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 A new hybrid quasi-Newton search direction ( 𝐻𝑄𝑁𝐸𝐼 ) is proposed. It uses 

the update formula of Broyden–Fletcher–Goldfarb–Shanno (BFGS) with a 

certain conjugate gradient (CG) parameter by a nested direction. The global 

convergence analysis and superlinear rate, addtionaly with sufficient descent 

are proved using exact line search. Finally, the computation comparisons are 

made with original hybrid parents; BFGS and CG, through the efficiency in 

terms of iteration numbers and CPU-running time showing the superior of 

𝐻𝑄𝑁𝐸𝐼. Therefore, the results marked preference of 𝐻𝑄𝑁𝐸𝐼 from other two 

producer algorithms. 
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1. INTRODUCTION  

Technology advancement requairs more efficient methods for solving its problems. For this purpose, 

scientiests in engineering, physics, chemistry and other branches try to find efficacious algorithms in 

obtaining optimal solution. Among the problems, there is a minimization unconstrained nonlinear 

optimization problem.  

 

min 𝑓(𝑥), 𝑥 ∈ ℝ𝑛 (1) 

 

whenever, 𝑓: ℝ𝑛 → ℝ𝑚 is an objective twice continuously differentiable function. For the problem (1), 

minimum value can be obtained numerically when the analytical methods are stuck. This is done by iterative 

procedures with line search 𝑑𝑘 and step size 𝛼𝑘 from (2) 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 (2) 

 

where, 𝑘 is number of iteration with last step 𝑥𝑘+1 represents minimum of (1) with desirable error in terms of 

current value 𝑥𝑘. According to the convergence properties and size scales with the algorithms efficiness, two 

approaches are more pupolar in solving (1); quasi-Newton methods (QNM) and CG methods. =Firstly, many 

researchers developed QNM as Broyden [1], Fletcher [2], Goldfrab[3], Shanno [4] and Powell [5] after 

Davidon introduced them [6]. These methods are used for minimizing (1) by employing an approximation 

Hessian matrix Hk in search direction dk. Broyden et al. [7] proved the iterative methods of quasi-Newton 

are locally q-linearly convergence when the generated iterative algorithm sequence of {𝐻𝑘} is bounded, but 
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Dennis and Moré [8] showed this sequence is convergent to the true Hessian matrix and for this it is required 

to be q-superlinear convergence rate. Broyden-Fletcher-Goldfrab-Shanno (BFGS) stands at methods . These 

methods use the direction search having Hessian matrix updated iteratively. It starts from a chosen positive 

defined matrix 𝐻0, usually identity matrix, with updating it by (3): 

 

𝐻𝑘+1 = 𝐻𝑘 −
𝐻𝑘𝑠𝑘𝑠𝑘

′ 𝐻𝑘

𝑠𝑘
′ 𝐻𝑘𝑠𝑘

+
𝑦𝑘𝑦𝑘

′

𝑠𝑘
′ 𝑦𝑘

 (3) 

where, 

 

𝑠𝑘 = 𝑥𝑘 − 𝑥𝑘−1 , 𝑦𝑘 = 𝑔𝑘 − 𝑔𝑘−1 (4) 

 

This belongs to one parameter Broyden family form of rank two (for details see Fletcher [9]). Powell [5] in 

1976 gave the Broyden–Fletcher–Goldfarb–Shanno (BFGS) methods global convergence analysis on convex 

objective function which results lim
𝑘→∞

inf‖𝑔𝑘‖ = 0 with any initial point and 𝐻0 and it converges to the 

solution with positive Hessian matrix. This is obtained by superlinear convergent rates [5]. However, for non-

convex function; the global convergent property was proved by Li and Fukushima [10]. The methods belong 

to Broyden class, the class of updating Hessian matrix approximation. Recently, there were many 

modifications and improvements are done on BFGS methods due to the dimension of problemes and usage 

memory, and updating the Hessian matrix approximation, for example, Andrei [11] used the divided 

difference in approximating the diagonial Hessian matrix. Self-scaling is anthor propreties of BFGS methods 

that some tries to modify, such as, Ali [12] modified a limited-memory of BFGS that are efficient in solving 

large scaling problems. On the other hand, the CG methods are large iterative methods. The first idea began 

with a quadratic objective function, which the method terminates at most n iterations along with exact line 

search. There was attempt to gain more efficient algorithms by combining the steepest descent with conjugate 

properties [9] (pp. 63). Hybridization is a procedure of combining algorithms to obtain new algorithm having 

more efficient properties from the parent algorithms.  

