
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 26, No. 3, June 2022, pp. 1684~1691

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v26.i3.pp1684-1691  1684

Journal homepage: http://ijeecs.iaescore.com

Applying reinforcement learning for random early detection

algorithm in adaptive queue management systems

Ayman Basheer Yousif, Hassan Jaleel Hassan, Gaida Muttasher
Computer Engineering Department, University of Technology, Baghdad, Iraq

Article Info ABSTRACT

Article history:

Received Nov 4, 2021

Revised Feb 20, 2022

Accepted Mar 7, 2022

 Recently, the use of internet has been increased all around the hose, the

companies, government departments and the video games and so on. Thus,

this increased the traffic used in the networks, which generated congestion

issues and sent packet drop in the nodes. To solve this problem, certain

algorithms are used. The Active queue management is one of the most

important algorithms that helps with this issue. For an effective network

management, the RL was used, and it will adapt with the parameters of

algorithms. Where the suggested algorithm deep Q-networks (DQN)

depends on the reinforcement learning (RL) to reduce the drop and delay.

Also, the random early detection (RED) (an active queue management

(AQM) algorithm) was adopted based on the NS3 situation.

Keywords:

Active queue management

Deep Q-learning

Random early detection

Reinforcement learning
This is an open access article under the CC BY-SA license.

Corresponding Author:

Ayman Basheer Yousif

Computer Engineering Department, University of Technology

Baghdad, Iraq

Email: aymanutd92@gmail.com

1. INTRODUCTION

The increased using of internet led to internet congestion. The solution for this problem cannot

depend only the congestion control mechanism provided by the source node only. The congestion control that

is based on intermediate node includes two parts: managing and scheduling queues [1], [2]. Where the queue

scheduling is used for network bandwidth issue while queue managing keeps the stability through choosing

to neglect a certain packet based on the route [3], [4]. In tail drop algorithm, the router stores largest possible

number of packets, and neglects those who can not be stored if the temporary storage is full [5], [6]. The

random early detection (RED) algorithm, which is one of active queue management (AQM) types, the RED

monitors the storage queue size and the drop based on statistical probabilities [7]. If the temporary storage

was empty, all packets will be received with the possibility of dropping the packet, while if the temporary

storage was full, all packets will be dropped [8]. RED is considered fairer than the tail drop, where RED does

not object the data traffic that uses small B.W. As more packets are sent as more packets are dropped [9].

Reinforcement learning (RL) it can train how to tuning the inputs to the outputs. The RL requires

certain states of environment, then it carries out the possible actions in particular states during the training

[10]. RL starts to discover the actions and states inside this environment, then it uses the data it learned and

gets the reward and continues learning until the reward [11], [12].

The trade-off between queuing delay and throughput is investigated in this study using an AQM

(RED) integrated deep reinforcement learning framework for effective network control [13]. Deep Q-

network (DQN) is used to create our application [14]. The key Q-network and the target network, for

example, are both equipped with experience replay. It picks a packet drop or non-drop action at the packet

departure point based on the current state, which includes dequeue rate, enqueue rate, drop rate, and avg

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Applying reinforcement learning for random early detection algorithm in … (Ayman Basheer Yousif)

1685

queue lengh. Following the selection of an event, a compensation is calculated based on a number of

parameters that will be discussed.

Bouacida and Shihada [15] introduced learn queue AQM algorithm in 2018, focused on wireless

networking reinforcement learning. Through dynamically modifying a buffer size utilizing Q-learning in a

specified period, they change the Q-table and refine the Q-function strategy, however check their method for

just two and three scenarios deployed. Bisoy et al. [16] in 2017 proposed an AQM scheme focused on a shallow

neural network with one secret layer consisting of three neurons to resolve the non-linearity of the networking

framework and the queuing latency, but their research did not deal with the trade-off between throughput and

delay performance.

