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Abstract 
In this paper we generalize established techniques and blending algorithm for quaternions to dual 

quaternions to represent rigid transformations compactly. With the visualization of OpenGL, we employ 
dual quaternions to achieve character animation in real time. Classical quaternions are only able to 
characterize rotations although combination of matrix calculation and quaternions operator has been a 
popular tool in character animation since 1990s. In character animation and some other applications of 3D 
computer graphics, we are actually faced with rigid transformation which just includes translation and 
rotation. Similar to the way quaternions represent rotations, dual quaternions represent rigid 
transformations. Algorithms based on dual quaternions own better properties than those based on 
quaternions in practical applications, which include reduced overhead, increased computational efficiency 
and coordinate invariance. Finally we demonstrate the effectiveness of dual quaternions blending 
algorithm by cartoon male and female mesh models with the animation of walking and waving.. 
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1. Introduction 

As is shown in many literatures, quaternions [1] are an advantageous representation of 
3D rotations than rotation matrices in many aspects better. But rigid objects not only rotate, but 
also translate. Since a rotation composed with translation is called a rigid transformation, any 
displacement of a rigid object in 3D space can be described by a rigid transformation. In this 
paper, we advocate that dual quaternions are a better representation of rigid transformations 
than those treating rotation and translation components independently. We combine dual 
quaternions to implement real time skeletal animation. 

In 3D computer graphics, character animation can be done in several ways. When the 
animations become more complex it poses problems in matter of memory usage we usually 
employ skeletal animation system [2]. We first build a skeleton and joints inside the meshes we 
wish to animate, and then animate the skeleton within instead of animating the mesh itself. 
In the skeleton, every vertex corresponds to one or more joints through an coefficient. Not only 
the vertex index and the joint indexes are stored in the coefficient, but also the influence weights 
between the joints and the vertex are stored [3]. For any vertex, there is one and only one 
influence weights associated with a joint and the influence weights should add up to one 
numerically. As the mesh seems like a skin in terms of the skeleton, we typically call this 
process as skeleton skinning or skining. 
 
 
2. Related Work 

Though the dual quaternion has been around since 1882, it has gained less attention 
compared to quaternions alone [4]. Comparable to quaternions the dual quaternion has had a 
taboo associated with them, whereby students avoid quaternion and hence dual-quaternions. 
While the research community in robotics has started to adopt dual-quaternions in recent years, 
the research community in computer graphics such as character animation has not embraced 
them as whole-heartedly. 

Schilling used dual quaternion with a mean of multiple computational model to model 
bodies [5]. Pham used Jacobian matrix in the dual quaternion space to solve linked chain 
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inverse kinematic problems [6]. Yang used dual quaternions to calculate the relative orientation 
[7]. 

Kuang presented a strategy for creating real time animation of clothed body movement 
[8]. Vasilakis discussed skeleton based rigid skinning for character animation [9]. Selig 
examined the problem of solving the equations of motion in real-time, put forward how dual 
quaternions gave a very neat and succinct way to represent rigid-body transformations, and 
addressed the key problem in computer games [10]. 
 
 
3. Dual Quaternion 
 
3.1. Quaternion 

Quaternion has been a popular tool in 3D computer graphics for more than 20 years 

[11], they are four terms real numbers 
( )r x y zq q q q

 which include a three-term vector with 

components xq yq and zq . Quaternion is usually represented in the form 
 

r x y z rQ q q i q j q k q q     
   

 (1) 
 

Where rq and q


 are the real and vector parts, respectively, and i


, j


and k


are the unit 
vectors associated with the axes of a Cartesian coordinate system. A dual quaternion can be 

used to define a rigid body rotation of an angle  about an axis u


through the origin 
 

cos sin
2 2

Q u
 

 


 (2) 
 

3.2. Dual Quaternion 
Classical quaternions are restricted to the representation of rotations, whereas in 

graphical applications we typically work with rotation composed with translation, i.e. rigid 
transformations. Dual quaternions are mathematical entities [12] whose four components are 
dual numbers, and they can be expressed as follows: 

