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Abstract 

Gearbox is one of the most complicate rotary mechanical apparatus, the fault signal shows non-
linear and non-stationary, and how to recognize the faults effectively is a key issue. A novel method based 
on wavelet packet transform and rough sets theory was presented for fault diagnosis of gearbox. First, the 
vibration signals were decomposed into eight bands from low frequency to high frequency by wavelet 
packet transform, energy characteristics were extracted as the condition attributes. Second, an improved 
NaiveScaler algorithm was put forward to discrete continuous attributes in the case of assuring 
classification ability. A new reduction algorithm based on condition equivalence classifications was 
proposed to delete the redundant features, which could improve the reduction efficiency. Lastly the 
decision rules were drawn and utilized to test the samples. The results show that the method could obtain 
more sensitive fault characteristic parameters and have better classification ability accordingly. 
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1. Introduction 

Gearbox is usually used to power transmission and velocity distribution in modern 
machinery equipment, once the faults occur, the whole transmission system would be 
interrupted. Because of the poor working environment and lower signal-noise rate, the vibration 
signal of gearbox is usually non-linear and non-stationary, most of the traditional signal 
processing methods in core of Fourier Transform are not suitable to deal with the signal, so how 
to recongnize the faults effectively and quickly is a key issue [1].  

Z. Pawlak proposed rough sets theory(RST) in 1982, which is a newer mathematical 
tool to process the fuzzy and uncertainty knowledge [2]. RST can analyze and deal with all 
kinds of incomplete data without any prior knowledge, and reveal the internal laws, so it is used 
in many domains such as stock market forecast and medical diagnosis [3-5]. In recent years, 
RST has been applied in fault diagnosis field gradually for reducting the characteristic 
parameters and extracting decision rules [6-8]. Wavelet packet transform(WPT) is developed 
based on wavelet transform [9,10], which would decompose both in low and high frequences at 
the same time and has a great result in time and frequence domain analyzation, so it is feasible 
to process the gearbox signal. At present, WPT is mainly used to extract the characteristic 
parameters of the faults through reconstructing the time-domain signal of every frequency band. 

 In the paper, the composite method of WPT and RST would be applied to fault 
diagnosis [11]. The signal collected from gearbox would be decomposed by orthogonal wavelet 
in full-scale, the energetic feature parameters are got by analyzing and computing the energy 
distributed in every frequence band. Attributes discretization and reduction Algorithms are 
studied to extract more sensitive features and decision rules.  
 
 
2. Rough Sets Theory 
2.1. Basic Concepts 

Rough Sets Theory is used to process the fuzzy and uncertainty knowledge. RST can 
analyze and deal with all kinds of incomplete data without any prior knowledge. The detail 
information is described in the works of Pawlak and Yasdi [12]. Here are some related concepts. 
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 , , ,q qS U V f   represents an information system, where, U is the universe,  is a 

nonempty finite set of condition attributes C  and decision attributes D . If q , qV  is  the 

domain of q , qf  is regarded as a function from U to qV . Suppose B   and X U , then B -

upper and B -lower approximation of X are defined respectively :  BX Y U B Y X     , 

 BX Y U B Y X   . If C    and D   , C  positive region of D  is 
/

( )
C

X U D

POS D CX


  . If 

S C , and ( )= ( )S CPOS D POS D , S  is D  reduction of C . 

 
2.2. Attributes Discretization Algorithm 

Generally the value got by kinds of signal processing methods is continuous, while 
rough sets only can deal with discrete data, so data discretization properly is very important and 
would lay the foundation for attributes reduction. At present there are several discrete 
algorithms: Naïve Scaler (NS) algorithm, equidistant and equifrequent classification, etc. Usually 
the candidate breakpoint set is got by NS algorithm, then kinds of majorization algorithms such 
as genetic algorithm and particle swarm optimization are employed to optimize the breakpoint 
set, but the method often results in more breakpoints. The principle of discretization is the least 
breakpoints under the condition of keeping classification ability. Here an improved NS algorithm 
is put forward as follows: 

(1) Calculating ( )CPOS D  according to 2.1 before discretization. 

