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 Deep learning methods are state-of-the-art approaches for pixel-based 

hyperspectral images (HSI) classification. High classification accuracy has 

been achieved by extracting deep features from both spatial-spectral 

channels. However, the efficiency of such spatial-spectral approaches 
depends on the spatial dimension of each patch and there is no theoretically 

valid approach to find the optimum spatial dimension to be considered. It is 

more valid to extract spatial features by considering varying neighborhood 

scales in spatial dimensions. In this regard, this article proposes a deep 
convolutional neural network (CNN) model wherein three different multi-

scale spatial-spectral patches are used to extract the features in both the 

spatial and spectral channels. In order to extract these potential features, the 

proposed deep learning architecture takes three patches various scales in 
spatial dimension. 3D convolution is performed on each selected patch and 

the process runs through entire image. The proposed is named as multi-scale 

three-dimensional convolutional neural network (MS-3DCNN). The 

efficiency of the proposed model is being verified through the experimental 
studies on three publicly available benchmark datasets including Pavia 

University, Indian Pines, and Salinas. It is empirically proved that the 

classification accuracy of the proposed model is improved when compared 

with the remaining state-of-the-art methods. 
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1. INTRODUCTION 

Hyperspectral image (HSI) analysis has become an active research area because of the reliability of 

the results in a wide range of earth monitoring applications viz, precision agriculture, geological mapping, 

environmental and climate observations, disaster management, health care, defense, and many others [1], [2]. 

Hyperspectral remote sensing collects large amount of data in the form of HSI, which are useful in a variety 

of applications [1]. Many supervised classifiers for HSI classification have been proposed in the literature [3]. 

Deep convolutional neural network (CNN) models have proved to be effective in extracting features resulting 

in improved classification accuracy of HSI [3], [4]. Extracting discriminant spatial-spectral features is the key 

factor to achieve high classification accuracy [5]-[7]. Various methods have been presented for extracting 

spatial-spectral features. A model presented by Chen et al. [8] on the concept of joint spatial-spectral 

classification, in which each pixel's spatial features are chosen and combined with spectral characteristics. 

https://creativecommons.org/licenses/by-sa/4.0/
mailto:murali.kanthi@gmail.com


                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 1, January 2022: 307-316 

308 

When limited training data is available, Yang et al. [9] applied transfer learning to improve classification 

performance by using deep CNN model with a two-branch network to extract combined spatial- spectral 

features. Chen et al. [10] 3D image patches defined via a spatial window have been used to extract spatial 

spectral information.  

Hamida et al. [11] proposed and evaluated set of 3-D schemes that enable a joint spatial-spectral 

information processing by combining the traditional 3-D convolution operations to analyze series of 

volumetric representations of the HSI. Raviteja et al. [12] introduced hierarchical image fusion model for 

HIS segmentation to create image groups for merging the selected spectral features. He et al. [13] proposed 

multi-scale convolutional neural network (MS-CNN) to address the problem of low interclass and large 

intraclass variance by extracting deep multi-scale features from the hyperspectral image. Wan et al. [14] 

proposed multiscale graph convolutional network to operate convolution on irregular image regions for HSI 

classification. Meng et al. [15] developed a completely dense multiscale fusion network for HSI 

classification by providing feed-forward shortcut connections across the layers to retrieve hierarchical 

information from all the convolutional layers. Roy et al. [16] proposed hybrid spectral network (HybridSN) 

model, which combines spectral and spatial three-dimensional convolutional neural network (3D-CNN) with 

spatial two-dimensional convolutional neural network (2DCNN). It provides good classification accuracy 

with a small training sample. In similar manner, Kanthi et al. [17] introduced a 3D-CNN approach for HSI 

classification, that divides HSI data into 3D patches and extracts deep spectral and spatial information. This 

model produced relatively high classification accuracy. Another successful approach for classification of HSI 

is to use ensemble techniques and some techniques have been proposed to extract features by varying the 

spatial dimension of the pixel patch using different CNN models and then combining all the extracted 

features to perform classification [18]-[20]. For HSI classification, a multi-scale three-dimensional 

convolutional neural network (M3DCNN) has been proposed that extracts multi-scale spatial features and 

spectral features from HSI [21]. Mohan and Venkatesan [22] presented a hybrid convolutional neural 

network (HybridCNN) model based on multi-scale spatial-spectral information of HSI for classification. 