Sofi et al. [13], there was the idea to hybrid the quasi-Newton method with steepest descent after 

modifying the step size given in [14], which presented a new step-size for the method. Sofi et al. [13], 

combined each of Davidon, Fletcher and Powell (DFP) and BFGS with conjugate gradient (CG) under exact 

line search satisfying Wolfe condition and they saw that there was an improvement in terms of performance. 

Ibrahim et al. [15] employed the new step size that presented by Yuan [14], and they used two stages in line 

search, firstly, they imposed exact line search then in second iteration; inexact line search with Armijo 

condition was used. Once more, Sofi et al. [16] in 2013 proposed bounded Hessian matrix approximation in 

search direction containing component of BFGS and fletcher-reeves (FR) conjugate gradient parameter with 

exact line search and both Wolfe’s conditions. They showed an enhancement in computations [16]. Another 

hybridization was found between BFGS and conjugate descent direction and Armijo line search [17]. 

Furthermore, FR- parameter of CG is combined with DFP and exact line search [18]. The search directions 

hybridized of BFGS with CG are classified into two types. The first one is poor hybrid that is a linear 

combination of projection of Hessian matrix into gradient and parameter of different kinds of conjugate 

gradient, whereas the second one is combining all direction of CG and finding the optimal combining 

parameter. As a results, they found the optimal value of direction search hybrid parameter [19]. Also, new 

hybridization of BFGS with CG [20], that applied to the direction search parameter of Aini, Rivaie, and 

Mustafa (ARM) [21]. Moreover, there are many researches in hybrid between two CG algorithems to obtain 

more efficient algorithem. For instance, Jawdow and Al-Naemi [22] presended a convex combination 

parameter between two given methods of CG using inexact line search satisfying strong Wolfe condtion. 

Sulaiman et al. [23] proposed another hybrid basied on restart condition again with strong Wolfe condition. 

Hassan. et al. [24] employed the idea of convex combination in a hybrid parameter in CG algorithm before 

use it in a search direction. Finally, colonies such as bee and ant algorithms take apart of hybirtazation 

procedure [25]-[27]. As it has shown many works in hybrid between two algorithms, it is imperative to seek 

for more effective hybrid algorithm; accordingly, the 𝐻𝑄𝑁𝐸𝐼 algorithm is presented, in order to manged 

problems of continouse global developments. 

 

 

2. METHOD OF THE PROPOSED 𝑯𝑸𝑵𝑬𝑰 WITH ITS ALGORITHM  

In this work, we suggest 𝐻𝑄𝑁𝐸𝐼  which is a hybrid direction starts from the gradient projected by 

approximation Hessian matrix update of quasi-Newton of type BFGS. This will be for the first projection; 

however, the next projection is composited with gradient by adding preceding direction multiplied by a 

parameter. It is given as (5): 

𝑑𝑘 = { −𝐻𝑘𝑔𝑘 𝑘=0
−𝐻𝑘𝑔𝑘+𝜂(−𝑔𝑘+𝛽𝑘𝑑𝑘−1) 𝑘≥1

 (5) 
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where, 𝜂 ∈ (0,1]. 
 

𝛽𝑘 =

‖𝑔𝑘−1+𝑔𝑘‖

‖𝑑𝑘−1‖
2 ‖𝑔𝑘‖2−(𝑔𝑘

𝑇𝑔𝑘−1)

‖𝑔𝑘−1+𝑔𝑘‖

‖𝑑𝑘−1‖
2 ‖𝑔𝑘−1‖2

 (6) 

 

This CG parameter is designed by Mouiyad, Mustafa, and Rivaie (MMR-CG) [28]. However, in this paper, 

𝛽𝑘 will have different values since it depends on previous direction computed by (5). Moreover, the exact 

line search is employed in the algorithm with 𝐻𝑄𝑁𝐸𝐼 direction. The algorithm along with 𝐻𝑄𝑁𝐸𝐼  direction 

will be compared to its original component. The following is the steps of HQNEI algorithm to apply.  