(2) Gaining the candidate breakpoint sets of all the attributes by NS algorithm. 
(3) Choosing a breakpoint from the sets respectively to discrete condition attributes and 

computing ( )CPOS D , If equal to that before discretization, go to (5), else to (4). 

(4) Adding another breakpoint to discrete, calculating and comparing, If equal to (5), 
else to (4). 

(5) Outputting the final breakpoint sets and the discrete decision table. 
In the discretization algorithm, when adding a new breakpoint into the set, it is 

necessary to  divide the universe evenly as much as possible in order to ensure the least 
breakpoints in the case of keeping classification ability. 

 
2.3. Reduction Algorithm based on Condition Equivalence Classifications 

Condition attributes reduction technology is to find the minimal feature vector through 
deleting the redundant features in the case of keeping classification ability, which is a NP hard 
problem. At present, the basic idea of attribute reduction algorithms is that computing core 
attributes first, then adding new features according to the heuristic information. Two kinds of 
common heuristic information are the attribute dependence and attribute information entropy, 
the principles of adding attributes are dependence of condition attributes to decision attribute 
and probability of the sample occurrence respectively, which result in retaining more attributes.  

Here, A new reduction algorithm based on condition Equivalence classifications is 
proposed, the samples not assigned to decision classes only by the core property can be 
classified accurately through adding the less attributes. The basic idea is: first obtaining the core 
attributes and computing condition equivalence classifications, then finding the attributes in the 
rest of the conditions which can distinguish the samples in the condition equivalence 
classifications not assigned to decision classes properly by the core attributes, lastly the 
attributes and the core attributes construct the final reduction set. The method could divide the 
condition equivalence classifications more finely, so it can ensure all the samples classified 
correctly. Additionally the method could find the core attributes quickly and add the new 
attributes purposefully, which greatly save computing time and improve the reduction efficiency. 

An information system  , ,S U C D ,  
i

D x represents the decision attribute value  of 
i

x , 

the specific algorithm is as follows: 
Core attributes algorithm: 
(1) Defining that core attribute set is empty CORE   and computing  CPOS D of the 

whole decision table. 
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             (2) Removing iC from C  1, ,i i n i     to get a new condition attributes set C , 

computing  CPOS D , if    C CPOS D POS D  , go to (2), else to (3). 

             (3) iCORE CORE C  , go to (2). 

             (4)  Outputting CORE . 
Reduction attributes algorithm: 
(1) Obtaining core attributes set CORE according to core attributes algorithm above; 
(2)  Computing condition equivalence classifications U CORE  and decision equivalence 

classifications U D , selecting all the condition classifications not classified into decision 

classifications correctly:    ,, , ,a c eb dx x x x x  . 

(3) Assuming D C CORE  , finding the property sets ,E F which can differentiate the 

samples in    ,, , ,a c eb dx x x x x  . Supposing P E F  , choosing a element kC  arbitrarily from P

,so the reduction set is min kC CORE C  . If P  , choosing elements ,i jC C from ,E F

respectively, so the reduction set is min i jC CORE C C  .  

(4) When computing F , if ( ) ( ) ( )c edD x D x D x  , F should distinguish three samples at 

the same time. If ( ) ( ) ( )c edD x D x D x  , F  only need to distinguish ex and ,c dx x , so F may 

include one element or more than two attributes. Additionally if there are more than three 
samples in the condition equivalence classifications, the way is the same as above. 

 
 

3. Fault Diagnosis of Gearbox based on RST and WPT 
3.1. Characteristics of Gearbox 

Gearbox is one of the most complicate rotary mechanical apparatus, the fault signal 
shows non-linear and non-stationary. Most of the traditional signal processing methods in core 
of Fourier Transform are not suitable to deal with the fault signal, so it is very difficult to acquire 
the sensitive characteristics. The tests are done on JZQ-250 gearbox, which is made up of three 
pairs of rolling bearings, two pairs of straight gears, the input shaft, intermediate shaft and 
output shaft. There are totally six kinds of states for research: normal state, tooth fracture, 
crackle of inner ring, cage fracture, composite fault of tooth fracture and crackle of inner ring, 
composite fault of  tooth fracture and cage fracture. The experimental parameters are: the rated 
speed of the input shaft 1200r/min, the sampling frequency 4000Hz. The vibration signals in 
time domain are collected by the acceleration sensors, seen in Figure 1. 
 