Initially, kernel principal component analysis (KPCA) is used for dimensionality reduction in the 

preprocessing then 3D-CNN is applied with different window sizes to extract the spectral-spatial features. 

Safari et al. [23] proposed a model in which several CNNs are merged to learn spatial-spectral characteristics 

at numerous scales. Han et al. [24] proposed a different scale two-steem CNN for multi-scale image 

classification. Recently, Sun et al. [25] For HSI data classification with spectral-spatial fusion, a localized 

spectral features and multi-scale spatial features convolution (LSMSC) network was developed for multi-

scale spatial feature extraction and dimensionality. The training parameters used in the model are much more 

than a traditional 3×3 convolution. This model was tested on benchmark data sets with huge number of 

training samples. However, it decreases its generalization ability when fewer training samples available. 

Gong et al. [26] proposed multiscale squeeze-and-excitation pyramid pooling network (MSPN) model to 

overcome the “small sample problem” with multiscale 3D-CNN module, squeezing and excitation block, and 

pyramid pooling. However, the model is more complex as different modules used and the model can be 

enhanced to improve the performace. 

The proposed article presents a multi-scale 3DCNN learning model, called MS-3DCNN, for pixel-

based classification in hyperspectral images. In this proposed method, various spatial contexts of a specific 

pixel are analyzed to provide multi-scale 3D patches for the model for extracting spatial-spectral features 

from HSI cube. This key contributions of the current work are: 

 Spatial-spectral approaches depends on the spatial dimension of each patch and there is no theoretically 

valid approach to find the optimum spatial dimension to be considered. To avoid this issue, spatial and 

spectral features are extracted using multiple spatial contexts in three layers simultaneously and all are 

fused for further classification.  

 The proposed deep CNN model is tested in new Indian hyperspectral images and compared with the state-

of-the-art approaches to empirically establish superior performace with fewer training examples.  

The rest of this article is organized in the following manner. The proposed model description is 

provided in section 2. Details of experimental setup and data descriptions are presented in section 3. Finally, 

section 4 presents the conclusions and future scope of the proposed work. 

 

 

2. RESEARCH METHODOLOGY 

Introduction to the proposed work's motivation is provided in this section. Using an architectural 

diagram, this section describes in detail how the proposed model, which is referred to as the multi-scale 

three-dimensional convolutional neural network (MS-3DCNN) model. It is able to retrieve individual 

pixels in the form of multi-scale 3D patches in three different spatial contexts. 
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2.1.  Motivation 

Spatial-spectral approaches depends on the spatial dimension of each patch and there is no 

theoretically valid approach to find the optimum spatial dimension to be considered. To avoid this issue, in 

this present work, the spatial and spectral features are extracted using multiple spatial contexts in three 

layers simultaneously and all are fused for further classification. It can ben generalized to have more than 

three layers. Current study is confined to analyse the effieciency of a simple multi-scale 3DCNN (MS-

3DCNN) with three layers. 

 

2.2.  The proposed model 

The proposed multi-scale 3DCNN (MS-3DCNN) approach is described in detail in this section. As 

shown in Figure 1, the proposed model MS-3DCNN takes multi-scale 3D patches as input to obtain fused 

spatial-spectral deep features from the given HSI. Let the given hyperspectral image is represented as three-

dimensional cube with dimensions WxWxB, where W, H shows image's spatial width and height, and number 

of spectral bands is denoted by B. As similar to the existing most popular CNN architectures [11], [16], [21], 

[22], [25], initially the number of bands are reduced using principal component analysis (PCA) and the 

number of spectral bands selected as 30 in case of Indian Pines (IP) dataset and 15 spectral bands for the 

remaining datasets used in the experimental study of this article Indian Institute of Space Science and 

Technology (IIST), Ahmedabad1 (AH1), and Ahmedabad2 (AH2) respectively. 
 

 

 
 

Figure 1. Overview of the proposed multi-scale 3DCNN (MS-3DCNN) model 
 

 

In the MS-3DCNN model, spatial-spectral characteristics for individual pixel are retrieved in the 

form of multi-scale 3D patches in three separate spatial contexts. These multiscale 3D patches are fed to three 

3D CNN models as shown in Figure 1. Each patch is of size wi x wi x d, where wi is width and height of patch 

i, d is depth of patch and is number of patches of a particular pixel. In the current work, all experiments are 

conducted on the Google Colab Pro graphical processing unit (GPU) with 25.51 GB of RAM. Based on this 

configuration, we have chosen optimized three patches with sizes of w1 x w1 x d = 13x13x30, w2 x w2 x d = 

11x11x30 and w3 x w3 x d = 9x9x30. As shown in Figure 1, in each layer, 3D CNN model contains three 

convolution layers (C1, C2 and C3), max pooling layer (P) and three sets of filters K1 = 16, K2 = 32 and K3 = 

64 having sizes 3x3x7, 3x3x5 and 3x3x3, respectively. The max-pooling and batch normalization (BN) 

layers come after the first two convolutional layers, while the BN layer comes after last convolutional layer. 

