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Reciprocal velocity obstacles (RVO) is a method used for multiagents navigation that
enables collision and oscillation-free avoidance against other mobile agents. Despite
its ability in collision avoidance between agents, RVO has a hard time dealing with
static obstacle avoidance. This problem has led to a tendency to use RVO only for
agents avoidance and use other methods to handle static obstacles avoidance. In this
paper, we present our new approach for interaction between mobile agents against
static obstacles in the RVO based collision avoidance. We propose a concept called
inert agents that interact as static obstacles. This inert agent is stand firm as static
obstacles should be, while the inert agent also able to satisfy reactive collision avoid-
ance nature of RVO to produce better avoidance result. We conduct an experiment to
compare the performance of avoidance in a certain scenario. Our method shows better
results when compared with generic static obstacles.
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1. INTRODUCTION

Since the original velocity obstacles (VO) was invented [[1], countless variants of this method have
emerged to meet the various needs of multi-agent navigation. The velocity obstacles method was originally
designed to deal with obstacles avoidance in dynamic motion planning. Existing method for motion planning
are categorized into either global or local planning [2]-[10]]. Local planning is computationally efficient since
it takes information through agent local data while navigating [11]-[18]. Whereas global planning requires
precalculation of existing navigation plane in some form of pathfinding that is computationally expensive for
the dynamic environment, especially where many obstacles and agent’s position constantly changing [2]]-[4],
[19]-[27]. Global planning is possible as long as the information regarding navigation space is available.
The example is shown in a study about crowd simulation where evacuation path is set [28]], and locally plan
avoidance motion using agent interact force based on social force model. Whereas in unknown environment
cases, the local planning role is escalated even more since information regarding the navigation space can only
be obtained locally [[29]]. VO is a form of local motion planning for autonomous agents that is able to direct the
agent to navigate safely. VO itself works by predicting the agent’s velocity that will result in a collision in the
future through information gathered by sensors or other mean [[1].

Through many years of development, the extension of velocity obstacles method make several im-
provements in many areas. Some example to mention is finite-time velocity obstacle (FVO) introduce time
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constraint in avoidance process [30]. It also optimizes the process of choosing new velocity to minimize the
avoidance velocity with the best velocity for agents to reach their objective. Another extension such as goal
velocity obstacle (GVO) introduces goal region into velocity obstacles formulation [31]. GVO incorporates
goal region which is the region of preferred velocity that will direct the agents toward its navigation objective.
Inverse velocity obstacles (IVO) introduce ego-centric based framework to VO [32]. IVO assumes that each
agent is the center of avoidance process at ego-frame, thus assumming that the robot is stationary at the origin
point. At those condition, relative velocity outside the collision cone of VO is choosen based on ego-centric
observation of the obstacle by the agent at two consecutive time instance.

To dealing with uncertainty of obstacles motion, several development were introduced such as (non
linear velocity obstacles (NLVO) [33]], probabilistic velocity obstacles (PVO) [34]], IVO [35]], and probabilistic
inverse velocity obstacle (PIVO) [36]. NLVO takes into consideration the nonlinear motion of the obstacles,
it also introduces the notion of risk that assigns a value that represents the risk factor to each velocity of the
agents. The velocity that would produce immediate collision may have higher values of risk than some other
velocity inside VO but not immediately produce a collision. PVO further extends the VO formula for uncertain
estimation that may happen in sensors data. PVO assume that the data from mobile agents in real-life scenario
(e.g mobile robot) are taken from sensors with a certain limit in their capability to fully grasp the necessary
perception of agents against it’s surrounding. This is due to the fact that noise in estimation may exist. This
creates a probabilistic framework to bridge the agent’s perception and navigation in reactive avoidance cases.
IVO is designed with motion uncertainty of the obstacles in mind, by introducing an optimization objective
function to improve avoidance decisions. It’s split the avoidance process into two major processes, obstacles
information processing for risk assessment and avoidance decision process. The optimization objective function
of IVO consists of the risk of speed, the target speed deviation, and the collision time. PIVO is based on IVO
combined with PVO that notices uncertainty in estimation due to noise occurred.

