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 In this paper, memory optimization and architectural level modifications are 

introduced for realizing the low power residue number system (RNS) with 

improved flexibility for electroencephalograph (EEG) signal classification. 

The proposed RNS framework is intended to maximize the reconfigurability 
of RNS for high-performance finite impulse response (FIR) filter design. By 

replacing the existing power-hungry RAM-based reverse conversion model 

with a highly decomposed lookup table (LUT) model which can produce the 

results without using any post accumulation process. The reverse conversion 
block is modified with an appropriate functional unit to accommodate FIR 

convolution results. The proposed approach is established to develop and 

execute pre-calculated inverters for various module sets. Therefore, the 

proposed LUT-decomposition with RNS multiplication-based post-
accumulation technology provides a high-performance FIR filter architecture 

that allows different frequency response configuration elements. 

Experimental results shows the superior performance of decomposing LUT-

based direct reverse conversion over other existing reverse conversion 
techniques adopted for energy-efficient RNS FIR implementations. When 

compared with the conventional RNS FIR design with the proposed FSM 

based decomposed RNS FIR, the logic elements (LEs) were reduced by 

4.57%, the frequency component is increased by 31.79%, number of LUTs 
is reduced by 42.85%, and the power dissipation was reduced by 13.83%. 
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1. INTRODUCTION  

An electroencephalograph (EEG)-based signal measurements are not only investigated for the brain-

computer interface (BCI) but also provides a diagnostic channel for many brain-related problems during 

clinical measurements [1]-[2]. The signal activity measures by non-invasive EEG records from the scalp are 

accumulated from other sources and artifacts [3]. To overcome this contamination during EEG signal 

classification, several signal processing and feature extraction methods are investigated for both high 

performances BCI and diagnostic measurements. The feature extraction includes spatial filtering to generate 

different forms of spatial patterns and incorporates covariance analysis to maximize the class differences in 

spatial scale. But EEG signals rhythmic activities are highly correlated with associated frequency bands [4]. 

To accomplish this task, raw EEG signals are pre-processed with some narrow-band spectral filters are just 

https://creativecommons.org/licenses/by-sa/4.0/
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before the spatial filtering [5]. But selecting the most prominent frequency band manually for each class and 

the associated optimization models leads to some computational burdens. In recent years investigation of 

spatial and spectral filters has been steadily emerged for reducing the false rate. The time-domain 

information's EEG signals are not sufficient for classification and evaluation. In real-time EEG signal is 

evaluated with different forms by the individuals for clinical diagnosis [6]. 

In general analysis of EEG signals comes with the formulation of the spatial weights obtained from 

electrodes which are known as a common spatial pattern. For signal classification, neural networks are most 

commonly preferred which can provide a better framework for characterizing these spatial patterns. To process 

the weights using multilayer perceptron (MLP), all static weights can be replaced with finite impulse response 

(FIR) filters as an extension of existing neural networks to accumulate the frequency bands that relate to the 

most appropriate signal measures. Higashi and Tanaka [7], by optimizing the objective function (a natural 

extension of CSP), a discriminate filter bank was developed using FIR filter design. Meng et al. [8] utilized both 

spatial and spectral features and accordingly learning task is accomplished to maximize class discriminations 

among different class labels. By estimating the parametric distribution of these spatial-spectral features some 

mutual information (MI) is derived and the cost function is optimized during the iterative learning process. 

As opposed to optimizing the cost function of Spatio-temporal features, several models have been 

proposed [9] that optimize the filters for cost-effective signal measurement and analysis. On the other side, 

the successfulness of common spatial pattern analysis (CSP) directly depends on the order of the FIR filter. 

The core objective of this paper is developing a new optimized FIR core for Spatio-temporal. For better 

discriminability, FIR temporal filters require improved flexibility and length should be in higher order. In this 

paper, a high-performance FIR filter design using a residue number system (RNS) is proposed which can 

accommodate the benefits of both parallel processing, complexity reduction, and energy efficiency. In this 

context, the computational intensiveness of FIR filter design processing blocks is effectively optimized using 

residue number system (RNS) arithmetic. 