The ReLU activation function is applied after every convolutional layer and max pooling with strides of 

2x2x2, as in (1). 
 

𝑓(𝑥) = {
  0      𝑓𝑜𝑟      𝑥 < 0
  𝑥     𝑓𝑜𝑟       𝑥 ≥ 0

 (1) 

 

For classification, the extracted features from various levels of spatial contexts are reshaped, 

concatenated, and sent to the fully connected layers fc1, fc2 and fc3. The dropout layer has been applied with 

the rate of 0.4% after every fully connected layer as a regularization mechanism to avoid the overfitting 

problem when there is limited availability of training samples. The activation function of each neuron in each 

of the fully connected layers are computed, as in (2). 
 

𝐴𝑐𝑡𝑖(𝑓𝑐) = 𝑔(𝑤𝑖(𝑓𝑐) ∗ 𝑎𝑐𝑡𝑖−1(𝑓𝑐) + 𝑏𝑖) (2) 
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where, wi(fc) is the weighted sum of the preceding layer's inputs and bi is the bias. The ReLU activation 

function is represented by g(.)Finally, a soft-max probabilistic model is used to classify the data. Let L=[Li]i 

be a number between 1 and n, and implies learned features after the entire model has been applied, as in (3). 
 

𝑆𝑚𝑎𝑥(𝐿)𝑖 =
𝑒𝐿𝑖

∑ 𝑒
𝐿𝑗𝑘

𝑖=1

 𝑓𝑜𝑟 𝑖 = 1, 2, 3,.  . , 𝑛 (3) 

 

For the HSI data, this is the Softmax function model. Finally, the argmax (arguments of maximum) function 

could be used to predict label, as in (4). 
 

𝐶𝑙𝑎𝑠𝑠 (𝑋𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥{𝑆𝑚𝑎𝑥(𝐿)𝑖}  (4) 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Datasets 

To assess the performance of proposed MS-3DCNN model, an experimental study was conducted 

on HSI datasets, including Pavia University (PU), Indian Pines (IP), and Salinas (SA). The first dataset, 

Indian Pines (IP), an airborne visible and infrared imaging spectrometer (AVIRIS) sensor captured the scene 

of Indian pines test site, which have 220 spectral bands and 145 × 145 pixels. The second dataset, Pavia 

University (PU) scene, a reflective optics system imaging spectrometer (ROSIS) sensor captured the scene of 

Pavia University at the time-of-flight campaign over Pavia. It has a resolution of 610 × 340 pixels and a 

total of 103 spectral bands. The third dataset, An AVIRIS sensor captured the Salinas (SA) landscape over 

Salinas Valley, California. There are 512 × 217 samples and 204 spectral bands in all. With 16, 9, and 16 

class types, ground truths are provided for IP, PU, and SA, respectively. In addition, three new datasets IIST, 

AH1, and AH2 have been used to check the efficiency of the proposed model. These datasets are collected by 

the Indian space research organization (ISRO) with airborne visible and infrared imaging spectrometer-next 

generation (AVIRIS-NG) sensor, India [27]. The IIST dataset has 202 × 153 samples and 138 spectral 

bands, with 6 classes in the ground truth. The AH1 dataset has 351 spectral bands with a size of 300 × 200 

pixels and the ground truth contains 5 classes. The AH2 dataset has 370 spectral bands with a size of 300 ×
200 pixels and the ground truth contains 7 classes.  

 

3.2.  Experimental setup 

The efficiency of the proposed model MS-3DCNN is analyzed by taking randomly selecting 20% of 

examples as training set, 10% selected as validation set and 70% as test set from each dataset. The Adam 

optimizer is used in the optimization process, along with a categorical cross-entropy with learning rate 0.001 

and decay 1e-06. The model has been trained for 100 epochs with batch normalization size 32. The 

experiments are repeated 10 times on each data set and the average results are presented. The conventional 

assessment measures: average accuracy (AA), overall accuracy (OA), and kappa (K) coefficient are used for 

comparing various similar moldels. The generalisation ability of the proposed model was tested by using 

70% of the data from each dataset as a test set once the model was created.  