 
Step 1: Initializations:𝐇𝟎 identity matrix, 𝐗𝟎 ∈ ℝ𝐧, tolerance 𝛆 = 𝟏 × 𝟏𝟎−𝟕, 𝐝𝟎 = −𝐇𝟎𝐠𝟎 , 𝐤 = 𝟏  

Step 2: Termination criteria, if ‖𝐠𝐤‖ ≤ 𝛆 or maximum number of iteration reached stop 

Step 3: Find exact step size 𝛂𝐤. 

Step 4: Compute 𝐬𝐤 = 𝐱𝐤 − 𝐱𝐤−𝟏 and 𝐲𝐤 = 𝐠𝐤 − 𝐠𝐤−𝟏 

Step 5: Update 𝐇𝐤 by (3) and find 𝛃𝐤 with (6) 

Step 6: evaluate search direction by (5) 

Step 7: set 𝐤 = 𝐤 + 𝟏, go to step 2. 

 

 

3. THE CONVERGENCE ANALYSIS OF 𝑯𝑸𝑵𝑬𝑰  

In this section, the convergence analysis is showed. The list of the requaried assumptions is assumed 

and presented. In addition, there are some properties that are important to analyze any suggested algorithm.  

 

3.1.  Some assumptions  

The required assumptions to obtain desire solutions are assumed as shown in: i) The objective 

function f is twice continuously differentiable. ii) The Hessian matrix is Lipschitz continuous at 𝑥∗, that is, 

there exist a positive constant c satisfying; 

 

‖𝐺(𝑥) − 𝐺(𝑥∗)‖ ≤ 𝑐‖𝑥 − 𝑥∗‖  

 

for all 𝑥 in neighborhood of 𝑥∗. iii) If 𝑓 ∈ 𝐶2 and the level set 𝐿 = {𝑥: 𝑓(𝑥) ≤ 𝑓(𝑥0)} is convex, there exist 

positive constants 𝑐1𝑎𝑛𝑑 𝑐2 satisfying;  

 

𝑐1‖𝑧‖2 ≤ 𝑧′𝐺(𝑥) 𝑧 ≤ 𝑐2‖𝑧‖2 ∀𝑧 ∈ ℜ𝑛 , 𝑥 ∈ 𝐿   

 

and 𝐺(𝑥) is Hessian matrix of 𝑓. 

 

3.2.  Sufficient descent property of 𝐇𝐐𝐍𝐄𝐈. 
The sufficient descent is the property which is required to guarantee the minimization process in 

problem (1). Mathematically, it is means that; 𝑔𝑘
𝑇𝑑𝑘 ≤ −𝑐‖𝑔𝑘‖2 , ∀𝑘 ≥ 0. Additionally, this property leads 

to hold all the above assumptions. It is obvious from (5) and (6), we have: 

 

𝑑𝑘 = { −𝐻𝑘𝑔𝑘 𝑘=0
−𝐻𝑘𝑔𝑘+𝜂(−𝑔𝑘+𝛽𝑘𝑑𝑘−1) 𝑘≥1

  

𝑔0
𝑇𝑑0 = −𝑔0

𝑇𝐻0𝑔0
  

 ≤ −𝑐‖𝑔0‖2 by assumption 3.1 (iii)  

𝑔𝑘
𝑇𝑑𝑘 = 𝑔𝑘

𝑇(−𝐻𝑘𝑔𝑘 + 𝜂(−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1))   

≤ −𝑘‖𝑔𝑘‖2 + 𝜂(−𝑔𝑘
𝑇𝑔𝑘) + 𝜂𝑔𝑘

𝑇𝛽𝑘𝑑𝑘−1  

 

since it is exact line search, 𝑔𝑘
𝑇𝑑𝑘−1 = 0 , then  

 

𝑔𝑘
𝑇𝑑𝑘 ≤ −𝑐‖𝑔𝑘‖2   

 

where, 𝑐 = 𝑘 + 𝜂   

Hence, it is sufficient descent. To show the global convergence, the following lemma is needed.  
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3.2.1. Lemma 

If 𝛼 is generated by exact line search and let part (iii) of assumption 3.1 hold. Then; 

 

lim
𝑘→∞

‖𝑔𝑘‖ = 0  

 

Proof: The prove of this lemma, it is referring to lemma 2 in [20]. There is the usage for the mean value 

theorem for a line search 𝛼 considered as a solution and with the benfits of Lipschitz continuous property on 

the line search 𝛼. Hence we get the results. 