One classical problem with VO is oscillatory motion in agents avoidance. Reciprocal velocity ob-
stacles (RVO) is designed to deal with this oscillation that occurred during the avoidance process between
agents [37]]. These were designed for dealing with local reactive collision avoidance, further implementation
of this method for computer games shows that RVO had hard times dealing with static obstacles [38]. In this
paper, we proposed a new approach in dealing with static obstacles in local motion planning. We utilize RVO
for multi-agent navigation. Our approach is to exploit the reactive nature in RVO avoidance by introducing
a new concept called the inert agent that will be used to substitute the static obstacles. This concept enables
multi-agent navigation with all objects in navigation space are treated as agents.

2. METHOD

In RVO, each agent is expected to navigates independently [37]. RVO takes into account that the
avoidance process between agents is a reactive process, the other agents are expected to make the same rea-
soning in the collision avoidance process. The creator of this method designed RVO as the extension of the
velocity obstacles concept, to prevent oscillatory motion caused by reactive avoidance. Avoidance velocity in
RVO is calculated by using the average value of velocity that lies outside the avoided agent’s velocity obstacle
with agent current velocity. RVO is defined as in (I), which shows the RVO of agent B to agent A. It contains
every velocity of agent A inside the velocity obstacles in VO (vg) averaged with the current velocity v 4.
Which the VOg‘, (vp) itself is velocity obstacle of agents B to agent A. It contains every possible velocity that
if taken, will cause agent A to collide with B at a certain point in the future.

RVOg (vB,va) = {v;‘ | 2v/y —va € VOé (VB)} (1)

RVOg = reciprocal velocity obstacles of agent B to agent A;
VOg = velocity obstacles of agent B to agent A;
v 4 = current velocity of agent A;
vp = current velocity of agent B;
u = velocity addition for next velocity.

RVO enabled agent’s navigation that is free from collision and oscillation when handling avoidance
between agents. However, in an investigation, RVO has hard times dealing with static obstacles [38]]. As stated
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by J snape in an article regarding RVO integration in games: “maybe it’s a little counter-intuitive, but dealing
with a static line obstacle is harder than dealing with a dynamic obstacle!” [38]]. The solution he provided was
to avoid using RVO for static obstacles avoidance.

If we refer to the origin of RVO [37], it was proposed as a concept for local reactive collision avoidance
between agents, so it’s intuitively the good solution. Nevertheless, we have different perspectives into dealing
with these problems, whereas the agents are the one that produces motion in order to navigate through world
space, it’s crystally clear that the problems lies on the static obstacles. In (2)) shows oscillation-free theorem of
RVO.

va € RVOZ (vp,va)
= @)
vy € RVO; (VB —u,vy —|—11)

In the original explanation [37], the author explains that the newly chosen velocity will invalidate the
old velocity. Based on the translation invariance shown in (3) and RVO of agent B to agent A in (), the new
velocity chosen for agent A which is v4 + u, is outside of RV O4. However, the v 4 + u are the best velocity
to take since it’s the closest one to the reference velocities. This take account some assumption that agent B
make similar calculation in avoidance process, hence the reaction of the opposite agent is expected(vp — u)
thus in (2)) is fullfilled. Since static obstacles bear no awareness in velocity space this cause problem in reactive
collision avoidance case.

vaeVOA(vp) e va+ueVOs (vg +u) (3)

As we previously mention, the reaction of all agents involved in the avoidance process is expected.
Generic static obstacles involved have no awareness at all since that’s the natural way of obstacles, a hindrance
in the navigation plane. We propose an approach to treat all objects in the navigation plane as agents. We define
autonomous agents in our approach into two major categories, mobile agents and inert agents. Mobile agents
are a group of agents that has the ability to move and navigate freely in a navigation plane. Whereas inert
agents are a group of agents with no ability to move and navigate freely in a navigation plane. This inert agents
act like static obstacles which is the only ability it has is none other than obstructing the way of mobile agents.
Inert agents can only choose zero as possible speed thus can only react with zero velocity in the avoidance
process.