 

3.3.  Models for comparative study 

The presented MS-3DCNN model's results are compared to the of other recent deep CNN models 

for HSI classification. Including 3DCNN [11], M3DCNN [21], HybridSN [16], HybridCNN [22], and 

LSMSC [25]. Table 1 provides the classification accuracy obtained by all these methods and it shows that the 

proposed model's classification accuracy is better than that of different approaches on the benchmark datasets 

in terms of evaluation metrics such as OA, AA, and kappa. 
 

 

Table 1. Classification accuracies (in %) on Indian Pines, Pavia University, and Salinas datasets 

Model 
Indian Pines Pavia University Salinas 

OA AA Kappa OA AA Kappa OA AA Kappa 

3D-CNN [11] 91.14 91.59 89.99 96.54 98.12 95.53 93.98 97.07 93.38 

M3D-CNN [21] 95.33 94.72 96.48 95.78 94.52 96.10 94.99 94.22 96.31 

HybridSN [16] 99.22 98.56 99.12 99.93 99.83 99.91 99.99 99.99 99.99 

HybridCNN [22] 99.80 99.72 99.76 99.99 99.98 99.99 100 100 100 

LSMSC [25] 96.71 98.08 96.11 99.22 99.25 98.95 98.70 99.35 98.54 

Proposed Method 99.89 98.87 99.24 99.99 99.97 99.99 100 100 100 
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The accuracies for 3DCNN [11], M3DCNN [21], HybridSN [16], HybridCNN [22], and LSMSC 

[25] methods are taken from their respective papers, and the results are computed using publicly available 

code for the comparative methods. When compared to the 3DCNN [11] and the M3DCNN [21], the proposed 

model's overall-accuracy, average-accuracy, and kappa values are significantly better. Compared with the 

HybridSN [16] and the HybridCNN [22], the proposed method produces slightly better results in almost all 

cases. Moreover, the proposed method produced an improvement on overall accuracy when compared to 

LSMSC in the range 1-3%. It is to worth mentioning that in the HybridCNN and the LSMSC models, 20% of 

samples randomly chosen for training process. The HybridSN model used 30% samples for training. In the 

proposed method 20% samples used from each class to train the model but still achives better accuracy.  

Table 2 shows the efficacy of proposed approach according to size of the training data. With fewer 

training data, the presented model achieved a higher classification accuracy than LSMSC. Experiments on 

the other three datasets, IIST, AH1, and AH2, are conducted to verify the efficiency and robustness of the 

model. We have compared our method with 3D-CNN and HybridSN models using their publicly available 

code. Other methods could not be compared as their code is not available. Table 3 shows that the presented 

model achieved 2 to 3% improvement on the new datasets.  
 

 

Table 2. Classification accuracies of the proposed method by reducing the amount of training samples 

Dataset 
5 % Training data 10% Training data 

OA AA Kappa OA AA Kappa 

IP 96.54 95.72 96.54 99.01 98.03 98.98 

PU 99.62 98.71 99.67 99.89 99.36 99.73 

SA 99.79 99.64 99.72 99.98 99.97 99.93 

 

 

Table 3. Classification accuracies (in %) on the IIST, AH1, and AH2 datasets 

Model 
IIST dataset AH1 dataset AH2 dataset 

OA AA Kappa OA AA Kappa OA AA Kappa 

3D-CNN [11]  94.26  91.99  90.48  80.99  82.13  78.17  70.06  69.30  67.93 

HybridSN [16]  93.74  89.20  92.16  85.69  85.03  83.79  79.55  76.71  75.82 

Proposed Method  96.42  91.51  94.13  87.24  87.15  85.74  80.10  77.05  76.72 

 

 

Table 4 illustrates the training time and testing time for the state-of-the-art methods and proposed 

model on SA, PU, and IP datasets. The training time is counted in minutes, while testing time is counted in 

seconds. When compared to HybridCNN, the model training time is less, but when compared to 3DCNN and 

HybridSN, the training time is higher. Since the model uses more test data, it takes significantly more to test 

than HybridCNN. Table 5 shows the training time and testing time for the 3DCNN, HybridSN and proposed 

model on IIST, AH1, and AH2 datasets. On the new datasets, the suggested model's train and test times are 

slightly longer, despite the fact that it achieves greater classification accuracies.  
 