 

3.2.2. Theore 
Suppose the assumptions 3.1 and Lemma 3.2.1 is fulfilled. Then; 

 

lim
𝑘→∞

inf  ‖𝑔𝑘‖ = 0  

 

Proof: suppose ‖𝑔𝑘‖ > 𝛿 ∀ 𝑘 ≥ 0; 

 

𝑑𝑘 = −𝐻𝑘𝑔𝑘 + 𝜂(−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1)  

‖𝑑𝑘‖ = ‖−𝐻𝑘𝑔𝑘 + 𝜂(−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1)‖  

≤ ‖𝐻𝑘‖‖𝑔𝑘‖ + 𝜂‖𝑔𝑘‖ + 𝜂|𝛽𝑘|‖𝑑𝑘−1‖  

= (‖𝐻𝑘‖ + 𝜂)‖𝑔𝑘‖ + 𝜂|𝛽𝑘|‖𝑑𝑘−1‖  
‖𝑑𝑘‖ ≤ ‖𝐻𝑘 + 𝜂‖‖𝑔𝑘‖ + 𝜂|𝛽𝑘|‖𝑑𝑘−1‖  
‖𝑑𝑘‖

‖𝑔𝑘‖2 ≤
‖𝐻𝑘+𝜂‖

‖𝑔𝑘‖
+

𝜂|𝛽𝑘|‖𝑑𝑘−1‖

‖𝑔𝑘‖2   

 

but, we have: 

 

𝛽𝑘 ≤

‖𝑔𝑘−1+𝑔𝑘‖

‖𝑑𝑘−1‖
2 ‖𝑔𝑘‖2

‖𝑔𝑘−1+𝑔𝑘‖

‖𝑑𝑘−1‖
2 ‖𝑔𝑘−1‖2

=
‖𝑔𝑘‖2

‖𝑔𝑘−1‖2  

 

So,  

 

‖𝑑𝑘‖

‖𝑔𝑘‖2 ≤
‖𝐻𝑘+𝜂‖

‖𝑔𝑘‖
+

𝜂
‖𝑔𝑘‖

2

‖𝑔𝑘−1‖
2‖𝑑𝑘−1‖

‖𝑔𝑘‖2   

=
‖𝐻𝑘+𝜂‖

‖𝑔𝑘‖
+

𝜂‖𝑑𝑘−1‖

‖𝑔𝑘−1‖2  

=
‖𝐻𝑘‖+𝜂

‖𝑔𝑘‖
+

𝜂‖𝑑𝑘−1‖

‖𝑔𝑘−1‖2  

 

since 𝐻𝑘 is bounded, then 𝐻𝑘 < 𝑢, 

 
‖𝑑𝑘‖

‖𝑔𝑘‖2 ≤
𝑢+𝜂

‖𝑔𝑘‖
+

𝜂‖𝑑𝑘−1‖

‖𝑔𝑘−1‖2  

 ≤
𝑢+𝜂

‖𝑔𝑘‖
+

1

‖𝑔𝑘−1‖
≤ ∑

𝑢+𝜂

‖𝑔𝑖‖
+

1

‖𝑔0‖

𝑘
𝑖=1   

 

but ‖𝑔𝑘‖ > 𝛿 ∀ 𝑘 ≥ 0 by assumption 

 
‖𝑑𝑘‖

‖𝑔𝑘‖2 ≤ ∑
𝑢+𝜂

𝛿
+

1

𝛿

𝑘
𝑖=1   

‖𝑑𝑘‖

‖𝑔𝑘‖2 ≤
(𝑢+𝜂)𝑘+1

𝛿
  

‖𝑔𝑘‖4

‖𝑑𝑘‖2 ≥
𝛿2

((𝑢+𝜂)𝑘+1)2  

∑
‖𝑔𝑘‖4

‖𝑑𝑘‖2 ≥∞
𝑘=0 ∑

𝛿2

((𝑢+𝜂)𝑘+1)2
∞
𝑘=0 = ∞  

∑
‖𝑔𝑘‖4

‖𝑑𝑘‖2 ≥∞
𝑘=0 ∞ , 𝐶!  