From RVO explanation in the previous section, we explain the concept with the assumption that all
agent involved has same effort in collision avoidance. this idea although true is not a limitation. We can assign
priorities value among agents involved that resulted in differences in avoidance effort [37]. So we assigned
those priority values in binary to represent mobile and inert agents, with the mobile agent as zero and the inert
agent as one. Avoidance taken by the agent with the same priority value will take a mutual effort in avoiding
each other (in our case, it is only occur between mobile agents since the inert agent has no ability to move).
In the case of mobile agents avoidance against inert agents, the mobile agents take all the effort to avoid inert
agents since the inert agents can only react by simply idle. Figures || to [3| shows avoidance between agents.
Figure [I] shows us that both agents with an equal level of priority take a mutual endeavor in avoiding each
other. Whereas Figure 2] shows that only an agent with a lower level of priority (agent colored in yellow) takes
the avoidance manner when both mobile agents were on the opposite trajectory. Figure [3]is an example of an
interaction between a mobile agent (agent colored in yellow) when faced with an inert agent (agent colored in
blue). The inert agent holds still as a static obstacle should, so avoidance is only executed by mobile agents.

c e e N

Figure 1. Avoidance from both agents with equal level of priority
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Figure 2. Avoidance from both agents with different level of priority

Figure 3. Avoidance between mobile agent against an inert agent

3.  RESULT AND DISCUSSION

We create an experiment scenario to test our method. Figure[]shows the environment of the navigation
space. The area labeled A to D is the starting point for groups of mobile agents, whereas the static obstacles
are scattered in the middle of the navigation plane. Group A will navigate toward area D, while group D will
navigate toward area A. Group B will navigate toward area C, while group C will navigate toward area B. This
scenario will create dense conditions in the middle of the navigation plane of simulation since all groups will
intersect in the middle area.

Figure 4. Navigation space environment

We conducted this scenario from total agents from 100 to 1,000 with three different methods in static
obstacles avoidance. The first method is generic static obstacles avoidance with RVO. The second one is our
proposed method with static obstacles as inert agents. Since the static obstacles present in simulation varying in
shape, we use medial axis transform approximation uses for medial axis transform reciprocal velocity obstacle
(MATRVO) [39]. The last one is the scenario with global pathfinding involved to direct the agents in navigation
plane in order to reach their destination. In this scenario, the mobile agents will traverse the corridors that
formed due to the presence of static obstacles using A* pathfinding, whereas avoiding other mobile agents
using the RVO method. This scenario basically uses a path generated by a pathfinding algorithm to avoid the
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static obstacles since the static obstacles count as impassable planes. The previous two scenarios only give
the agents general direction to their destination, thus they rely on local collision avoidance to avoid the static
obstacles. Figure [5]shows the sample run of our scenario with 500 mobile agents involved.

Figure 5. 500 mobile agents moving through scattered inert agents as static obstacles

Figure [6] shows us the average consumed time for all agents to arrive at their respective destinations.
As the number of agents increases, so does the time required for every agent to arrive. As those graphics are
shown to us, our method on average enables faster navigation compared to mobile agents with A* pathfinding
by an average of 15.18%, however, it’s slower compared with generic static obstacles by an average of 3.68%.

The collision that occurred from mobile agents against static obstacles shows in Figure[7] It gives us
a sign about the effectiveness of our method to treat static obstacles as inert agents, as it produces less collision
than generic static obstacles. However, the usual approach to not using RVO to avoid static obstacles is still
the best approach, as shown in the chart in Figure [7] using A* pathfinding to make mobile agents traverse
the formed corridors from static obstacles is proven to produce better results based on collision it’s produced.
One thing to be noted though, using a pathfinding algorithm such as A* requires time for the mobile agents
to precalculate the path, whereas our method is simply giving the mobile agents general direction for each
respective destination.