Reinforcement learning-queuing delay limitation (RL-QDL) AQM algorithm suggested in 2007 by

Vucevic et al. [17]. RL agents provide topology details from the bandwidth broker that handles resource

management and quality of service (QoS) provisioning based on what QoS requirements are met in egress

routers (ERs). This supports class-based queuing (CBQ) by endorsing three separate classes: expedited

forwarding (EF), guaranteed forwarding (AF), and best effort (BE) trac to provide end-to-end QoS to customers

with specific service types. In 2018 with respect to network scheduling algorithms, Zhou et al. [18] suggested

automated computation offloading strategy focused on deep reinforcement learning (DRL) by implementing a

double DQN on the edge node. Comparing with standard algorithms, their solution implied the optimum

tradeoff between task latency and drop. Xu et al. [19] applied DRL to network trace engineering in 2018 by

implementing actor-critical approach with a replay of prioritized experiences. Authors contrasted their algorithm

with the commonly used baseline solutions, such as shortest path (SP), load balance (LB), and network utility

maximization (NUM), and checked that their model performs better than specified baseline solutions.

2. METHOD

The reinforced learning is achieved through the random interaction of the agent with the

environment in sequential time steps (t=1, 2, 3…). At each time step, the agent tests an action out of set of

actions 𝐴𝑡 ∈ 𝐴 (𝑠) that come from the state 𝑆𝑡 ∈ 𝑆. After testing the A (t) action is tested, the specialist gets a

prize, and another state is assigned S (t+1). Through repeating this method (operation), each notion in the path

will be suitable to express Markov decision process (MDP), as following: (s1, a1, r1), (s2, a2, r2… where Sn the

state of network, Rn reward and an action [20]. Q-learning partner: state of agent now, action, and

reward.

2.1. Process of select action

As for the territory of RL, we think about four components have been throught about: dequeue rate,

enqueue rate, drop rate, and avrg_queue_len. At each time step t, state st is characterized as st={dequeue rate,

enqueue rate, drop rate and avrg_queue_len} which is a contribution of multi-facet perceptron (MLP)

comprising of three secret layers of 16-32-16 neurons for each layer. For choosing an activity, primary Q-

network is utilized and it returns two probabilities as a result (drop/non-drop likelihood). To observe a

superior activity on a specific state, use investigate/exploit methodology which implies that the specialist

makes a move dependent on its own choice (exploit), or once in a while makes an irregular move consistently

dependent on a specific likelihood (investigate). For the investigate/exploit system beginning from a

profoundly arbitrary likelihood of activity for the investigate/take advantage of technique. The investigating

likelihood is set at 90% dependent on the round of the scene at the primary scene of the organization

reenactment, and it lessens to 0 percent through the scene. Figure 1 clarifies the choice interaction for an

activity. The agent keeps trying until reaching the best reward [21].

Figure 1. Process of selecting an action

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 26, No. 3, June 2022: 1684-1691

1686

2.2. Reward

In the wake of making a move, the RL specialist sits tight for next state st+1 during the stretch Tint.

The chosen activity is assessed by a prize capacity. The main purpose in planning the prize capacity is to

enhance the compromise between lining postponement and drop-rate just as to keep away from limitless

parcel drop state or non-drop state [22], [23].

2.3. Training process

The agent will choose randomly in the beginning of the learning using (explore/exploit) feature.

At each choice, the Reward ratio will be recorded and measure; and the Q is updated depending on the

reward that it achieves as Figure 2 shows. The agent due so will interact with the environment and learn

through accumulated rewards.

Figure 2. Q-learning algorithm [24]

The algorithm starts by using the action randomly (explore) and an initial state will be obtained.

Then the second round begins, and for each round the reward is registered and the Q is updated through the

equation above. Also, the new state is changed to the current state [25].

3. RESULTS AND DISCUSSION

This section validates the validity and performance by NS3 simulation experiment of the designed

DQN algorithm, the simulation uses the typical single-bottleneck network topology as shown in Figure 3, the

network has n senders (S1~Sn), receivers (d1~dn), and 1 routers (n2). The bandwidth and delay between each

sender (n1) and (n2) is 100 Mbps and 0.1 ms, and the bandwidth and delay between each receiver and (n2) is

100 Mbps and 5 ms too. To compare, we analyzed the RED algorithm and DQN algorithm's queue length,

throughput, delay and packet loss rate under changing of network link capacity, respectively.

The performance of the algorithm, the simulation time is 100 seconds. Table below shows the queue length

and standard deviation of the RED algorithm and the DQN algorithm. As can be seen from the table the

average queue length of the RED algorithm is larger than that of the DQN algorithm. So the DQN algorithm

reduces the drop probability, and reduces the delay.