 

 

2. RESEARCH METHOD  

Several attempts have been [10]-[11] made to optimize the accumulator and multiplication unit to 

provide complete system requirement of filter design with appropriate hardware units. In existing works, 

methodologies invented for RNS computation are broadly categorized into two types-LUT-based models and 

conventional binary modules. Lookup table based RNS system offers improved system performance over a 

smaller range of moduli sets and binarized RNS model shows better performance over large size moduli. In 

most cases, the performance metrics in terms of accuracy in the FIR filter largely depend on the number of 

FIR coefficients and associated precision levels. 

However, LUT-based reverse computation for RNS arithmetic has a large computational cost and 

takes a long time. He came up with a binary coded structure for calculating residues and a thermometer 

coded style for generating modular inner products in [12]. When designing FIR filters, this distributed 

arithmetic uses no carry propagation in accumulating and pre-computed LUT blocks in order to maximize 

operating speed and minimize hardware complexity [13]. High-performance booth multiplier for FIR filter 

design flexibility and low complexity are incorporated into the RNS accumulator. Because it depends on a 

redundant residue number system [14], the low-cost fault-tolerant FIR filter does not require any additional 

hardware. The proper down convert moduli set is used for FIR calculations to eliminate faults generated by 

MAC computations based on single event upset (SEU) [15]. A less modular multiplication binary number to 

residue number converter was presented in order to reduce hardware complexity and power consumption. A 

pre-loaded product block reduces the computational cost and latency of generating partial products for each 

FIR tap in this technique. As discussed in [16], end-around carry units (EAC) eliminate the performance 

trade-off inherent in any RNS FIR filter design that includes additional taps. Touil et al. [17] FIR filter design 

optimization is carried out using non-recursive filtering algorithms and an appropriate mathematical model. 

Some structural implementation is invented for a modular digital filter by using the residue ring measures and 

the symmetric characteristics FIR filter responses for optimization. As compared to the existing modular 

filter the proposed FIR design reduces impulse response by half of the FIR length. Here the hardware 

complexity is considerably reduced using finite field algebra and the accuracy of computation is also 

improved in the modular arithmetic-based digital FIR filter implementations. 

The performance metrics of the hardware implementation of the RNS system depend on the 

operations reverse conversion process which is complex in nature. To mitigate this problem the diagonal 

function (DF) is introduced in [18] for RNS construction which allows efficient hardware implementations of 

modulo 2n, 2n−1, or 2n+1. Here different approaches are constructed using DF to accommodate the different 

forms of magnitude comparison and reverse conversion process. Jaberipur et al. [19] Diminished-1 (D1) 

encoding is introduced in the RNS system and its potential metrics on modulo-(2n + 1) addition, subtraction, 
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unified add/sub unit, and multiplication are investigated. The impact of D1 representation in RNS is validated 

by implementing finite impulse response filters and discrete cosine transform applications. 

Convolutional neural networks are widely used for many pattern recognition systems. But it requires 

a large amount of memory to hold weights during the process of learning. To reduce the hardware cost of 

CNN implementation the residue number system (RNS) is used in [20] each layer of the convolutional neural 

network. The hardware implementation of the RNS based CNN showed that the use of residue arithmetic 

saves 7.86%–37.78% hardware resource as compared to the conventional two’s complement method. The 

RNS CNN also reduces the overall recognition time by 41.17%. Valueva et al. [21] CNN architecture is 

decomposed into hardware and software to maximize the system performance of RNS hardware components. 

The inclusion of software parts offers significant memory efficiency while during the process of learning. 

Cardarilli et al. [22] the characteristics of RNS and conventional TCS are analyzed in the different stages of 

DSP applications and unique design space exploration (DSE) methodology is introduced for high-

performance digital FIR filter implementation. This DSE offers energy efficiency for several emerging 

applications like machine learning and internet-of-things. 

Vinitha and Sharma [23] DA based FIR implementation is proposed using an efficient lookup table 

(LUT) design. Hereby utilizing the even multiple storage (EMS) scheme the size of the LUT-based multiplier 

is reduced by half which reduces the path delay and optimizes the computational complexity overhead in FIR 

design. In [24] memory-efficient ROM-free reverse converters design is proposed for the different sizes of 

moduli set to perform high-speed arithmetic with highly balanced modulus and appropriate adder units. The 

memory-less RNS offers significant energy efficiency with some notable path delay accumulation due to 

dynamic post computation. 