3.2. Energy Features Extraction based on WPT 

Wavelet packet transform is developed based on wavelet transform, but when dealing 
with the vibration signal, WPT would decompose both in low and high frequences at the same 
time, which has a great result in time and frequence domain analyzation, so it is suitable to 
process the non-stationary signals. 

In wavelet packet transform, the discrete signal is made convolution with a low pass 
filter and a high pass filter respectively, the approximate and detail coefficients would be got. 
The former represents low-frequence component, while the latter expresses high-frequence of 
the signal. When the faults occur, energy in each frequency band would change: some 
frequence bands increase, some frequence bands decrease, others keep. The variation of 
energy distribution can reflect the different fault patterns, so it is reasonable to extract the 
energy characteristic parameters from every frequence band as the condition attributes in 
decision table.  

Here, the signals are decomposed into three layers with “db4”, there are eight 
frequence bands totally, seen in Figure 2. Every band would be processed further to extract 
energy feature vectors, the main steps are described as follows: 

(1) Decomposing the signal and getting the amplitude of every discrete point in each 
frequence band. 

(2) Computing energy of each frequence band. 
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                                a. Normal state                                                    b. Tooth fracture 

      
c. Crackle of inner ring                                               d. Cage fracture 

      
e. Tooth fracture and crackle of inner ring              f. Tooth fracture and cage fracture 

 
Figure 1. Vibration Signals in Time Domain 

 
 

 
2

, ,

2

,
k=1

dt= = k
j r j r

m

j r S tE x    (1) 

 

Where, ,j r  and m  are the number of layer, node and discrete point respectively, ,
k
j rx  

is the amplitude of k  discrete point on j  layer r  node,  ,j rS t  represents the reconfiguration 

signal, ,j rE is regarded as the egergy. 

(3) Constructing the feature vectors T .  
 

 
1,,1 ,2 ,2, E , ,E ,= jj rj j jE ET


 
  

    (2) 
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For ,j rE is large, it is necessary to normalize according to the equations below. 

 

 

1/ 22 1
2

,

0

j

j r

r

EE




  
 
 
       (3) 

 
 ,r j re E E         (4) 

 

 1 2 2 1
, , , , , jre e e eT


 
         (5) 

 
WhereT  is the normalized feature vector. 
 

 
                                                                 a. Normal state 
                  

 
b. Tooth fracture 
 

Figure 2. Wavelet Packet Reconfiguration Signal 
 
 

3.3. Attributes Discretization and Reduction based on RST 
In order to facilitate computing, six workstates are noted as 1,2,3,4,5,6 respectively and 

each takes six samples, thirty-six samples in all. First , every sample is decomposed by WPT, 

the normalized feature vector 1 2 2 1
, , , , , jrT e e e e


 
     is obtained as the condition attributes. 

Then the universe  1 2 36, , ,U x x x   are constituted by thirty-six samples, and the decision 
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attributes D are made up of six states. Lastly the decision table are constructed by all above, 
seen in Table 1. 