 

Table 4. Training time(min) and testing time(sec) for SA, PU, IP datasets 

Model 
SA dataset PU dataset IP dataset 

Training time Test time Training time Test time Training time Test time 

3D-CNN [11] 62 78 52 65 45 52 

HybridSN [16] 50 64 45 60 40 50 

HybridCNN [22] 122 27 112 23 74 11 

Proposed Method  80 82 76 68 52 58 

 

 

Table 5. Training time(min) and testing time(sec) for IIST, AH1, AH2 datasets 

Model 
IIST dataset AH1 dataset AH2 dataset 

Training time Test time Training time Test time Training time Test time 

3D-CNN [11] 123 180 91 112 92 110 

HybridSN [16] 120 176 88 104 86 102 
Proposed Method  128 192 93 115 94 113 

 

 

Table 6, Table 7, and Table 8, respectively, illustrate the proposed model’s accuracy of each class as 

well as Precision, Recall, and F1- Score for the IIST, AH1, and AH2 datasets. The impact of spatial patch 

sizes over the performance of the proposed model is shown in Table 9. Similar analysis is done in [16] and it 

is concluded that the efficiency of the model drops if the spatial patch size is increased and it is 

computationally infeasible. It is also observed that fusion of features extracted with few small patches using 

different spatial window sizes can improve performance of the model. 
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Table 6. IIST dataset: number of samples, overall 

accuracy, precision, recall and F1-score 
Class Samples OA Precision Recall F1-Score 

Class1 2288 96.58 0.95 0.97 0.96 

Class2 3218 88.65 0.87 0.88 0.87 

Class3 1735 95.90 0.94 0.96 0.94 

Class4 18540 94.63 0.94 0.95 0.95 

Class5 8059 93.27 0.93 0.94 0.92 

Class6 2531 90.73 0.89 0.90 0.87 
 

Table 7. AH1 dataset: number of samples, overall 

accuracy, precision, recall and F1-score 
Class Samples OA Precision Recall F1-Score 

Class1 4210 90.70 0.88 0.91 0.88 

Class2 9711 91.95 0.92 0.92 0.92 

Class3 15318 82.41 0.84 0.85 0.85 

Class4 21079 85.95 0.87 0.86 0.87 

Class5 9682 97.71 0.99 0.98 0.98 
 

 

 

Table 8. AH2 dataset: Number of samples, overall accuracy, precision, recall and F1-score 
Class Samples OA Precision Recall F1-Score 

Class1 10741  75.46  0.75  0.73  0.75 

Class2 11196  73.15  0.74  0.72  0.71 

Class3 7901  89.04  0.89  0.87  0.88 

Class4 14595  82.35  0.79  0.79  0.75 

Class5 3264  85.14  0.88  0.82  0.86 

Class6 6971  82.37  0.79  0.76  0.77 

Class7 5332  79.84  0.78  0.75  0.74 

 

 

Table 9. Impact of the spatial patch size on the performance (in %) of proposed model 

Dataset 
Spatial patch sizes 

w1=13x13, w2=11x11, w3=9x9 w1=11x11, w2=9x9, w3=7x7 w1=9x9, w2=7x7, w3=5x5 

SA 100 99.21 97.86 

PU 99.99 98.93 96.87 

IP 99.89 98.82 97.10 

IIST 96.42 95.38 94.85 

AH1 87.24 86.48 85.76 

AH2 80.10 78.97 77.85 

 

 

Hence, in the proposed work, three patches are being used by gradually increasing the spatial 

dimensions of the kernel for convolution. Due to the limitation of computing environment, Google Colab Pro 

GPU with 25.51 GB of randm access memory (RAM), in this article, the studies are reported with three patch 

sizes of w1xw1xd = 13x13x30, w2xw2xd = 11x11x30 and w3xw3xd = 9x9x30 as inputs to the proposed model. 

The classification map of the proposed model of Indian Pines (IP) dataset is compared with its ground truth. 

It is indicating that the percentage of misclassification is quite minimal. Figure 2(a) represents the ground 

truth image of IP dataset, Figure 2(b) represents the model classification map of IP dataset, and Figure 2(c) 

represents reflective class legends of the image of IP dataset respectively. 
 

 

  

 

(a) (b) (c) 
 

Figure 2. IP dataset; (a) ground-truth-image, (b) glassification map, and (c) geflective class legends 
 

 

The proposed model's classification map of Pavia University (PU) is compared with its ground truth. 