Figure 3. Simulated network structure

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Applying reinforcement learning for random early detection algorithm in … (Ayman Basheer Yousif)

1687

3.1. Experiment 1

For the proposed network's shown in Figure 3 the number of transmission control protocol (TCP)

session (N) is 20. With the link capacity 0.5 Mbps, and data rate 1 Mbps. Decreasing the bottleneck link (C)

leads to increase probability of dropping packets. It is appears by looking at mean, the standard deviation

values, throughput and drop rate of algorithms in Table 1. As shown in Figure 4, notice an increase in your

average queue length from DQN, RED Yes, there is a little advantage to the DQN algorithm due to the

training process that took place on the algorithm.

Figure 4. Queue length of the RED, DQN algorithms

Table 1. The parameters of RED and DQN algorithms in experment 1
Scenario Mean (packet) Standard deviation (packet)

RED 115.747 44.37

DQN 114.323 41.78
scenario Mean (packet) Standard deviation (packet)

Discuss: decrease the link capacity (C) leads to increase the round-trip time (RTT), and increase

probability of dropping packets. That is appeared by looking at the standard deviation values of algorithms in

Table 1. We can see that the DQN algorithm outperforms the RED technique in terms of total network

performance.

3.2. Experment 2

For the proposed network's shown in figure 3 the number of TCP session (N) is 20. With the link

capacity 1Mbps, and data rate 1 Mbps. The bottleneck was changed from 0.5 Mbps to 1 Mbps. This increase

resulted in less crowding and less fall compared to experiment 1. It also shows the preference of the DQN

algorithm over the RED algorithm in terms of drop show in Figure 5, notice a better deference of 1.1% by

19.4% drop rate for the DQN algorithm and 20.3% drop rate for the RED algorithm can see in Table 2, as

well as a better throughput of 0.1 Mbps, and this is due to the reason for training the algorithm and adapting

it to the network congestions

Table 2. The parameters of RED and DQN algorithms in experiment 2
Scenario Mean (packet) Standard deviation (packet)

RED 119.959 29.308

DQN 117.727 26.355

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 26, No. 3, June 2022: 1684-1691

1688

Figure 5. Queue length of the RED, DQN algorithms

Disscuss: when the link capacity (C) is reduced, the round-trip time (RTT) increases, as does the

likelihood of packets being dropped. Looking at the standard deviation values of algorithms in table 2 reveals

this. We can observe that the DQN algorithm produces a superior overall network performance than the RED

approach.

3.3. Experiment 3

For the proposed network's shown in Figure 3, the number of TCP session (N) is 20. With the link

capacity 5 Mbps, and data rate 1 Mbps. In Table 3, values of mean and standard deviation of the queue length

with the increase in the size of the bottleneck, notice an excellent advantage in terms of network state, as in

the Figure 6 notice the lowest drop rate, a good throughput, the average queue length, and a preference for

the DQN algorithm where it obtained a drop rate of 1.2% less and a difference in the throughput of 0.04

Mbps due to the good training of the algorithm can show in Table 3. Through experiments 2 and 1 note that

the larger the bottleneck size, the lower the drop ratio, and the less congestions.

Figure 6. Queue length of the RED, DQN algorithms

Table 3. The parameters of RED and DQN algorithms in experiment 7
Scenario Mean (packet) Standard deviation (packet)

RED 69.07 9.47

DQN 67.93 6.78

senario Mean (packet) Standard deviation (packet)

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Applying reinforcement learning for random early detection algorithm in … (Ayman Basheer Yousif)

1689

Discuss: we can see how the DQN method outperforms other algorithms in terms of keeping the

queue length close to the target value with little oscillation. When looking at the value of standard deviation

in table, it is apparent that this is the case. In all prior trials, the overshoot of the DQN response has never

surpassed 160 packets; in contrast, the RED algorithm's overshoot has never exceeded 160 packets.