 
Table 1. Decision Table 

U
 

1e  2e  3e  4e  5e  6e  7e  8e  D
 

1x  
0.6194 0.3040 0.3981 0.4802 0.1170 0.0872 0.2920 0.1682 1 

2x  
0.6319 0.3055 0.3886 0.4681 0.1189 0.0877 0.2942 0.1697 1 

3x  
0.6422 0.2873 0.3961 0.4571 0.1252 0.0849 0.2976 0.1668 1 

4x  
0.6357 0.2953 0.4015 0.4562 0.1331 0.0915 0.2896 0.1715 1 

5x  
0.6321 0.2924 0.3864 0.4759 0.1249 0.0859 0.2918 0.1764 1 

6x  
0.6398 0.2979 0.3713 0.4769 0.1206 0.0902 0.2958 0.1626 1 

7x  
0.4433 0.3844 0.3467 0.3498 0.3765 0.2404 0.3557 0.2952 2 

8x  
0.4481 0.3787 0.3484 0.3637 0.3656 0.2353 0.3550 0.2952 2 

9x  
0.4387 0.3841 0.3480 0.3604 0.3827 0.2334 0.3402 0.3039 2 

10x  
0.4295 0.3993 0.3352 0.3627 0.3836 0.2401 0.3497 0.2915 2 

11x  
0.4280 0.3965 0.3456 0.3629 0.3923 0.2276 0.3406 0.2944 2 

12x  
0.4381 0.3941 0.3517 0.3600 0.3666 0.2418 0.3436 0.2976 2 

13x  
0.2453 0.1599 0.2375 0.3761 0.7431 0.2712 0.2217 0.2039 3 

14x  
0.2454 0.1662 0.2520 0.3737 0.7380 0.2678 0.2241 0.2058 3 

15x  
0.2569 0.1683 0.2689 0.3759 0.7264 0.2609 0.2315 0.2068 3 

16x  
0.2465 0.1638 0.2576 0.3874 0.7261 0.2713 0.2309 0.2048 3 

17x  
0.2491 0.1582 0.2528 0.3641 0.7405 0.2716 0.2270 0.2069 3 

18x  
0.2491 0.1678 0.2599 0.3844 0.7245 0.2672 0.2383 0.2036 3 

19x  
0.4801 0.2951 0.3437 0.5760 0.3348 0.1859 0.2222 0.1909 4 

20x  
0.4867 0.2812 0.3720 0.5558 0.3384 0.1903 0.2291 0.1830 4 

21x  
0.4871 0.2863 0.3522 0.5689 0.3390 0.1848 0.2198 0.1890 4 

22x  
0.4990 0.2840 0.3543 0.5737 0.3195 0.1880 0.2178 0.1753 4 

23x  
0.5046 0.2956 0.3601 0.5438 0.3302 0.1967 0.2257 0.1844 4 

24x  
0.4893 0.2762 0.3396 0.5885 0.3251 0.1880 0.2139 0.1891 4 

25x  
0.4833 0.2810 0.3736 0.5190 0.2011 0.1778 0.4050 0.2061 5 

26x  
0.4824 0.2951 0.3729 0.5020 0.2046 0.1654 0.4231 0.2024 5 

27x  
0.4848 0.2984 0.3790 0.4918 0.2084 0.1766 0.4129 0.2127 5 

28x  
0.4754 0.2873 0.3734 0.5134 0.2033 0.1775 0.4171 0.2040 5 

29x  
0.4915 0.2884 0.3783 0.4870 0.1971 0.1783 0.4279 0.2031 5 

30x  
0.4901 0.2869 0.3629 0.5023 0.2109 0.1822 0.4151 0.2086 5 

31x  
0.4056 0.2335 0.4365 0.4457 0.2291 0.1898 0.4748 0.2789 6 

32x  
0.4166 0.2475 0.4363 0.4437 0.2344 0.1874 0.4653 0.2670 6 

33x  
0.4216 0.2408 0.4395 0.4439 0.2222 0.1822 0.4605 0.2818 6 

34x  
0.4227 0.2386 0.4382 0.4449 0.2251 0.1796 0.4682 0.2688 6 

35x  
0.4083 0.2382 0.4403 0.4627 0.2264 0.1781 0.4597 0.2726 6 

36x  
0.4087 0.2397 0.4326 0.4481 0.2152 0.1834 0.4792 0.2793 6 

 
 

For the purpose of realization real-time and online fault diagnosis, the characteristic 
vector should include as little elements as possible, so the rough sets algorithm is used to 
reduct features here. First, the improved NaiveScaler algorithm in 2.2 is utilized to discrete 
Table 1, the key procedures are: 