The classification map is showing that the percentage of misclassification is quite minimal. Figure 3(a) 

represents the ground truth image of PU dataset. Figure 3(b) represents the model classification map of PU 

dataset, and Figure 3(c) represents reflective class legends of the image of Pavia University dataset 

respectively.  

The classification map of the proposed model of Salina (SA) dataset is compared with its 

corresponding ground truth. The classification map demonstrates that the percentage of misclassifications is 

extremely low. Figure 4(a) represents the ground truth image of SA dataset, Figure 4(b) represents the model 

classification map of SA dataset, and Figure 4(c) represents reflective class legends of the image of SA 

dataset respectively. 
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(a) (b) (c) 

 

Figure 3. PU dataset; (a) ground-truth-image, (b) classification map, and (c) reflective class legends 

 

 

  

 

(a) (b) (c) 

 

Figure 4. SA dataset; (a) ground-truth-image, (b) classification map, and (c) reflective class legends 

 

 

The proposed model's classification map of Indian Institute of Space Science and Technology (IIST) 

dataset is compared with its respective ground truth. The classification map demonstrates that the percentage 

of incorrect classifications is comparatively low. Figure 5(a) represents the ground truth image of IIST 

dataset, Figure 5(b) represents the 3DCNN model classification map of IIST dataset, Figure 5(c) represents 

HybridSN model classification map of IIST dataset, and Figure 5(d) represents the proposed model 

classification map with reflective class legends of IIST dataset respectively.  

 

 

 

 

  

(a) (b) (c) (d) 

 

Figure 5. IIST dataset (a) ground-truth-image, (b) 3DCNN map, (c) Hybrid-SN map, and (d) proposed model 

classification map with reflective class legends 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 1, January 2022: 307-316 

314 

For Indian datasets, the proposed model's classification maps are significantly superior to 3DCNN 

and HybridSN approaches in terms of quality. The classification map of proposed model with Ahmedabad1 

(AH1) dataset is compared to its respective ground truth. The classification map demonstrates that the 

percentage of incorrect classifications is comparatively low. Figure 6(a) represents the ground truth image of 

AH1 dataset, Figure 6(b) represents the 3DCNN model classification map of AH1 dataset, Figure 6(c) 

represents HybridSN model classification map of AH1 dataset, and Figure 6(d) represents the proposed 

model classification map with reflective class legends of AH1 dataset respectively. 
 

 

  

 

 

(a) (b) (c) (d) 

 

Figure 6. AH1 dataset; (a) ground-truth-image, (b) 3DCNN map, (c) hybrid-SN map, and (d) proposed model 

classification map with reflective class legends 
 

 

The proposed model's classification map of Ahmedabad2 (AH2) dataset is compared with its 

respective ground truth. The classification map demonstrates that the percentage of incorrect classifications is 

comparatively low. Figure 7(a) represents the ground truth image of AH2 dataset, Figure 7(b) represents the 

3DCNN model classification map of AH2 dataset, Figure 7(c) represents HybridSN model classification map 

of AH2 dataset, and Figure 7(d) represents the proposed model classification map with reflective class 

legends of AH2 dataset respectively. 
 

 

  

 

 

(a) (b) (c) (d) 

 

Figure 7. AH2 dataset (a) ground-truth-image, (b) 3DCNN map, (c) hybrid-SN map, and (d) proposed model 

classification map with reflective class legends 
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4. CONCLUSION 

It is difficult to build a universally suitable deep learning model for hyperspectral image 

classification. In HSI classification, high classification accuracy can be achieved by extracting deep features 

from both spatial-spectral channels. However, there no theoretically valid approach to find the optimum 

spatial dimension to be considered. To this end, this article presented a deep CNN model, called MS-

3DCNN, wherein three different multi-scale spatial-spectral patches are used to extract the deep features in 

both the channels. The efficiency of the proposed model is being verified through the experimental studies on 

three publicly available benchmark data sets and three new Indian Hyperspectral Images on which the recent 

methods were not tested. It is empirically proved that the classification accuracy of the proposed model is 

improved when compared with the remaining state-of-the-art methods used in comparative study. Further, 

the presented model outperformed the 3DCNN, HybridSN and LSMSC, despite having fewer training 

samples to work with. In the future work, the model can be further optimized to enhance the efficiency and 

reduce the time complexity of the model. Furhter, it is also to be examined to find a generalizable model to 

determine the optimal spatial dimension based on the data on hand in real time. 
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