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 Many solar plants have been installed globally, and they must be 

continuously protected and supervised to ensure their safety and reliability. 

Photovoltaic plants are susceptible to many defects and failures, and fault 

detection technology is used to protect and isolate them. Despite numerous 
inter-national standards, invisible photovoltaic defects continue to cause 

major is-sues. As a result, smart technologies like artificial intelligence (AI) 

and internet of things (IoT) are being developed for remote sensing, problem 

detection, and diagnosis of photovoltaic systems. Solar plants generate not 
only green electricity but also a lot of data, such as power output. With AI, a 

clear picture of electricity yields should be possible. The output of entire 

solar parks could be monitored and analyzed. The AI could also detect 

malfunctions within a solar park, according to the research. This would 
speed up and simplify maintenance work. Deep learning (DL) and IoT 

applications for photovoltaic plants are discussed. The most advanced 

techniques, such as DL, are discussed in terms of precision and accuracy. 

Incorporating DL and IoT approaches for fault detection and diagnosis into 
simple hardware, such as low-cost chips, maybe cost-effective and 

technically feasible for photovoltaic facilities located in remote locations. 
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1. INTRODUCTION 

Renewable energy is becoming increasingly significant in the generation of power these days. Fossil 

resources are not a viable future choice since they are non-renewable energy sources that contribute to 

environmental degradation. In 2019, 6,963 TWh of electricity was generated from renewable sources. About 

6% of this (4,207 TWh) came from renewable hydropower, with the rest coming from wind and solar power 

(1 412 TWh and 693 TWh, respectively) [1]. 

Solar energy is one of the world's fastest-growing energy sources, and with countries competing for 

supremacy in the thriving industry. In Africa, Morocco has set one of the world's most ambitious energy 

goals. The objective is for renewable energy to account for 42% of total electricity from its solar farms; the 

world's largest concentrated solar farm [2]. 

Despite the many benefits of solar panels and renewable energy, solar panels need no maintenance 

and may be allowed to produce cost-free renewable energy. They may, occasionally, run into one of a few 

solar photovoltaic (PV) issues. There are a variety of reasons why photovoltaic (PV) modules may fail: 

temperature cycling, humidity freeze, and ultraviolet (UV) exposure [3]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Solar panels failures ecosystems must be monitored, measured, and analyzed continuously and 

automatically to better understand the complex, multi-variate, and unpredictable nature of these issues. The 

internet of things (IoT), a new developing technology that connects physical objects through electrical 

sensors and the internet, is getting a lot of attention these days. This IoT technology is growing into a wide 

range of new and interesting application fields, with energy being one of them. For optimal real-time 

consumption monitoring and performance awareness, energy management integrates IoT technologies to 

offer the perfect solution. IoT technology, such as energy sensors, makes it possible to gather real-time data 

on energy usage at many levels, such as the machine, the production line, or the facility level [4]. Deep 

learning is another technique that has made significant breakthroughs in a variety of fields since its 

introduction, including computer vision, natural language processing (NLP), energy, anomaly detection, 

failure forecasting, and many others. Combining these breakthroughs technologies, IoT and deep learning, 

can provide a viable approach for preventing solar panel failures. In this paper, we provide a thorough 

literature review analysis on PV failure detection using IoT and deep learning technologies. The structure of 

this paper is as follows. Section two goes over the terminology. Section three explains the literature review, 

and the fourth section discusses our findings, and we conclude with a conclusion. 

 

 

2. BACKGROUNDS 

2.1.  Photovoltaic (PV) 

Photovoltaic (PV) is the direct transformation of solar irradiation into electricity by solar cells; 

based on the physical principle of photoelectricity (see Figure 1). The direct current generated during this 

process is usually converted to alternating current by an inverter and then fed into the utility grid [5]. The 

majority of solar cells are made of silicon semiconductors, which are similar to those used in the production 

of computer chips. These semiconductors convert electromagnetic radiation (light) into electric current: 

incident light particles (photons) are absorbed in the semiconductor, raising the electrons of the 

semiconductor material to a higher energy level and allowing them to move through the material. 

Semiconductors are designed in such a way that charge separation (electrons or electron vacancies) occurs 

(thanks to the adjacent differently doped layers). The generated current is collected at the level of the metal 

contacts [6]. Solar panels are relatively low maintenance. However, nothing is completely foolproof; 

problems can arise [7], [8]. Delamination and internal corrosion, electrical issues, micro-cracks, hot spots, 

potential induced degradation (PID) effect, Snail trails, inverter problems, and other issues are some of the 

most common problems that affect solar panels [9]. 
 