 
�

0Q Q Q   (3) 
 

Where Q  and 0Q  are both quaternions, and  is dual unit. Dual quaternion can formulate 
a problem more concisely, solve it more rapidly and in fewer steps, present the result more 
plainly to others, be put into practice with fewer lines of code and debugged effortlessly. Dual-
quaternion has a unified representation of translation and rotation as follows: 

 

0

1
;

2
Q r Q t r  

 (4) 
 
Where r is a unit quaternion representing the rotation and t is the quaternion describing 

the translation represented by the vector t , as we can see from Figure 1. 
Dual quaternions [13] represent rigid transformations in the same way as classical 

quaternions represent rotations. The dual quaternion blending algorithms [14] could be applied 
in motion blending, motion analysis, spatial key framing, computer vision, graphics hardware. 
 

 
3.3. Dual Quaternion Linear Blending 

After skinning transformations are converted to unit dual quaternions 
 

1, , nq q , what we 

need to do next is use the given weights to compute a blended unit dual quaternion 
q  
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Figure 1. Rigid transformation with dual quaternions 

 
 

1( , , )nw w w   (5) 
 
We achieve this by first taking their linear combination and then normalizing the result to 

get a unit dual quaternion, which is called Dual quaternion Linear Blending (DLB) [15]: 
 

 
 

 
1 1

1

1
1 1

1

( ; , , )
|| ||

n

n

n

w w
DLB w

w w

q q
q q

q q

 


 





 (6) 

 
DLB has many excellent properties required in skinning. A detailed description appears 

in literatures [16] and [17]. DLB produces a unit dual quaternion and we can convert it to a rigid 
transformation matrix, that is, DLB returns a rigid transformation. The following formula proves 

to be true for any unit dual quaternion 
q  to demonstrate the fact that DLB is coordinate-

invariant. 
 

   * * *

1 1( ; , , ) ( ; , , )n nDLB w rq r rq r rDLB w q q r        (7) 
 
In fact, it can be decomposed to two properties: left invariance and right invariance. The 

following formulas represent left invariance and right invariance respectively: 
 

   
1 1( ; , , ) ( ; , , )n nDLB w rq rq rDLB w q q     (8) 

 
   

1 1( ; , , ) ( ; , , )n nDLB w q r q r DLB w q q r      (9) 
 
Coordinate-invariance includes both left invariance and right invariance. The 

multiplicative property of the norm and the distributive property of dual quaternions are applied 
to prove left invariance based on the assumption: 

 

|| || 1r 
 (10) 

 
 

 

 

 
 

1 1
1

1 11

1 1
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1 1

( ; , , )
|| ||

( ; , , )
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n n
n

n

n n
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n n

w q w q
DLB w rq rq

w q w q

w q w q
r rDLB w q q

r w q w q

 
 

 

 


 

 


  
   (11) 

 
Similarly, the property of right invariance can be proved. The combination of left 

invariance and right invariance makes DLB coordinate-invariant. For any two unit dual 
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quaternions 
�p and

q , the blending is given as 
� ( ; , )DLB t p q and the path of DLB interpolation is 

shortest. 
 

�  � � �  � � * *
( ; , ) ( ; , ) ( ;1, )DLB t p q p p DLB t p q p DLB t p q   (12) 

 

It is therefore sufficient to show that the path between 1 and
� *
p q will be the shortest one 

which is given by the screw corresponding to
� *
p q . It’s obvious that 

� *
p q  is a unit dual 

quaternion. We can always find a dual scalar
�  and a unit dual quaternion n  that satisfys the 

formula 
 

� 
�


�*

cos sin
2 2

p q n
 

 
 (13) 

 

Therefore, 
� ( ; , )DLB t p q can be given as: 

 