(1) Computing condition equivalence classifications before discretization: 
 

                 
1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9, , , , , , , , ,X X X X X X X X Xx x x x x x x x x        

                   
10 11 12 13 14 15 16 17 18 1910 11 12 13 14 15 16 17 18 19, , , , , , , , ,,X X X X X X X X X Xx x x x x x x x x x            

                 
2120 22 23 24 25 26 27 282120 22 23 24 25 26 27 28, , , , , , ,, ,XX X X X X X X Xxx x x x x x x x       

               
3129 30 32 33 34 35 363129 30 32 33 34 35 36, , , , ,, , .XX X X X X X Xxx x x x x x x        

 
Computing decision equivalence classifications and ( )CPOS D : 

 
     

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 181 2 3, , , , , , , , , , , , ,, , , , ,D D Dx x x x x x x x x x x x x x x x x x    

     
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 364 5 6, , , , , , , , , , , , ,, , , , .D D Dx x x x x x x x x x x x x x x x x x    
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   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

, , , , , , , , , , , , , , , , ,
, , , , , , , , , , ,

,
, , , , , ,CPOS D

x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x

  

 
(2) Calculating all the breakpoints of every attribute and choosing one to discrete the 

condition attribute, eight breakpoints successively are: 0.47775, 0.28785, 0.3189, 0.20645, 
0.27695, 0.1877, 0.3189, 0.20645. For each attribute, if the value is greater than the breakpoint, 
the discrete value would be “1”, else “0”, so the discrete decision table is got. 

(3) Computing ( )CPOS D  of  the discrete table. It is equal to that before discretization, so 

the discrete decision table is final. 
Next the same lines and rows in the discrete decision table are deleted, only seventeen 

lines are left. The algorithm based on condition equivalence classifications in 2.3 is adopted to 
delete the redundant attributes. The main steps are: 

(1) Obtaining  71,CORE e e  according to the core attributes algorithm; 

(2) Computing condition equivalence classifications by core attributes: 
 

       
1 2 19 20 21 22 23 7 31 32 33 13 14 25 26 27 281 2 3 4, , ,, , , , , , , , , , , , , .X X X Xx x x x x x x x x x x x x x x x x     

 
Computing decision equivalence classifications accordingly: 
 

         
1 1 2 2 7 3 13 14 4 19 20 21 22 23 5 25 26 27 28, , , , , , , , , , , , , ,D D D D Dx x x x x x x x x x x x x x      

 
6 31 32 33,, .D x x x  

 

             (3) For 1X and 2X can not be classified correctly, it is necessary to search for new 

attributes in the rest attributes that could distinguish the samples. According to the algorithm, 
the sets E and F are got:  5E e ,  52 3 ,, ,F e e e  5P E F e  , so the reduction set is 

 5 71, ,S CORE P e e e  . The decision table after reduction is seen in Table 2. 

(4) Calculating S  positive region of D . According to 2.1, ( )= ( )S CPOS D POS D , S  is D  

reduction of C , which verifies the effectiveness and accuracy of the method. 
 
 

Table  2. Decision Table after Reduction 
U

 
1e  5e  7e  D U 1e  5e  7e  D

1x  
1 0 0 1 23x 1 1 0 4 

2x  
1 0 0 1 25x 1 0 1 5 

7x  
0 1 1 2 26x 1 0 1 5 

13x  
0 1 0 3 27x 1 0 1 5 

14x  
0 1 0 3 28x 1 0 1 5 

19x  
1 1 0 4 31x 0 0 1 6 

20x  
1 1 0 4 32x 0 0 1 6 

21x  
1 1 0 4 33x 0 0 1 6 

22x  
1 1 0 4      

 
 
4. Results and Discussion 

In the light of the relation of the condition attributes and decision attribute in Table 2, the 
decision rules for fault diagnosis can be drawn as follows: 

Rule 1: IF    5 71, , 1,0,0e e e  , THEN 1D  . 

