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ABSTRACT

For the last few decades, thermal comfort has been considered an aspect of sustainable
building evaluation methods and tools. However, estimating the indoor air temperature
of buildings is a complicated task due to the nonlinear behaviour of heating, ventilation
and air conditioning systems combined with complex dynamics characterized by the
time-varying environment with disturbances. This issue can be alleviated by modelling
the building dynamics using Gaussian processes since it also measures the uncertainty
bounds. The main focus of this paper is designing a predictive and probabilistic room
temperature model of buildings using Gaussian processes and incorporating it into
model predictive control to minimize energy consumption and provide thermal com-
fort satisfaction. We exploited the Gaussian processes’ full probabilistic capabilities as
the mean prediction for the room temperature model and used the model uncertainty
in the objective function not to lose the desired performance and to design a robust
control scheme. We illustrated the potentials of the proposed method in a numerical
example with simulation results.
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1. INTRODUCTION
There is an urge for more intelligent living comfort due to recent technologies that lead us towards

the smart city that can provide better living through enhancing the integration of the quality and economic
conditions by implementing information systems at different infrastructures of a city. Intelligent energy is one
of the primary critical concepts of a smart city, where building residents consume significant energy for gaining
thermal comfort [1]. Because of the disintegrate character of the building dynamics in terms of optimization
and control, achieving an energy-efficient building climate control scheme that integrates fully automated heat-
ing, ventilation, and air conditioning (HVAC) services is still an open question. In building climate control
problems, HVAC systems keep room temperature within a comfortable range. For decades, thermal comfort
has been considered an aspect of sustainable building evaluation methods and tools [2], [3]. However, esti-
mating the indoor air temperature of buildings is a complicated task due to the HVAC system’s nonlinear and
complex dynamic characterized by the time-varying environment with disturbances. Developing the building
model is the most primary and time-consuming task when the modelling technique relies on physics-based and
grey-box methods [4] based on energy and mass balance partial differential equations. On the other hand, the
recent developments in machine learning (ML) techniques and the increasing data accessibility, thanks to smart
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and accurate sensor measurements, in buildings have empowered the study of data-driven building models due
to their simplicity, modern stage of automation, and less engineering effort. In these circumstances, several
research works have been investigated considering the time-varying user comfort preference [5], the contin-
uous electricity supply to the consumer in the presence of random operation in building energy consumption
based on artificial neural networks in a smart grid [6]. Optimized energy and comfort management scheme for
intelligent and sustainable buildings is provided in [7]. A comprehensive review focusing on thermal comfort
predictive models and their applicability for energy control purposes is analyzed in [8].

Building climate control must be balance three conflicting demands such as energy efficiency, cost
and thermal comfort. Model predictive control (MPC) is an optimal control method to design control law by
minimizing a performance index while handling these demands. MPC has been implemented successfully in
several directions of building control and operation strategies [9], [10]. Better thermal comfort and more en-
ergy savings compared to other control techniques can be achieved by combining MPC and ML such as neural
networks [11], random forest [12], support vector machines [13]. However, designing accurate building en-
ergy/temperature models is the cornerstone to developing MPC for whole building operation and control due
to the presence of external disturbances. This issue can be alleviated by modelling the building dynamics using
Gaussian processes (GPs) since it also measures the uncertainty bounds. Unfortunately, most GP based control
laws do not take advantage of this information [14], [15]. The main focus of this paper is designing a predic-
tive and probabilistic room temperature model of buildings using GPs. We exploit the GPs full probabilistic
capabilities as the mean prediction for the room temperature model and use the model uncertainty in the MPC
objective function not to lose the desired performance and to design a robust controller.

We organize the remainder of this paper as follows: We start with introducing the preliminary back-
ground of MPC formulation, data preparation, and a methodology for constructing a predictive and probabilistic
building model using GPs in section 2. A theoretical analysis of designing an intelligent control combining GP
with MPC scheme for building climate control problems is presented in section 3. Afterwards, the potentials of
the proposed control scheme are demonstrated in simulation with some numerical results in section 4. Finally,
the conclusions of our work are drawn, and further research challenges are discussed in section 5.

2. THE COMPREHENSIVE THEORETICAL BASIS
This section starts with the preliminary theory for MPC problem formulation and followed by a data

preparation process for building dynamics. Since dynamics of a building is complex and computationally
lighter prediction model is desired, we should take care of features that provides as much information as
needed. Then for given data, the methodology for designing predictive and probabilistic models using GP
is explained. The main reason for selecting GP as a prediction model, because GP can handle uncertainties
affected to the building dynamics.