� 
� 

� 

�


�

� 

*
*

* *

1 cos( ) sin( )1 2 2( ;1, )
||1 || ||1 ||

t ntt t p q
DLB t p q

t t p q t t p q

 
   

 
     (14) 

 
It can be concluded the amount of translation and the angle of rotation vary with [0,1]t   

while the screw axis of 
� *

( ;1, )DLB t p q  keeps the same. 
� *

( ;1, )DLB t p q makes the screw motion go 
along a shortest path 

 
�

� *

sin( )
2

||1 ||

t

t t p q



   (15) 
 

�

� *

1 cos( )
2

|| 1 ||

t t

t t p q


 

   (16) 
 
Similar to linear interpolation of quaternions, the velocity of the screw motion is not 

constant. But in practical skeleton animation, the skinning will not be influenced seriously by the 
time-dependent speed. The procedure of Simple Dual quaternion Linear Blending is shown in 
Table 1. 

 
 

Table 1. Simple Dual quaternion Linear Blending 

Algorithm 1 sDLB: Simple Dual quaternion Linear Blending 

procedure 
 

1 2( , , )SDLB q q t
 

 
 

 
1 2

1 2

1 2

(1 )
( ; , )

|| (1 ) ||

t q tq
SDLB t q q

t q tq

 


   
end procedure 
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3.4. Screw Linear Interpolation 
This is a generalization of the well-known Spherical Linear Interpolation (SLERP) [18] 

scheme. Let denote by


1q and


1q two dual quaternions expressing the initial and final pose of a 
rigid body, respectively. The ScLERP function (Screw Linear Interpolation) [19] is defined as 
follows 

 
    

1 2 1 1 2( ; , ) * ( * ) , [0,1]tScLERRP t q q q q q t   (17) 
 

Since 
 1

1 2*q q


represents the finite screw motion between the initial and final pose of the 
rigid body, the product 

 

 
 

1

1 2( * ) cos( ) sin( )
2 2

tq q t t u
 

 
 (18) 

 
defines a screw motion of a dual angle along the screw axis. 

 
 

   
 

Figure 2. Character animation with dual quaternions, frame by frame, the subfigures show three 
different frames of walking male with DLB. 

 
 

3.5. Analytical Comparison between DLB and ScLERP 
As is mentioned above, it’s plausible to interpolate rigid transformations with Dual 

quaternion Linear Blending. But it is not a group intrinsic method, thus it’s not a perfect mothod, 
it involves a trick named normal-interpolation. In this paper we discuss whether this will 
introduce artifacts when employing DLB in the blending procedure. We take two transformations 
for example. In order to respect the geometry of the underlying group, we establish a perfectly 
correct blending method. 

Theoretically, Spherical Linear Interpolation (SLERP) is a perfect solution for blending 

[16] [17]. For any two unit quaternions 1q , 2q , let’s assume that 1 2, 0q q  , then the formula is 
1 2 2 1 1( ; , ) ( ) tSLER P t q q q q q with parameter [ 0 ,1]t  . We can easily generalize SLERP to dual 

quaternions. In case of dual quaternions, the method is called Screw Linear Interpolation 

(ScLERP). For 1q and 2q , the interpolation can be written as 
   

11 2 2 1( ; , ) ( )tScLERP t q q q q q


  

It is clear that 
 

2 1q q


 represents the relative motion between 


1q and 


2q , and it’s also a unit 

dual quaternion. For a dual angle � and dual vector n , the power of 
 

2 1q q


 can be given as follows. 
 

 
�


�

2 1( ) cos( ) n sin( )
2 2

tq q t t
 

 
 (19) 

 

In the expression above, the dual vector n  represents the axis of the screw motion. The 
translation quantity t   and the rotation quantity ot  are included in the dual 
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angle

�

2 2 2
ot t t    

. Two important attributes can be found out obviously: both the amount of 
translation t   and the angle of rotation ot  follow a linear variation with the interpolation 

quantity t ; the axis n  of the screw motion is constant, that is to say, n is independent of t. As a 
generalization of SLERP, ScLERP is expected to be a shortest path interpolation solution with a 
constant speed. As another property, ScLERP is coordinate invariant, which can be easily 
proved. 

