better than 
the other strategies in most cases. The “best” strategy is easy trapped into local minimum value 
while things get better if we increase the number of disturbance vector.  

In Fig 15.-Fig 21, we adopt the different variants of ABC to optimize different testing 
functions. For unimodal function, the introduction of the best solution makes the direction of 
population move faster toward to the optimized value. For Weierstrass and Rastrigin function, 
the “ABC/rand/2”,”ABC/best/2”,”ABC/current-to-best/1”,and “ABC/current-to-best/2” have 
reached the minimal value. 

 
 

Table 2. NP=10, D=10, Max.Eval =30, 000, runtime=30, limit=200, UM: Unimodal; MM: 
Multimodal 

  UM UM MM MM MM MM MM 

Shpere Rosenbrock Ackley Griewank Weierstras
s

Rastrigin Schwefel 

Basic ABC Mean 7.09e-017 
 

4.11e-017 

2.08e+000 
 

2.44e+000 

4.58e-016 
 

1.76e-016 

1.57e-002 
 

9.06e-003 

9.01e-006 
 

4.61e-005 

1.61e-016 
 

5.20e-016 

7.91e+000 
 

2.95e+000 
Std 

MABC[11] Mean 7.04e-017 
 

4.11e-017 

4.42e-001 
 

8.67e-001 

3.32e-016 
 

1.84e-016 

1.52e-002 
 

1.28e-002 

1.18e-016 
 

6.38e-016 

1.14e-007 
 

6.16e-007 

3.96e+000 
 

2.13e+000 Std 

ABC/best/1 
Mean 1.46e-002 

 
4.17e-002 

9.82e+000 
 

1.57e+001 

4.08e-001 
 

6.72e-001 

1.59e-001 
 

2.03e-001 

5.44e-002 
 

6.19e-002 

1.31e+000 
 

1.40e+000 

1.10e+002 
 

1.32e+002 Std 

ABC/rand/1 
Mean 4.28e-002 

 
1.93e-001 

5.25 e+000 
 

9.02 e+000 

3.33e-001 
 

5.74e-001 

1.95e-001 
 

4.01e-001 

4.76e-002 
 

8.45e-002 

1.52e+000 
 

1.22e+000 

1.04e+002 
 

1.17e+002 Std 

ABC/current-
to-best/1 

Mean 5.39e-124 
 

2.69e-123 

7.87e-001 
 

1.57 e+000 

8.5857e-015 
 

1.8853e-015 

9.31e-003 
 

6.72e-003 

0 
 

0 

0 
 

0 

1.25e-004 
 

4.45e-004 Std 

ABC/best/2 
Mean 4.02e-156 

 
2.20e-155 

2.24 e+000 
 

2.26 e+000 

6.2172e-015 
 

1.8067e-015 

2.42e-002 
 

2.28e-002 

0 
 

0 

3.32e-002 
 

1.81e-001 

1.27e-004 
 

2.30e-003 Std 

ABC/rand/2 
Mean 1.38e-148 

7.60e-148 
2.66e-001 
3.88e-001 

7.7568e-015 
9.0135e-016 

9.82e-003 
7.51e-003 

0 
0 

0 
0 

2.43e+001 
5.71e+001 

Std 

ABC/current-
to-best/2 

Mean 2.84e-112 
 

1.51e-111 

1.0e-001 
 

8.23e-002 

7.8752e-015 
 

1.4703e-015 

7.23e-003 
 

9.01e-003 

0 
 

0 

0 
 

0 

2.20e-001 
 

1.20e+000 Std 

 
 
Figure 2 – Figure 7. Convergence graph for Unimodal functions using (12)-(17) 
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Figure 2. ABC/best/1 
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Figure 3. ABC/best/2 
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Figure 4. ABC/rand/1 
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Figure 5. ABC/rand/2 
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Figure 6. ABC/current-to-

best/1 
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Figure 7. ABC/current-to-best/2 

 
 
Figure 8 – Figure 13. Convergence graph for Multimodal functions using (12)-(17) 
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Figure 8. ABC/best/1 
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Figure 9. ABC/best/2 
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Figure 10. ABC/rand/1 
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Figure 11. ABC/rand/2 
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Figure 12. ABC/current-to-

best/1 
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Figure 13. ABC/current-to-

best/2 
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Figure 15 – Figure 21 Convergence ability for every testing function by all six variants of 
ABC 

 
 

 
 

Figure 14. Legend used in Figure 15 – Figure 21 
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Figure 15. Sphere (UM) 
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Figure 16. Rosenbrock (UM) 
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Figure 17. Ackley(MM) 
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Figure 18. Griewank(MM) 
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Figure 19. Weierstrass (MM) 
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Figure 20. Rastrigin (MM) 
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Figure 21. Schwefel (MM) 
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5. Conclusion 
In this work, we investigated roundly the performance of variants of ABC based on the 

mutation strategies used in DE. Besides comparing with that already exists, we especially 
analyze the ability of convergence using the different improved ABC algorithms. From the 
results, we can conclude that the variants of ABC algorithms can enhance the optimization 
abilities for different type problems. 
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