Rule 2: IF    5 71, , 0,1,1e e e  , THEN 2D  . 

Rule 3: IF    5 71, , 0,1,0e e e  , THEN 3D  . 

Rule 4: IF    5 71, , 1,1,0e e e  , THEN 4D  . 
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Rule 5: IF    5 71, , 1,0,1e e e  , THEN 5D  . 

Rule 6: IF    5 71, , 0,0,1e e e  , THEN 6D  . 

In order to detect whether the algorithm based on rough sets is reliable, two samples 
every state are extracted from the original signal for testing, seen in Table 3. Three breakpoints 
of 5 71, ,e e e are still used to discrete Table 3 here, then the decision rules above are used to 

classify the samples, the results of fault diagnosis are listed in Table 4.  
 
 

Table 3. Testing Samples 
U

 
1e  5e  7e  D

1x  
0.6404 0.1222 0.2946 1 

2x  
0.6370 0.1214 0.2922 1 

3x  
0.4285 0.3669 0.3372 2 

4x  
0.4292 0.3721 0.3593 2 

5x  
0.2520 0.7329 0.2283 3 

6x  
0.2555 0.7273 0.2328 3 

7x  
0.4845 0.3245 0.2319 4 

8x  
0.4848 0.3319 0.2231 4 

9x  
0.4817 0.1922 0.4149 5 

10x  
0.4970 0.2046 0.4132 5 

11x  
0.4080 0.2269 0.4678 6 

12x  
0.4169 0.2340 0.4690 6 

 

Table 4. Diagnosis Results  
U 1e  5e  7e    Result 

1x 1 0 0 1 
2x 1 0 0 1 
3x 0 1 1 2 
4x 0 1 1 2 
5x 0 1 0 3 
6x 0 1 0 3 
7x 1 1 0 4 
8x 1 1 0 4 
9x 1 0 1 5 

10x 1 0 1 5 
11x 0 0 1 6 
12x 0 0 1 6 

 
  
All the samples are classified accurately from Table 4, which proves that it is feasible to 

utilize the method based on wavelet packet transform and rough sets theory to diagnose the 
gearbox. First of all, WPT is available to the gearbox signals, the variation of energy distribution 
in each frequence band can reflect the different fault patterns. Second, in this work only one 
breakpoint is used to discrete the decision table under the condition of keeping classification 
ability, which verifies that the improved Naïve Scaler algorithm could reduce the complexity of 
discretization and lay the foundation for attributes reduction. The final reduction set includes 
three attributes, and the samples not assigned to decision classes by the core properties can be 
classified accurately through adding one attribute, which certifies that the reduction algorithm 
based on condition equivalence classifications could improve efficiency. Lastly the characteristic 
vector should include as little elements as possible in order to realize real-time and online fault 
diagnosis, the method can delete a lot of redundant features, so it is appropriate to online 
diagnosis. 
 
 
5. Conclusion  

Because of the poor working environment and lower signal-noise rate, the vibration 
signal of gearbox is usually non-linear and non-stationary, most of the traditional signal 
processing methods in core of Fourier Transform are not suitable to deal with the signal, so how 
to recongnize the faults effectively and quickly is a key issue. A novel method based on wavelet 
packet transform and rough sets theory is presented for fault diagnosis of gearbox in the paper. 
First, the fault signals are decomposed into eight bands from low frequency to high frequency by 
wavelet packet transform, energy characteristics are extracted from each band as the condition 
attributes in the decision table. Second, an improved NaiveScaler algorithm is put forward to 
discrete the continuous attribute values in the case of assuring classification ability. A new 
reduction algorithm based on condition equivalence classifications is proposed to delete the 
redundant features, which could save computing time and improve the reduction efficiency. 
Lastly the decision rules were drawn by the reduction table and utilized to test samples. The 
experimental results show that the method could delete many redundant features and obtain 
more sensitive fault characteristic parameters. Additionally, research on more efficient reduction 
algorithms should be done in future. 
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