3.4. Compares between RED and DQN with multiple parametes

To study the effect of bottleneck link disturbance on the network, the following experiments have

been executed, show in Table 4 for the proposed networks shown in Figure 3 the number of TCP session (N)

is 20. With the different of bottleneck link, and data rate 1 Mbps. Values of mean of the queue length for

AQM, throughput and drop rate, as shown in Table 4 show in Figures 7, 8, and 9. We can see the DQN

algorithm overall network performance is better than that produced by the RED algorithm

Table 4. Average of mean, throughput amd drop rate in different (c)
C Mean packets RED Mean packets DQN Throughput RED Throughput DQN Drop RED Drop DQN

0.5 115.747 114.323 0.3796 0.3967 24.30% 22.90%

1 119.959 117.727 0.8907 0.918 20.30% 19.40%

5 69.07 67.93 4.935 4.972 15.40% 14.60%

Figure 7. Compare between mean packets in RED and DQN

Figure 8. Compare between throughputs in RED and DQN

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 26, No. 3, June 2022: 1684-1691

1690

Figure 9. Compare between drops in RED and DQN

4. CONCLUSION

Python was used to implement Q-learning algorithm to choose the highest parameter to reduce the

packets, where an environment that has learned through network management was obtained, and this will

allocate the highest probability to drop the packets which in turn will provide a better network efficiency with

reducing or preventing the congestion. However, the generated results were better than those of RED. In the

future work, the action choice should be improved using fuzzy-Q.

REFERENCES
[1] A. Al-Hammouri, “Internet congestion control: Complete stability region for PI AQM and bandwidth allocation in networked

control,” Doctoral dissertation, Case Western Reserve University, US, 2008.

[2] L. Peterson and B. Davie, Computer network a systems approach, 3rd ed. Elsevier Science (USA), 2003.
[3] A. T. Al-Hammouri, “Internet congestion control : complete stability region for Pi AQM and bandwidth allocation in networked

control,” Ph.D. dissertation, Dep. of Elect. Eng., Case Western Reserve University, 2008.

[4] C. Brandauer, G. Iannaccone, C. Diot, T. Ziegler, S. Fdida, and M. May, “Comparison of tail drop and active queue management
performance for bulk-data and Web-like Internet traffic,” in Proceedings. Sixth IEEE Symposium on Computers and

Communications, 2001, pp. 122-129, doi: 10.1109/ISCC.2001.935364.
[5] C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong, “On designing improved controllers for AQM routers supporting TCP

flows,” in Proceedings - IEEE INFOCOM, 2001, vol. 3, pp. 1726–1734, doi: 10.1109/infcom.2001.916670.

[6] V. Jacobson, “Congestion avoidance and control,” in Symposium Proceedings on Communications Architectures and Protocols,
SIGCOMM 1988, 1988, pp. 314–329, doi: 10.1145/52324.52356.

[7] V. Misra, W.-B. Gong, and D. Towsley, “Fluid-based analysis of a network of AQM routers supporting TCP flows with an

application to RED,” in Proceedings of the conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication - SIGCOMM ’00, 2000, pp. 151–160, doi: 10.1145/347059.347421.

[8] G. de O. Ramos, L. L. Lemos, and A. L. C. Bazzan, “Developing a python reinforcement learning library for traffic simulation,”

in Proceedings of the Adaptive Learning Agents Workshop 2017 (ALA-17), 2017.
[9] Z. Xu et al., “Experience-driven networking: a deep reinforcement learning based approach,” in IEEE INFOCOM 2018 - IEEE

Conference on Computer Communications, 2018, pp. 1871-1879, doi: 10.1109/INFOCOM.2018.8485853.

[10] S. Sharma, S. Sharma, and A. Anidhya, “Understanding activation functions in neural networks,” International Journal of
Engineering Applied Sciences and Technology, vol. 4, no. 12, pp. 310–316, 2020.

[11] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized computation offloading performance in virtual edge

computing systems via deep reinforcement learning,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4005–4018, Jun. 2019,
doi: 10.1109/JIOT.2018.2876279.

[12] B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-learning algorithms: A comprehensive classification and applications,” IEEE

Access, vol. 7, pp. 133653–133667, 2019, doi: 10.1109/ACCESS.2019.2941229.
[13] Y. Su, L. Huang, and C. Feng, “QRED: A Q-learning-based active queue management scheme,” Journal of Internet Technology,

vol. 19, no. 4, pp. 1169–1178, 2018, doi: 10.3966/160792642018081904019.

[14] H. Abdel-Jaber, “An exponential active queue management method based on random early detection,” Journal of Computer
Networks and Communications, vol. 2020, pp. 1–11, May 2020, doi: 10.1155/2020/8090468.