2.1. MPC scheme
Consider the following classic MPC optimization problem with input and output constraints:

min
U,E

Np−1∑
τ=0

ℓτ (yτ+1+t|t,xτ+1+t|t,uτ+t|t, ϵτ+1+t|t) (1)

s.t. xτ+1+t|t = f(xτ+t|t,uτ+t|t,dτ+t|t) τ ∈ INp−1
0

umin
τ+t|t ≤ uτ+t|t ≤ umax

τ+t|t τ ∈ INp−1
0

yτ+t|t = Cxτ+t|t + vτ+t|t τ ∈ INp

1

− ϵτ+t|t + ymin
τ+t|t ≤ yτ+t|t ≤ ymax

τ+t|t + ϵτ+t|t τ ∈ INp

1

ϵτ+t|t ≥ 0 τ ∈ INp

1

where t is the current time instant, Np the prediction horizon, Iba denotes set of integer numbers in the interval
[a, b], U = [u0, . . . ,uNp−1] is the sequence of manipulated variables uτ+t|t ∈ Rnu to optimize, xτ+t|t ∈ Rnx

is the state vector at τ -steps ahead, yτ+t|t ∈ Rny is the output vector, dτ+t|t ∈ Rnd is a disturbances impacting
on the prediction model described by f : Rnx ×Rnu ×Rnd → Rnx , ℓτ : Rny ×Rnx ×Rnu ×Rny → R≥0 are
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convex stage cost functions, and E = (ϵ1, . . . , ϵN ) includes auxiliary variables ϵk ∈ Rny

≥0 used to soften output
constraints, which is called slack variable vector.

MPC is a control technique that selects optimal control action based on the future state predictions
of the system model. Optimal control actions are calculated by solving an optimization problem so that an
objective function is minimized and constraints are satisfied in every step of a controlled system. Then the only
first sample of the commanded inputs is applied to the system as its optimal input. This process is repeated
all over again to calculate the control signal in every step [16]. The development of the model to predict the
outputs/states in the MPC objective function is the most primary and time-consuming task of MPC design.
However, the recent developments in ML techniques and the increasing data accessibility, thanks to smart and
accurate sensor measurements, in buildings have empowered the study of data-driven models [12], [14] as we
discuss below.

2.2. Data preparation
To provide thermal comfort in buildings, HVAC systems are usually manipulated to keep room tem-

perature within a comfortable range. However, designing a proper controller to minimize cost in the building
system while preserving thermal comfort is challenging task due to the HVAC system’s complex dynamic
characteristics, uncertain and time-varying environment, and disturbances. For this reason, the data acquisi-
tion system e.g. supervisory control and data acquisition (SCADA), has to be set up in such a way that the
gathered data should comprise information both from inside (power consumption, water flow and water tem-
perature, human occupation, and CO2 level) and outside (air temperature, air humidity, solar radiation, outside
wall temperature, and wind speed) the building. One option to correlate these features is to employ nonlinear
autoregressive model with exogenous input (NARX) model architecture [15] that incorporates historical in-
formation up to a certain lag order. Then a training dataset D of N samples consisting of input-output pairs
D = {Xly,lu,ld ,Y} is collected as Xly,lu,ld = [x1,x2, . . . ,xN ]ly,lu,ld and Y = [y1,y2, . . . ,yN ] with:

xi = [yi(ly) ui(lu) di(ld)] =


yi(ly) = [yji−1, . . . , y

j
i−ly

], j = 1, 2, . . . Nr.

ui(lu) = [uk
i−1, . . . , u

k
i−lu

], k = 1, 2, . . . Nu.
di(ld) = [dki , . . . , d

h
i−ld

], h = 1, 2, . . . Nd.

(2)

where y ∈ Rny is power/temperature measurement vector, u ∈ Rnu is heating/cooling set-point vector, d ∈
Rny is external disturbance vector affecting to the building dynamics, Nr ∈ R is the total number of rooms,
Nu ∈ R is the total number of control inputs, Nd ∈ R is the total number of disturbance parameters, and ly ,
lu, ld ∈ R are corresponding minimal auto-regressive lags to be determined by feature selection algorithms as
we discuss next.