 

 
 

Figure 1. Solar plant ongrid 

 

 

2.2.  Photovoltaic maintenance 

The implementation of a maintenance system can help to avoid a slew of issues and boost 

productivity. Industrial maintenance entails not only facility inspections, but also accurate data collection on 

the state of infrastructure, equipment, and machinery. Many businesses rely on technology companies that 

specialize in monitoring industrial processes to accomplish this. These technological tools take daily 

measurements of key indicators and send out alerts when a measurement deviates from the norm. In addition 

to that, it is so important to distinguish between the three main types of maintenance: Corrective, preventive, 

and predictive maintenance [10]. Corrective maintenance, which consists in intervening on an equipment 

when it fails, as opposed to preventive maintenance, which consists in intervening on an equipment before it 

fails, in order to prevent any failure. Predictive maintenance is performed based on projections derived from 

the analysis and evaluation of key parameters of asset degradation. Its basic premise is that any element will 
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show signs of degradation, whether visible or not, that indicates its failure. The key is to understand how to 

recognize these warning signs. Many existing devices (sensors and thermal cameras) allow the measurement 

of this degradation, which can take the form of changes in temperature, vibration, pressure, size, position, and 

noise, among other things. Physical, chemical, behavioral, electrical, and other types of degradations can 

occur [11]. In this context, numerous prior studies have examined photovoltaic failure categories. While 

large-scale solar farms tend to receive more research funding, the bulk of current PV technology research has 

focused on these larger projects due to the increased funding and incentives that larger projects can offer. But 

some PV system problems are common to both large and small-scale systems. Frequent system failures 

include the following types of typical PV (system) issues, as described in the literature [12]. 

 

2.2.1. Ground faults (zero efficiency faults) 
In an electrical system, the most common type of fault is the ground fault. When the insulation is 

degraded, it becomes porous and is ultimately unable to protect the wires and equipment, and this occurs 

when it is exposed to excess current, extreme temperatures, and aging, and in some cases when voltage levels 

are abnormal. Without insulation, the conductor may be in contact with an external object. However, if 

another ground defect occurs, a leakage current circulates through the ground to return between ground 

defects [13]. 

 

2.2.2. Line to line faults 
To reach both voltage and power levels, strings of panels are connected in series and then the strings 

are connected in parallel to create an array. Unintentional connections between two different points in a PV 

array are known as line-to-line (L-L) faults [14]. DC connectors damage, animal chewing, and cable age may 

cause the L-L faults [15]. 

 

2.2.3. Inverter failures 
Solar panels provide electricity that is used to power household appliances through solar inverters, 

which need minimal maintenance if set up properly. Inverters include more electrical components than solar 

panels. In comparison to microinverters, string solar inverters have a lifespan of around ten years. However, 

even though inverters are designed to endure for decades, a variety of conditions may impair their function 

during that time period, such as such as heat, faulty installation, humidity, poor maintenance, edge 

delamination, water penetration, and high string voltage [16]. Components are very sensitive to temperature. 

Too much heat may decrease electrical production. Clean dust filters and unimpeded inverter airflow are 

essential [17]. 

 

2.2.4. Arc faults 
In PV systems, arc faults are a frequent occurrence. A prolonged arc's high-temperature plasma may 

harm system components severely. Solar PV systems are susceptible to two kinds of arc faults: series and 

parallel (including grounding arc-fault). Due to the significant difference in potential between a parallel and 

grounding arc fault, a considerable quantity of fault current is drawn, making it simpler for conventional 

protection systems to detect. A series arcing fault current that is lower than the usual operating current level 

will not melt or trigger overcurrent safety mechanisms because of the nature of a photovoltaic solar cell. Due 

to this, the arc fault in series does not draw an opposite current like the arc fault in parallel and the total fault 

current is derived from the normal load current [18]. 

 

2.2.5. Microcracks 
PV modules have a real issue with microcracks in solar cells. They're difficult to prevent and, as of 

yet, almost impossible to measure in terms of their long-term effect on the module's efficiency. A fresh 

module's power may be somewhat reduced by the existence of microcracks, as long as the various 

components of the cell are still electrically linked. A repetitive relative movement of fractured cell 

components may cause an electrical separation as the module ages and is exposed to heat and mechanical 

stressors [19]. 

 

2.2.6. Hot spots and shading 
Shading is the most common issue that affects all solar-electric systems. Because clouds and 

barriers cannot be physically moved, it is critical to identify and eliminate any sources of hotspots, thereby 

reducing the negative effects of partial shading. In the case of non-homogeneous radiation striking PV 

surfaces, the use of photovoltaic panels with internally integrated bypass diodes prevents the possibility of 

PV burning from occurring [20]. 
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2.3.  Internet of things (IoT) 

The Internet has expanded dramatically over the last 50 years, from a local research network with 

only a few nodes to a ubiquitous global network with over a billion users. The ability to obtain distant sensor 

data and manage the physical world from a distance is made feasible by connecting physical objects to the 

Internet. The combination of captured data with data acquired from other sources, such as data on the 

Internet, results in new synergistic services that go beyond what an isolated embedded system can deliver. 

This vision is the foundation of the IoT [21]. A smart device is just another name for an Internet-connected 

embedded device [22].The IoT is a network of interconnected computing objects/devices, digital and 

mechanical, or items with unique IDs and the capacity to transfer data without the need for human 

interactions. A single device on the Internet can be a human with a cardiac eHealth device, an animal with a 

biochip transponder, a car with integrated sensors, or like in our case a smart photovoltaic panel that transfers 

the telemetries via the internet (see Figure 2) [23]. 
 