[15] N. Bouacida and B. Shihada, “Practical and dynamic buffer sizing using learnqueue,” IEEE Transactions on Mobile Computing,

vol. 18, no. 8, pp. 1885–1897, Aug. 2019, doi: 10.1109/TMC.2018.2868670.
[16] S. K. Bisoy, P. K. Pandey, and B. Pati, “Design of an active queue management technique based on neural networks for

congestion control,” in 11th IEEE International Conference on Advanced Networks and Telecommunications Systems, ANTS

2017, Dec. 2018, pp. 1–6, doi: 10.1109/ANTS.2017.8384104.
[17] N. Vučević, J. Pérez-Romero, O. Sallent, and R. Agustí, “Reinforcement learning for active queue management in mobile all-ip

networks,” in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 2007, pp. 1–5,

doi: 10.1109/PIMRC.2007.4394713.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Applying reinforcement learning for random early detection algorithm in … (Ayman Basheer Yousif)

1691

[18] C. Zhou, J. He, and Q. Chen, “A robust active queue management scheme for network congestion control,” Computers and
Electrical Engineering, vol. 39, no. 2, pp. 285–294, Feb. 2013, doi: 10.1016/j.compeleceng.2012.11.008.

[19] Z. Xu et al., “Experience-driven networking: A deep reinforcement learning based approach,” in Proceedings - IEEE INFOCOM,

Apr. 2018, vol. 2018-April, pp. 1871–1879, doi: 10.1109/INFOCOM.2018.8485853.
[20] A. Sungur, “TCP–Random Early Detection (RED) mechanism for Congestion Control,” M.S. thesis, Rochester Institute of

Technology, NY, 2015.

[21] M. Stevens and C. Yeh, “Reinforcement Learning for Traffic Optimization,” Stanford edu., 2016.
[22] S. Whiteson, “Adaptive representations for reinforcement learning,” Studies in Computational Intelligence, vol. 291, pp. 1–126,

2010, doi: 10.1007/978-3-642-13932-1_1.

[23] D. A. Duwaer, “On deep reinforcement learning for data-driven traffic control,” Master Thesis, Eindhoven University of
Technology, 2016.

[24] S. E. Dreyfus, “Artificial neural networks, back propagation, and the kelley-bryson gradient procedure,” Journal of Guidance,

Control, and Dynamics, vol. 13, no. 5, pp. 926–928, Sep. 1990, doi: 10.2514/3.25422.
[25] A. H. Sayed, “Adaptation, learning, and optimization over networks,” Foundations and Trends in Machine Learning, vol. 7, no.

4–5, pp. 311–801, 2014, doi: 10.1561/2200000051.

BIOGRAPHIES OF AUTHORS

Ayman Basheer Yousif received B.Sc from the university of technology in

2012. Worked as a teacher in the university of Israa since 2013 also have experience with

software development for six years to develop and maintain websites as a full-stack developer,

build a website with high specifications, and have good experience in computer network and

pc hardware maintenance. Looking forward to gaining more experience. A student in the

research stage to obtain a master's degree in the computer engineering department. He can be

contacted at email: aymanutd92@gmail.com.

Assist. Professor Hassan Jaleel Hassan is currently a head of department of

computer engineering, university of technology (UOT), Iraq, since 2019. He obtained his

Ph.D. in computer network from control and systems engineering department, university of

technology in 2013. His research interest includes, wireless communication networks, internet

of things (IoT), network congestion control, advanced image processing. He can be contacted

at email: 60012@uotechnology.edu.iq.

Dr. Ghaida Muttasher received B.Sc. in 2007 in computer engineering field

from University of Technology Iraq. Then in 2012, she got her M. Sc. in Computer Networking

and after that she got her Ph.D. in 2017 in the field of computer network from Faculty of

computer systems & software Engineering-University Malaysia Pahang. She has patents and has

also received several medals and awards for her innovative researches in computer science,

computer engineering and information technology. Now she is a Senior Engineering and

Telecommunications Lecturer in University of Technology and she has 10 years of university-

level teaching experience in computer science and network technology. She has a strong CV due

to her implemented projects in computer science and networking. She has had many published

articles in ISI/Thomson Reuters indexed journals and she has also presented at many

international conferences. She has good skills in software engineering including experience with:

Net, SQL development, database management, mobile applications design, mobile techniques,

Java development, android development, IOS mobile development, Cloud system, website

design and so on. She can be contacted at email: drghaida7@gmail.com.

.

https://orcid.org/0000-0003-4390-845X
https://orcid.org/0000-0002-0527-9675
https://orcid.org/0000-0003-3780-3045