The number of collisions overall is dominated by mobile agents collisions against each other as shown
in Figures[§]and[9] More detailed result presented in Table[I] Figure[I0]shows the time required for pathfinding
calculation using the A* algorithm. At 1,000 agents; 102.57 seconds is required to calculate the path for all
agents, whereas our method only required 2.46 seconds to iteratively assign general direction toward their
destination to all agents.

Time to Reach the Destination

5

H

Time (seconds)
8 g

Number of Agents

—@seneric tatic Obstacles ——inert Agents ——@A*

Figure 6. Graph of time to reach the destination
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Figure 7. Graphs of mobile agents collisions against inert agents
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Figure 8. Graph of mobile agents collisions against each other
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Figure 9. Graph of overall collisions of every agents
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Figure 10. Graph of A* pathfinding calculation time
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Table 1. The detailed result of the experiment

Average time to

Number Total collision Mnb.ile agen.ls collisions Mobile. agents collisions reach destination
Against static obstacles against each other
of (seconds)
agents Generic Inert Generic Inert Generic Inert Generic Inert
static A* static A* static A* static A*
obstacles agents obstacles agents obstacles agents obstacles agents
100 136.00 0.00 7.00 136.00 0.00 7.00 0.00 0.00 0.00 118.19 118.61 120.15
200 276.00 68.00 22.00 263.00 40.00 22.00 13.00 28.00 0.00 127.55 131.20 137.23
300 564.00 246.00 64.00 484.00 71.00 61.00 80.00 175.00 3.00 135.95 139.25 149.81
400 1238.00 634.00 192.00 874.00 250.00 87.00 364.00 384.00 105.00 147.93 144.35 172.87
500 2119.00 1655.00 599.00 1192.00 483.00 145.00 927.00 1172.00 454.00 151.34 167.34 190.34
600 2333.00 1941.00 2052.00 1421.00 582.00 184.00 912.00 1359.00 1868.00 155.03 160.17 192.81
700 3721.00 5366.00 4349.00 1852.00 950.00 299.00 1869.00 4416.00 4050.00 160.22 175.19 213.10
800 6255.00 8136.00 9366.00 2349.00 1102.00 382.00 3906.00 7034.00 8984.00 169.80 169.47 22591
900 11504.00 16730.00 14690.00 2798.00 1583.00 427.00 8706.00 15147.00 14263.00 171.65 183.09 231.53
1000 15413.00 18237.00 25259.00 3108.00 1443.00 446.00 12305.00 16794.00 24813.00 181.04 193.44 275.72

4. CONCLUSION

Our inert agent’s concept was able to improve upon the static obstacles problems in RVO. Using the
concept of inert agents to treat as static obstacles caused mobile agents collision to reduce by 65.99%. However,
the idea of avoiding RVO to deal with static obstacles is still the best thing to do as it’s shown by our experi-
ment. Using the A* algorithm calculates the path for the mobile agents to take in order to traverse the formed
corridors from static obstacles caused the collision to reduce collision by 87.68%. Whereas it’s caused time
to reach destination increase by an average of 18.23% compared to generic static obstacles. Our inert agent’s
method increases the time to reach their destination by an average of 3.68% when compared with generic static
obstacles. Using A* pathfinding to traverse the corridor in the navigation plane is advised if the information of
static obstacles can be preloaded to be calculated beforehand, thus only avoidance between mobile agents that
are done using RVO. Such cases occurred in a controlled environment like a virtual environment in a game, or
simulation, inside an autonomous factory, and any indoor environment with preplaced markers. Whereas our
approach is better suited for the environment with no prior information regarding the presence of obstacles.
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