It can be seen that the interpolation of ScLERP hold the same behavior as SLERP. 
ScLERP can be used as a standard reference to carry on an analysis and comparison of DLB. It 
should be noted that the error is invariant with the coordinate systems, which is an important 
property. The common property of DLB and ScLERP can be used to simplify the comparison 

process. In order to make a correct comparison between
 

1 2( ; , )ScLERP t q q  and
 

1 2( ; , )DLB t q q , we 

express them as 
  

2 1 1( ;1, )ScLERP t q q q


 and 
  

2 1 1( ;1, )DLB t q q q


 reseparately, which can be easily 

proved with the property of right-invariance. It is enough to compare 
 

2 1( ;1, )DLB t q q


 with 
 

2 1( ;1, )ScLERP t q q


 as 


1q  can be omitted in both expressions.
 

2 1q q


can be given as 

 
�


�

2 1 cos sin
2 2

q q n
 

 
as it’s a unit dual quaternion. 

 

 
 

 

�
�

�

 

*
*

2 1
2 1 *

2 1

*

2 1

1
( ;1, )

||1 ||

1 cos( ) sin( )
2 2

||1 ||

t tq q
DLB t q q

t tq q

t t n t

t tq q

 

 


 

  


   (20) 
 

   

�


�
2 1 2 1( ;1, ) ( )

cos( ) sin( )
2 2

tScLERP t q q q q

t n t
 

 


 
 (21) 

 

It is easy to find that DLB and ScLERP share the same screw axis n . The only 
difference between DLB and ScLERP lies in amount of translation and the angle of rotation 

along the same screw axis. 
  *

2 1( ;1, )DLB t q q can be given in the following form as it’s a unit dual 
quaternion. 

 

 
�

�
�*

2 1( ;1, ) cos( ) sin( )
2 2

t tDLB t q q n t
 

 
 (22) 

 
From the formula above, we can derive the followig formula by only considering the 

scalar part. 

�
�

 
2 1

1 cos( )
2cos

2 ||1 ||

t
t t

t t q q






 


   (23) 
 
In order to compute the difference between DLB and ScLERP, we compare the dual 

angle 
�

t  with the dual angle
� t . It requires a complicated process of mathematical analysis, and 

it is easy to carry out the computations by means of mathematical tools. The result is consistent 
with the results reported in early literatures for the case of quaternions. In practice, the 
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differencs are always smaller than theoretical maximum values. In particular, for skeletal 
animation, the difference between DLB and ScLERP can hardly be observed with naked eyes. 
 
 

   
 

Figure 3. Character animation with dual quaternions, frame by frame, the subfigures show four 
different frames of waving-arm male with ScLERP. 

 
 
4. Character Animation  

In the procedure of character animation, we use degrees of freedom (DOF) to represent 
possible range of movement for a joint of the character. For the whole skeleton of a complicated 
character, the numben of DOFs may be hundreds of thousands. It’s the core of skeleton 
animation to assign specific motion parameters for each joint. The movement over time for the 
skeleton can be achieved by updating these parameters. 

A simple character skeleton and the hierarchical topological graph of skeleton joints are 
shown in Figure 4. An insight into skeletons is given in reference [20]. 