The feature selection process is one of the most critical steps in prediction problems since it finds
the smallest subset that significantly affects the prediction error and maximizes the likelihood measure of the
approximated model. The accuracy of the prediction model dramatically depends on the quality of data and the
relevancy of features [17]. A review paper [18] summarizes feature selection applications in building energy
management, including filter method [19], wrapper method [20], and embedded method [21]. However, these
methods are very general and quite conservative in terms of learning speed. We adopt the algorithm proposed
in [22] to select the minimum lag orders to get the most informative features by maximizing the relevancy of
the features on the buildings’ load consumption and thermal comfort settings.

2.3. Learning building model with Gaussian processes
A Gaussian process is an assembly of stochastic variables that any finite collection of these variables

follows a multivariate normal distribution over functions with a continuous domain. The Bayesian inference of
continuous variables leads to Gaussian process regression where the prior GP model is updated with training
dataset to obtain a posterior GP distribution [23]. Due to the possibility to include prior knowledge making
the method more attractive as compared to other regression algorithms, GP models have been employed in
different research fields [24]-[26]. This section provides the necessary background about GP and framework to
build a probabilistic and predictive model for regression problems mainly, adopted from [27], [28].

2.3.1. Probabilistic model
Let a triple (Ω,Ψa,P) describe a probability space consisting of sample space Ω, corresponding

a-algebra Ψa and the probability measure P . Then a stochastic process can be expressed by a measurable
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function ΦGP (x) in X ⊆ Ω, which is fully described by mean function µ : X → R and covariance function
κ : X × X → R:

ΦGP (x) ∼ GP(µ(x), κ(x,x′)) (3)
µ(x) = E[ΦGP (x)] (4)

κ(x,x′) = E[(ΦGP (x)− µ(x))(ΦGP (x
′)− µ(x′))]. (5)

with pair (x,x′) ∈ X . The mean function of the GP distribution illustrates the point where the samples are
more likely located, while the variance of the GP distribution comes from measuring the correlation of any
two samples (x,x′) that is calculated by the covariance function. We refer to [28] for a variety of mean and
covariance functions.

Despite the absence of the existence of the probability density function of the GPs, their finite collec-
tion follows multivariate Gaussian distribution. This property allows us to write samples as a joint multivariate
Gaussian distribution with a mean µ and variance σ2:

yi = ΦGP (xi) ∼ GP(µ(xi), σ
2(xi)), i = 1, 2, . . . , N. (6)

2.3.2. Predictive model
The GP can be utilized as a prior probability distribution in Bayesian inference [28], allowing function

regression to perform. A new given test sample x⋆ ∈ X is combined with existing training samples based on
the Bayesian framework to obtain a posterior distribution for y⋆ ∈ Y . For the batch of random variables
[y1, . . . ,yN ,y⋆] ∈ Y , we write: 

y1

y2

...
yN

y⋆

 ∼ GP




µ(x1)
µ(x2)

...
µ(xN )
µ⋆(x⋆)

 ,


K K⋆

KT
⋆ κ⋆


 (7)

with the covariance matrices:

K = κ(X,X) =


κ(x1,x1) κ(x1,x2) . . . κ(x1,xN )
κ(x2,x1) κ(x2,x2) . . . κ(x2,xN )

...
... · · ·

...
κ(xN ,x1) κ(xN ,x2) . . . κ(xN ,xN )

 ∈ RN×N (8)

K⋆ = [κ(x1,x⋆), . . . , κ(xN ,x⋆)]
T ∈ RN×1 is the vector of similarity measure between the training samples

and the samples and κ⋆ = κ(x⋆,x⋆) ∈ R is the self-covariance of the test sample. From (7), we can deduce
that the Gaussian prediction y⋆ for the new input x⋆ with the mean µ⋆(x⋆) and the variance σ2

⋆(x⋆) is given as
follows:

y⋆ = ΦGP (x⋆) ∼ GP(µ⋆(x⋆), σ
2
⋆(x⋆)) (9)

µ⋆(x⋆) = µ(x⋆) +KT
⋆ K−1(Y − µ(X)) (10)

σ2
⋆(x⋆) = κ⋆ −KT

⋆ K−1K⋆ (11)

3. RESEARCH METHOD
This section deals with the optimal control problem for building indoor climate using MPC method-

ology applied to stochastic dynamic process. For this purpose, a GP model is used to learn the building model
and integrated into the MPC scheme to design a robust control using variance information of the GP model.
Building climate control must balance three conflicting demands: energy efficiency, cost, and thermal comfort.
MPC is an optimal control method to design control law by minimizing a performance index while handling
these demands. However, designing accurate building energy/temperature models is the cornerstone to devel-
oping MPC for whole building operation and control due to the presence of external disturbances. This issue
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can be alleviated by including the variance term into the MPC optimization objective enabling the design of a
robust controller thanks to the availability of uncertainty prediction in GP modelling.