 

Hence, the global convergence is obtained.  
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3.3.  Superlinear convergence of 𝑯𝑸𝑵𝑬𝑰 

This part is specific for proving the superlinearity convergence of our suggested algorithm. To prove 

that, we need lemma 4.9 and 4.10 in [29]. Those lemmas state, under the hypotheses 3.1, there exists a 

sequence {𝜖𝑘} of numbers such that: 

 
‖𝑦𝑘−𝐺(𝑥∗)𝑠𝑘‖

‖𝑠𝑘‖
≤ 𝜖𝑘 (7) 

 

and  
 

∑ 𝜖𝑘
∞
𝑘=1 < ∞ (8) 

 

where, 𝑦𝑘  and 𝑠𝑘  are defined in (4). These lead to the boundedness of the sequences {𝐻𝑘} , {𝐻𝑘
−1} and 

 

lim
𝑘→∞

‖(𝐻𝑘
−1−𝐺(𝑥∗))𝑠𝑘‖

‖𝑠𝑘‖
= 0 (9) 

 

3.3.1. Theorem 

Suppose assumptions 3.1 (i) and (iii) are holds, {𝑥𝑘} → 𝑥∗ and the sequence {𝐻𝑘} , {𝐻𝑘
−1} are 

bounded. If 𝑥𝑘+1 = 𝑥𝑘 + 𝑑𝑘 holds for all sufficiently large 𝑘 with,  

 

lim
𝑘→∞

‖(𝐻𝑘
−1−𝐺(𝑥∗))𝑑𝑘‖

‖𝑑𝑘‖
= 0, then lim

𝑘→∞

‖𝑥𝑘+1−𝑥∗‖

‖𝑥𝑘+1−𝑥𝑘‖
= 0  

 

Proof: 
 

[𝐻𝑘
−1 − 𝐺(𝑥∗)]𝑑𝑘 = 𝐻𝑘

−1𝑑𝑘 − 𝐺(𝑥∗)𝑑𝑘  

= 𝐻𝑘
−1[−𝐻𝑘𝑔𝑘 + 𝜂(−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1)] − 𝐺(𝑥∗)𝑑𝑘  

 = −𝑔𝑘 − 𝜂𝐻𝑘
−1𝑔𝑘 + 𝜂𝛽𝑘𝑑𝑘−1𝐻𝑘

−1 − 𝐺(𝑥∗)𝑑𝑘  

 = (−𝐼 − 𝜂𝐻𝑘
−1)(𝑔𝑘 + 𝐺(𝑥∗)𝑑𝑘) + 𝜂𝛽𝑘𝑑𝑘−1𝐻𝑘

−1+𝜂𝐻𝑘
−1𝐺(𝑥∗)𝑑𝑘  

 = (−𝐼 − 𝜂𝐻𝑘
−1)𝑔𝑘+1 + 𝜂𝛽𝑘𝑑𝑘−1𝐻𝑘

−1+𝜂𝐻𝑘
−1𝐺(𝑥∗)𝑑𝑘 + 𝑜(‖𝑑𝑘‖)  

 

{‖𝐻𝑘‖}, {‖𝐻𝑘
−1‖} are bounded sequence by (7), (8) and this leads to 𝛽𝑘 be coverage. Therefore, we 

get: 
 

‖(𝐻𝑘
−1 − 𝐺(𝑥∗))𝑑𝑘‖ = [1 + 𝑂(1)]‖𝑔𝑘+1‖ + 𝑜(‖𝑑𝑘‖)  

 

since it is given that, 
 

lim
𝑘→∞

‖(𝐻𝑘
−1−𝐺(𝑥∗))𝑑𝑘‖

‖𝑑𝑘‖
= 0  

 

which is implies that, 

 

lim
𝑘→∞

‖𝑔𝑘+1‖

‖𝑑𝑘‖
= lim

𝑘→∞

‖𝑔𝑘+1‖

‖𝑥𝑘+1−𝑥𝑘‖
= 0  

 

On the other hand,  

 

𝑔𝑘+1 − 𝐺(𝑥∗) − 𝐺(𝑥∗)(𝑥𝑘+1 − 𝑥∗) = 𝑜(‖𝑥𝑘+1 − 𝑥∗‖), with 𝐺(𝑥∗) = 0,  

 

Hence, lim
𝑘→∞

‖𝑥𝑘+1−𝑥∗‖

‖𝑥𝑘+1−𝑥𝑘‖
= 0. 

 

 

4. RESULTS AND NUMERICAL DISCUSSION  

In this part, The performance profile plots; suggested in [30], is displayed. It is a good way to 

highlight the differences among approaches; in case, if there is a significant difference in the area of interests. 