Pontarelli et al. [25] presented a comparative analysis of the FIR filter design using the RNS with 

other well-known models which make use of the conventional positional number system. Here RNS based 

FPGA hardware implementation shows that the frequency of FIR filters is increased by about 4 times, and 

computational complexity is reduced by 3 times when the RNS system is incorporated for FIR computation 

as compared to the traditional binary number system. In addition to the path delay and area efficiency, the 

RNS based FIR design also offers energy efficiency of up to 23%. In RNS system inter-modulo computation 

consumes maximum resources which are directly associated with the complex reverse conversion process.  

NavaeiLavasani et al. [26] used mixed-radix conversion (MRC) algorithm for implementing RNS 

reverse converter design for ternary computation with moduli set {3n–2, 3n–1, 3n}. The integration of the 

RNS system in ternary DSP applications offers effective number representation and maximizes the inherent 

parallelism for a high throughput rate. For hardware efficient RNS implementation in applications like edge 

computing and FIR filter design, it is required to embed these reverse converters as a simplified arithmetic 

unit for each class of moduli sets. And effective hardware resource utilization [26] also saves a considerable 

amount of area and power consumption in hardware realization of RNS system with some negligible penalty 

in path delay. The experimental results show the superiority of reverse converter optimization using different 

design methodology. 

Using less hardware, systolic array architecture [27] lowers the critical path, allowing for faster 

processing times. Because of the use of parallel processing and pipelines, the overall chip size and power 

consumption have been reduced significantly. Optimizing hardware resources for higher-order filters presents 

a major difficulty. 

 

 

3. PROPOSED RNS SYSTEM IN FIR FILTER DESIGN 
For FIR filter design as shown in Figure 1, the input signal samples and filter coefficients not only 

take real values but also include negative numbers. In RNS-number system, only positive integers are used 

for arithmetic computation and also having dynamic range constraints which are in the range of [0, M−1]. To 

accommodate the negative numbers for RNS based FIR filter design implementation, some number 

conversions are used for binary representation.  

In recent years, DSP applications have dealt with high-bit-size samples for enhanced precision, 

which necessitated a huge amount of hardware resources for computation. The word length size is always a 

trade-off, regardless of the arithmetic models employed for data calculation. To keep the performance metrics 

in terms of speed, some mathematics based on modular fields for arithmetic computations must be invented. 

 

 

https://www.sciencedirect.com/topics/engineering/fir-filters
https://www.sciencedirect.com/topics/computer-science/discrete-cosine-transform
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Figure 1. FIR filter design architecture using multipliers and adders 

 

 

3.1.  Residue number system  

In many real-time applications, RNS proves to be a potential alternative to the traditional 2's 

complement algorithm due to its inherent properties of parallel computation and predetermined parameter 

measurements using modulo-set formulations. However, a fully automated RNS digital system 

implementation is still not possible due to its complex post-processing steps, performing pre-computation 

during RNS arithmetic computations for real-time applications and storing the results in memory. In addition, 

the modular and distributed nature of RNS provides additional performance metrics and is widely used in 

many fields such as cloud, wireless communication systems, and DSP applications [28]. Its tolerance for soft 

errors and power efficiency makes RNS-based data computing the most prominent one for optimizing digital 

designs. Through RNS based arithmetic throughput rate is moderately achieved with the degree of 

computational parallelism and decomposition levels during hardware implementation. 

 

3.2.  Modulo mi multiplier 

In RNS based system, the selected moduli's are constants and remain within that limit even after the 

residue computation. For residue computation, integer arithmetic is used which is performed in parallel. The 

performance efficiency of integer arithmetic is also influencing the overall RNS system performance. The 

advantages of RNS system are high performance computation, energy efficient and hardware complexity 

reduction. 

As shown in Figure 2 both input sample values (xn) and FIR coefficients (hn) are converted into 

residues using moduli conversion block and final FIR convolution result (Yn) is generated using reverse 

conversion block. The problems over own dynamic range cover are solved by adopting different sizes of 

moduli and the various sets of moduli components. The required dynamic range is pre-determined and 

moduli’s are selected accordingly else RNS will produce erroneous results. To accomplish this task some 

statistical measures are required to pre-determine the bit sizes of moduli and the moduli set numbers which 

can accommodate all possible ranges of tap results during FIR computation. 