 
 

  
 

Figure 4. Left is character skeleton, right is hierarchical topological graph of skeleton joints 
 
 

For each joint, we can construct a local matrix with the given DOF values, and define 
relative orientation and position with respect to its parent joint in the hierarchical topological 
graph. With the local matrices obtained, the world space matrices for all joints can be computed 
using forward kinematics. Once world space matrices are obtained, the character can ultimately 
be rendered frame by frame, such as skeleton animation and collision detection. When 
transformed by a matrix, a vector undergoes the following conversion: 

 
'V V M   (24) 

 
V is a original vector to be transformed, 

'V  is the resulting transformed vector, and M is 
the transformation matrix. In particular, we can use this conversion to place a vertex in local 
coordinate space to world coordinate space. The inverse of the conversion will lead the 
following conversion: 

 
' 1V V M    (25) 
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1M  is the inverse matrix of M . The inversion conversion formula tells us we we can also 
transform a object from world coordinate space to local coordinate space. 

 
 

 
(a) 

 
(b)  

(c) 
 

Figure 5. Left represents Hierarchical skeleton, middle and right represent male and female 
models warping the inner skeleton respectively 

 
 

In the implementation process with computer graphics and OGENGL, we first build a 
hierarchical skeleton which consists of several nodes, and then we wrap the hierarchical 
skeleton with a specified mesh model. A similar implementation that adopts quaternions can be 
found in [21]. In this paper, we take a male model and a female model to demonstrate the 
course of character animation and show the effectiveness of the proposed algorithms. In Figure 
5, (a) represents the skeleton of a cartoon character, (b) and (c) represents the male and female 
model warping the same inner skeleton respectively. 
 
 
5. Implementation 

The dual-quaternion unifies the translation and rotation into a single state variable. This 
single state variable offers a robust, unambiguous, computationally efficient way of representing 
rigid transform. We combine skeletal animation and dual quaternions to implement character 
animation with OpenGL. 

We demonstrate the real time result in Figure 2, Figure 3, Figure 6 and Figure 7. In 
Figure 2, the real time animation process of a walking male is shown in sequencing frames, 
which employs Dual quaternion Linear Blending algorithm. In Figure 3, the real time animation 
process of a waving male is shown in sequencing frames, which employs Screw Linear 
Interpolation algorithm. In Figure 6, the real time animation process of a walking cartoon girl is 
shown in sequencing frames, which employs Dual quaternion Linear Blending algorithm. In 
Figure 7, the real time animation process of a waving cartoon girl is shown in sequencing 
frames, which employs Screw Linear Interpolation algorithm. 
 
 

   
 

Figure 6. Animation with dual quaternions, frame by frame, the subfigures show three different 
frames of walking cartoon girl with DLB. 
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Figure 7. Animation with dual quaternions, frame by frame, the subfigures show three different 
frames of waving cartoon girl with ScLERP. 

 
 

Dual quaternion model is an accurate, computationally efficient, robust, and flexible 
method of representing rigid transforms, which should not be overlooked. It enables the creation 
of more elegant and clearer computer programs that are easier to work with and control when 
we implement pre-programmed dual quaternion modules including multiplication and 
normalization.The computational cost of combining matrices and dual-quaternions: 

Matrix4x4 : 64mult + 48adds 
Matrix4x3 : 48mult + 32adds 
DualQuaternion : 42mult + 38adds 

 
 
6. Conclusion 

In character animation, skeletons consist of several articulated joints that connect the 
rigid bones in accordance with the hierarchy topology. Rigid transformation blending of bones 
based on dual quaternions exhibit advantageous properties, and fast execution time. In this 
paper, we introduce dual quaternion and take the advantage of it. We make use of dual 
quaternion to represent the translation and rotation, and have implemented real-time character 
animation with OpenGL. 

We have generalized established techniques and blending algorithm for quaternions to 
dual quaternions to represent rigid transformations compactly. With the experimental results 
shown in figures above, we have implemented real time character animation with dual 
quaternion blending algorithm under the platform of OpenGL. We have demonstrated the 
effectiveness of dual quaternions in character animation by cartoon male and female mesh 
models with the animation of walking and waving. 

In addition to digital character, skeletons are also applicable to real world animals as 
long as the animals own true bones, such as mammals and humans. Moreover, we can also 
use skeletons in combination with dual quaternion blending algorithm to simulate the movement 
of soft tissues. 
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