One of the significant constraints that should be encountered for the building climate control problem
is human thermal comfort. There exist two types of methods to introduce this constraint to the problem:
predicted average vote of room users [29] and thermal bounds [30]. Treating MPC with the former type
as a constraint or objective function increases the computational burden of the optimization problem. For this
reason, we consider the latter as a thermal constraint with linear upper and lower bounds in our proposed control
problem. We are interested in the use of GPs for predicting the room(s) air temperature y as a function of the
previous temperature measurements, forecasted weather disturbances d (solar radiation, outside air temperature
and internal heat gains) and manipulated variables u. The control task is to keep the room temperature within
a predefined comfort range by commanding a set of different actuators u such as heating, cooling, ventilation
and air conditioning. The goal is to select the optimal control inputs automatically using GP based MPC while
satisfying the comfort requirements and minimizing energy costs coming from manipulated set-points. To this
end, consider the following GP model-based MPC optimization problem:

min
U,E

Np−1∑
τ=0

∥yτ+t+1|t∥2Qy
+ ∥σ2

τ+t+1|t∥2Qσ
+ ∥uτ+t|t∥2Qu

+ ∥ϵτ+t+1|t∥2Qϵ
(12)

s.t. xτ+t|t =
[
yτ+t|t . . . yτ−ly+t|t uτ+t|t . . . uτ−lu+t|t dτ+t+1|t . . . dτ−ld+1+t|t

]
τ ∈ INp−1

0

yτ+t+1|t = µt(xτ+t|t) +KT
τ+t|tK−1

t (Yt − µt(Xt)) τ ∈ INp−1
0

σ2
τ+t+1|t = κτ+t|t −KT

τ+t|tK−1
t Kτ+t|t τ ∈ INp−1

0

umin
τ+t|t ≤ uτ+t|t ≤ umax

τ+t|t τ ∈ INp−1
0

− ϵτ+t|t + ymin
τ+t|t ≤ yτ+t|t ≤ ymax

τ+t|t + ϵτ+t|t τ ∈ INp

1

ϵτ+t|t ≥ 0 τ ∈ INp

1

where ∥s∥2Q = sTQs is a weighted quadratic norm and Qy, Qσ, Qu, Qϵ are corresponding positive definite matrices. The
summary of GP based MPC scheme is given in the algorithm 1.

Algorithm 1: GP based MPC at a time step t

Input: Trainig data: Dt = {Xt,Yt}, autoregressive lags: ly, lu, ld, GP model components: mean and
covariance functions.

Output: ut

1 calculate the matrices K−1
t and µt(Xt)

2 solve MPC problem (12) online for ut, . . . ,ut+Nh−1

3 apply only ut to the building

4. NUMERICAL RESULTS AND DISCUSSION
In this section, we illustrate the potentials and advantages of the proposed method on a simulation example using

a simplified version of the building given in [31]. We consider the following discrete nonlinear system:{
xt+1 = Axt +But + Edt

yt = Cxt + vt

(13)

with A =

0.8511 0.0541 0.0707
0.1293 0.8635 0.0055
0.0989 0.0032 0.7541

, B =

0.0700.006
0.004

, E =

0.02221 0.00018 0.0035
0.00153 0.00007 0.0003
0.10318 0.00001 0.0002

 , C =

01
0

T

.

the primary purpose of the control task is to achieve temperature y comfort while minimizing energy consumption by
manipulating the control signal u. In order to solve both classic MPC (1) and GP based MPC (12) problems, we use the
values of variables frequently used throughout this paper and summarized in Table 2 for this particular problem. We solve
nonlinear optimization problems associated with both MPCs using the IPOPT algorithm in the CasADi framework [32] and
execute all simulations in MATLAB 2018b on a machine equipped with an Intel Core i5-5200U (2.7GHz) processor.
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Table 1. Meaning and values of the variables used in control optimization problems
Variable Units Description Control setup
x [0C] Indoor wall/room/outside wall temperatures States
u [W/m2] Heating set-point Control input
d [0C], [W/m2] Outside temperature, solar radiation, internal heat gain State disturbances
umin = 0 [W/m2] Minimum heating capacity Input constraint
umin = 30 [W/m2] Maximum heating capacity Input constraint
y [0C] Room temperature Output
ymin = 21 [0C] Lower comfort boundary Output constraint
ymax = 23.5 [0C] Upper comfort boundary Output constraint
v ∼ N (0, 0.02) [0C] Measurement Gaussian noise Output disturbance
ϵ [0C] Comfort band violation Slack