 

 

 
 

Figure 2. Decomposed LUT based as a function of applied field 
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3.3.  Reverse converter 

As per the Chinese remainder theorem (CRT), the reverse converter module required some unified 

computations for converting the resultant residue into an actual integer. Though the direct digital 

implementation of the reverse converter difficult task to accomplish due to its iterative division units and 

numerous multiplication units still many efficient models are invented to generate the results. In most 

memory-based pre computation is used for reverse converter design. The reduction of inter-module carries 

propagation and residue level multi-channel arithmetic computations in RNS is significantly influencing the 

system performance over intensive DSP applications. There is no carry propagation between residual 

channels and the residue computation is performed concurrently over each residue channel which leads to 

optimized critical path delay overhead. 

 

 

4. EXPERIMENTAL RESULTS  

4.1.  Performance analyzes 

The performance evaluation of the FSM-based RNS FIR design is validated over different FIR taps 

to examine the trade-off measure. Based on the observation as shown in Tables 1 and 2, the proposed LUT 

decomposition driven DA based RNS FIR model outperformed all other state-of-the-art methods in terms of 

achievable throughput since it incorporates the metrics from both parallel computations as well as reduce 

critical path during reverse computation. The suggested RNS system takes advantage of inherent concurrency 

within residue channels as well as FPGA device capabilities. In Table 1, the 8 bit word length for moduli set 

(7, 8, 9) the area is decreased by 4.5% whereas for 16 bit word length for moduli set (31, 32, 33) the area is 

decreased by 15.36%. In 8 bit word length for moduli set (7, 8, 9) the frequency component is increased by 

24.08% whereas for 16 bit word length for moduli set (31, 32, 33) the frequency is improved by 16.18%. In 

Table 2, the 4 tap FIR filter, area in the proposed method is decreased by 4.15% and the frequency 

component is increased by 13.30% whereas in 16 tap FIR filter area is decreased by 4.98% and the frequency 

is increased by 19.57% when compared with the conventional reverse computation method. 

 

 

Table 1. Comparison of performance trade-offs based on input word length 
Input Word 

length size 

Moduli set 

(2n+1,2n,2n-1) 

RNS with conventional reverse 

computation [29] 

RNS with LUT decomposed reverse 

computation (Proposed method) 

Area (LE’s) Fmax Area (LE’s) Fmax 

8 bit (7,8,9) 4281 57.3MHz 4,088 75.48MHz 

16 bit (31,32,33) 14374 24.96MHz 12165 29.78MHz 

 

 

Table 2. Analyses on the performance of LUT-decomposed RNS FIR Filter 
FIR length RNS with conventional reverse 

computation [29] 

RNS with LUT decomposed reverse 

computation (Proposed method) 

Area (LE’s) 𝐹𝑚𝑎𝑥 Area (LE’s) 𝐹𝑚𝑎𝑥 

4 tap 2096 63.46MHz 2,009 73.2MHz 

16 tap 8623 57.3MHz 8,193 71.25MHz 

 

 

4.2.  Trade-off analyzes 

Figure 1 illustrates an architecture that is compatible with all potential dynamic word length 

variations. However, each of the RAM sizes is resized based on their hierarchical moduli information, and 

linearization is performed over aspect ratios to maximize operand bit size. The aspect ratios are derived 

analytically using the model reverse conversion technique outlined in the previous section. Aspect ratios of 

certain moduli sets are chosen to be near to the values of the moduli sets. 

As demonstrated in Table 3, the growth of RAM size with moduli set bit size is exponential, which 

is convenient in terms of the attainable frequency response. With the parallel modulo FIR implementation, 

this table displays the FPGA synthesis results in terms of the number of LEs and delay measures for different 

values of moduli sets. The maximum frequency of the filter for the 8-bit word length is 57.3MHz, while the 

maximum frequency of the filter for the 12-bit and 16-bit word lengths is limited by the accumulation of 

reverse conversion results. The state-of-the-art comparison of proposed FIR design with other FPGA RNS 

FIR methods for three moduli set with a 32-bit unsigned input for a Xilinx Spartan 3E FPGA device has 

reduced 50% power dissipation and the frequency component is increased by 36.56% in proposed FSM 

decomposed RNS FIR design [30], [31]. 
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Table 3. State of the art comparison of proposed FIR design with other FPGA RNS FIR models 