In other words, the performance profile plot does not show small variant among algorithms. In this paper, this 

way is used to reveal the comparison of different algorithms based on central processing unit (CPU) running 
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time and number of iterations to obtain the solution with desired error. A list of 40 test functions collected in 

each of [31] and [32] using different dimensions for problems, as showed in Table 1, is run. The results 

presented in Figure 1, by ploting the performance profile plot. The Figure 1(a) shows the performance of 

HQNEI, BFGS and MMR-CG in terms of number of iteration; that counted to get the wanted solution. It is 

obvious that HQNEI reached to the solution with less number of iteration, followed by BFGS and at last 

MMR-CG comes. However, the powful of running time of CPU is demonstrated in Figure 1(b). It is clear 

that 𝐻𝑄𝑁𝐸𝐼  dominated by the others, which means that in this comparsion criterion of our algorithm is also 

better than BFGS and MMR-CG.  

 

 

Table 1. List of test functions with some dimension 
ID Function Name Dimension   ID Function Name Dimension 

1 Zettl 2   21 Diagonal 2 2,4,6,8,20,30 

2 Camel Six Hump 2  22 Diagonal 3 2,4,6,8,20,30 
3 Camel Three Hump 2  23 Diagonal 4 2,4,6,8,20,30 

4 Brent 2  24 Diagonal 5 2,4,6,8,20,30 

5 Quartic 2  25 Diagonal 6 2,4,6,8,20,30 
6 Sphere 2,4,6,8,20,30  26 Diagonal 7 2,4,6,8,20,30 

7 Schwefel_2_4 2,4,6,8,20,30  27 Hager 2,4,6,8,20,30 

8 Zakharov 2,4,6,8,20,30  28 Ex. TET 2,4,6,8,20,30 
9 Dixon & Price  4,6,8,20,30  29 ARWHEAD 2,4,6,8,20,30 

10 Gen. Rosenbrock 2,4,6,8,20,30  30 Ex. DENSCHNB 2,4,6,8,20,30 

11 Ex. Rosenbrock 2,4,6,8,20,30  31 COSINE 2,4,6,8,20,30 
12 Raydan 1 2,4,6,8,20,30  32 BIGGSB1 2,4,6,8,20,30 

13 Raydan 2 2,4,6,8,20,30  33 DIXON3DQ 2,4,6,8,20,30 

14 Ex. BD1 Block Diagonal 2,4,6,8,20,30  34 EX. Penalty 2,4,6,8,20,30 
15 Gen. Quartic 2,4,6,8,20,30  35 ENGVAL 1 2,4,6,8,20,30 

16 Gen. Tridiagonal 1 2,4,6,8,20,30  36 Almost Perturbed Quadratic 2,4,6,8,20,30 

17 Ex. Tridiagonal 1 2,4,6,8,20,30  37 POWER 2,4,6,8,20,30 
18 Ex. Freudenstein Roth 2,4,6,8,20,30  38 DQDRTIC 2,4,6,8,20,30 

19 Diagonal 1 2,4,6,8,20,30  39 Cliff 2,4,6,8,20,30 

20 Ex. White & Holst 2,4,6,8,20,30,100,200,400   40 Ex. Beale 2,4,6,8,20,30,100,200,1000 

 

 

  
(a) (b) 

 

Figure 1. Performance profile for BFGS, CG-MMR and HQNEI (a) Number of iterations and  

(b) CPU running time 

 

 

Now, more details about running three programs are givin. MATLAB 2018a codes is used with an 

exact line search using secant method to approximate the step size with combination parameter 𝜂 = 0.01 and 

𝜀 = 1 × 10−7 or maximum number of iterations which is the number of variable times 1000. Also, 

MATLAB codes for comparison of algorithm performance profiles were written in [33] and they are utilized 

here. Moreover, the recommended initial points for function in [31] and the border possible value for those in 

[32] is run; for all test function named in Table 1. 
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5. CONCLUSION 

In this paper, a new direct search 𝐻𝑄𝑁𝐸𝐼  is introduced. It is a type of line combination of projection 

of BFGS Hessian matrix update together with the direction parameter 𝛽𝑘 of a specific designed CG method, 

MMR-CG. After running many test functions, the powerful of the 𝐻𝑄𝑁𝐸𝐼  algorithm is obtained. This means 

that, there is an improvement of the performance of algorithm with less number of iteration and CPU running 

time in comparison with its originator components, BFGS and MMR-CG algorithms. This entire conclusion 

is along with sufficient descent, global convergence and superlinear rate property of the proposed algorithm. 
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