To learn the GP model in (9), we generate the data of M = 2000 samples as follows: (i) the control signal u
is frozen for three consecutive time steps with uniform distribution in the magnitude between umin and umax as specified
in Table 1, (ii) obtained signals are applied to the building model described by (13), and the corresponding measure-
ments are collected. We use Mtrain = 0.6M samples for learning the hyprerparameters of the GP model, while the rest
Mtest = 0.4M samples are used to measure the accuracy performance of the specified model. We validate the GP model by
measuring the prediction accuracy using the widely used normalized root mean square error (NRMSE) and mean standard
log loss (MSLL) provided in [28]. The smaller the former metric is, the better the accuracy is, while this holds vice versa
for the latter metric. GP models with zero mean are common in practice, so we set µ = 0 and look for a proper covariance
function candidate by considering several combinations of corresponding autoregressive lags. We choose the composite
covariance function that is the sum of squared exponential and rational quadratic covariance functions with ly=2, lu=2, and
ld=0 as it performs better accuracy compared to other candidates, see Table 2.

Table 2. GP modeling accuracy results (NRMSE/MSLL) on the training data for different autoregressive lags
and covariance functions (se - squared exponential, rq - rational quadratic)

Covariance
function

Autoregressive lags
ly=3, lu=2, ld=1 ly=2, lu=2, ld=0 ly=2, lu=1, ld=1 ly=1, lu=1, ld=1 ly=1, lu=1, ld=0

se 0.061/-1.770 0.002/-4.124 0.017/-2.946 0.045/-1.122 0.108/-1.360
se+rq 0.045/-1.910 0.001/-4.829 0.024/-3.846 0.035/-1.208 0.096/-1.642
rq 0.061/-1.770 0.115/-1.284 0.097/-2.556 0.067/-1.520 0.137/-1.595

Figure 1(a) illustrates trajectories used during the training and corresponding uncertainty regions predicted by the
GP model where the mean values are indistinguishable from the true ones, while Figure 1(b) shows control signals applied
to the system. Moreover, the robustness of the chosen GP model is tested with different Gaussian noises v = and the
corresponding trajectory forecasts are demonstrated in Figure 2(a) and Figure 2(b), respectively. One can notice that the
uncertainty region enlarges as the noise variance increases. For the sake of better visualization, we cut the first 200 samples
off in all Figures. The classic MPC with Np = 10 and the LTC-MPC controllers are tested in simulation by running a
temperature from a feasible initial state y0 = 22 [0C] and simulation results are obtained for 150 hours. Figure 3(a) shows
that the GP-MPC scheme is able to keep the temperature within the thermal comfort margins, whereas a good closed-loop
performance is recovered as depicted in Figure 3(b) by using the variance prediction preview information to compute the
objective function.
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Figure 1. The prediction accuracy of the GP model for the training data: (a) top plot draws the true (blue), the
predicted mean µ (yellow) and 95 % confidence intervals µ+ 2σ (gray) values, while bottom plot shows the

absolute error e between true and predicted values and (b) control signal
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Figure 2. Effects of introducing different Gaussian noises to the system output: (a) v ∼ N (0, 0.02) and
(b) v ∼ N (0, 0.01)

(a) (b)

Figure 3. The closed-loop performances of classic MPC and GP based MPC laws: (a) room temperature and
(b) heating input

5. CONCLUSION
This paper discussed the use of Gaussian processes for predictive and probabilistic modelling of a building’s

complex dynamics for thermal comfort. We learned a GP model that predicts a room air temperature as output for a given
input vector which is the combination of the previous temperature measurements, forecasted weather disturbances such as
solar radiation, outside air temperature and internal heat gains, and manipulated heating set-point. MPC strategy based
on GP model was implemented to obtain optimal heating set-points providing user predefined min-max thermal comfort.
We exploited the GP model’s mean prediction for the room temperature and used the corresponding provided uncertainty
bounds in the MPC objective function not to lose the desired performance as compared with classic MPC law in simulation
results. Our future work will be devoted to studying robustness analysis of GP based MPC scheme if an uncertain weather
forecast is provided and one of the measuring sensors is broken.
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