 

 

4.3.  Critical path retention performance measure 

Observation from Figure 3 can be made that the performance trade-off comparison for the 

conventional reverse computation of RNS with the proposed model, the filter tap extension with the logical 

elements were compared and the total performance loss is smaller when tested with possible higher-order 

during FIR filter design. For 4 tap and 16 tap filter, the logic elements are utilized as 2009 and 8193 when 

compared with the conventional values 2096 and 8623 respectively. Observation from Figure 4 can be made 

that during filter convolution, path delay management in the FIR MAC network is achieved utilizing LUT-

driven RNS networks, which operate as delay optimization models. The total time necessary to formulate the 

convolution output is reduced in this fashion. It's worth noting that the filter length must be sufficient to keep 

the majority of the finite filter coefficients. As a result, executing high-order lengths has a low computational 

trade off when compared with the conventional reverse computation with the proposed model. For 4 tap, 8 

tap and 16 tap filter the logic elements were used as 2096, 4281, and 8623 respectively. 
 

 

 
 

Figure 3. Performance trade-off comparisons over 

FIR Filter length 

 
 

Figure 4. Complexity trade-off comparison over FIR 

Filter length for the proposed model  

 

 

4.4.  Comparison with other state-of-the-art RNS FIR model 

Due to concurrent FSM-based LUT transformation, the proposed RNS system can achieve a 

significant path delay optimization margin against some known RNS FIR design and post accumulation 

driven reverse conversion can solve power management issues and mitigate all sorts of energy related 

problems in the RNS FIR system. As compared to the RNS FIR model invented in the proposed RNS 

consumes lesser logical resources with the least path delay propagation due to simplified reverse conversion 

operations. Moreover, the dynamic ranges of RNS which are largely dependent on moduli sizes can be 

extended without causing performance trade-off. The performance metrics of the proposed FSM decomposed 

RNS with improved system performance and energy efficiency as shown in Table 4. When compared with 

the conventional RNS FIR design with the proposed FSM based decomposed RNS FIR, the Logic Elements 

(LEs) were reduced by 4.57%, the frequency component is increased by 31.79%, number of LUTs is reduced 

by 42.85%, the number of transitions is reduced by 5.15% and the power dissipation was reduced by 13.83%. 
 

 

Table 4. Performances analyzes of proposed FIR design with QUARTUS II hardware synthesis 
Multiplier Model Hardware used 

(LEs) 
𝑭𝒎𝒂𝒙 

(MHz) 
Number of  

LUTs /size 
Number of transitions 

(millions/sec) 
Power dissipation 

(mW) 
Conventional RNS FIR [29] 3016 46.02 MHz 3/7 72.521 200.17mW 
FSM based decomposed RNS FIR 2878 67.47 MHz 3/4 68.779 172.48mW 
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5. CONCLUSION 
In this paper, a memory-efficient reverse conversion-based RNS system and associated FSM-based 

architectural optimization are presented to narrow down the energy level utilization in RNS based FIR filters 

for EEG signal classifications. It is noted that design optimization is carried out only in the reverse 

conversion stage while other processing units are kept as generic for parametric variations within the RNS 

system. The decomposed LUT-based reverse conversion and FSM ordering techniques offer significant 

hardware complexity reduction and result in considerable energy efficiency as compared to direct single 

compound memory-based reverse conversion realization. As stated earlier, this alternative form of RNS FIR 

filter structure shows the least significant performance trade-off for higher-order FIR filters. The area is 

decreased by 4.5% and the frequency is improved by 24.08% for 8 bit word length and the area is decreased 

by15.36% and the frequency is improved by 16.18% for 8 bit word length. In 4 tap FIR filter, area in the 

proposed method is decreased by 4.15% and the frequency component is increased by 13.30% whereas in 16 

tap FIR filter area is decreased by 4.98% and the frequency is increased by 19.57% when compared with the 

conventional reverse computation method. When compared with the conventional RNS FIR design with the 

proposed FSM based decomposed RNS FIR, the logic elements (LEs) were reduced by 4.57%, the frequency 

component is increased by 31.79%, number of LUTs is reduced by 42.85%, the number of transitions is 

reduced by 5.15% and the power dissipation was reduced by 13.83%. 
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