 

 
 

Figure 2. Internet of things 

 

 

2.4.  Machine learning (ML) 

Artificial intelligence and machine learning (ML) techniques revolutionize several industrial and 

academic sectors such as natural language processing, computer vision, cybersecurity, speech recognition, and 

autonomous driving [24]. ML is a data analysis technique that automates the construction of the analytical 

model. It is an AI branch that believes that systems can learn from information, detect patterns, and decide with 

a minimum of human interaction [25]. ML approaches were limited in processing natural data in their raw form 

and require considerable knowledge in the construction of an extractor that turns raw data into a suitable 

representation [26]. Deep learning has come to overcome this challenge by providing simpler depictions [23]. 

 

2.5.  Deep learning (DL) 

Deep learning algorithms can be viewed as a more complex and advanced version of machine 

learning algorithms. As a result of recent advancements, the field has attracted a great deal of interest, and 

with good cause. Notably, supervised and unsupervised learning both allow for this [27]. DL applications 

utilize an artificial neural network (ANN) to achieve this. A neural network inspired by the human brain's 

biological neural network is used to create an ANN that is much more competent than traditional machine 

learning models at learning [28]. 

 

2.5.1. Artificial neural network (ANN) 
An artificial neural network is a system that consists of linked units that include a high number of 

neurons. Each neuron in the network has the ability to receive, process, and output input signals. It is 

composed of a set of weighted connections, an adder for combining input data weighted by synaptic strength, 

and an activation function for limiting the intensity of the neuron's output [29]. Multilayer feedforward 

networks and recurrent networks are two fundamentally distinct types of network topologies. 

 

2.5.2. Feedforward neural network (FNN) 

Feedforward networks are currently being employed with remarkable success in a number of 

applications. It consists of many neurons organized in layers. Each layer of neurons is connected to all the 

neurons preceding it in the layer (see Figure 3). These connections aren't all created equal; each one may differ 

in terms of strength or weight [29]. The term "single-layer" refers to a neural network with only one layer [30]. 

A network multilayer feedforward consists of a source unit input layer, one or more layers, and an output layer. 
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The hidden layers in the FNN are not directly visible either from the network's input or output layer. These 

hidden layers allow the neural network to retrieve statistical characteristics in greater order from its input [31]. 
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Figure 3. Feedforward neural networks layers 

 

 

2.5.3. Convolutional neural network (CNN) 

The ConvNet/convolutional neural network (CNN) is a DL algorithm that can take an input picture, 

assign significance (weights and biases) to numerous aspects in an image, and differentiate between them 

[32], CNN are a regularized versions of multilayer FNN. When compared to other classification methods, the 

amount of pre-processing required by a ConvNet is significantly less. While basic techniques need hand-

engineering of filters, ConvNets can learn these filters/characteristics with enough training. The ConvNet 

design is similar to the human brain's connection network, and it was inspired by the visual cortex 

organization [33]. For a convolutional neural network, there are four sorts of layers: the convolutional layer, 

the pooling layer, the ReLU layer, and the fully-connected layer (see Figure 4) [34]. 
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Figure 4. CNN layers architecture 

 

 

2.5.4. Recurrent neural networks (RNN) 
The RNN is a form of artificial neural network that employs sequential data or a series of temporal 

data. This DL algorithm is often used for regular or temporal issues such as linguistic translation, language 

processing (NLP), speech recognition, and image subtitling [35]. They can also be used for other 

applications. Recurring neural networking use training data to learn, like feedforward and CNN. They are 

characterized by their "memory", which allows them to alter current input and output by using knowledge 

from previous inputs (see Figure 5) [36]. RNNs typically experience two issues throughout this process: 

exploding gradients and vanishing gradients [37], To address these problems, the most well-known RNN 

versions; the long short-term memory (LSTM) and gated recurrent unit (GRU), are used. 

 

2.5.5. Long short-term memory (LSTM) 

Long short-term memory (LSTM) includes a series of recurrently connected subnetworks, consisting 

of memory blocks. These blocks include one or more self-connected memory cells, which they retain for the 

remembering of past data and 3 components known as gates: an input gate, gate forget, the external gate which 

is an ongoing equivalent of writing, reading and retrieving (see Figure 6), [38]. The principal difference with 

simple RNN is that the nonlinear units are superseded by memory blocks in hidden layers [39]. 
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Figure 5. Recurrent neural networks layers Figure 6. RNN and LSTM blocks 

 

 

2.5.6. Generative adversarial network (GAN) 
Generative adversarial network is one of the most prominent techniques for deep generative 

modeling currently. Instead of the data distribution. Generative modeling is an unsupervised learning form of 

ML which automatically includes the discovery of regularities or patterns in input data in a way in which new 

instances which would likely have been chosen from the original dataset may be generated or produced by 

the model [40]. GANs are an intelligent process of developing a generative model by framing the problem as 

an under-controlled learning problem with two sub-models: the model Generator, which trains to produce 

new examples, and the model discriminator, which attempts to categorize examples as either genuine (real) 

or fake (generated). The two models are trained concurrently in a zero-sum contest, adversarial until the 

model of discriminator has been deceived for roughly half of the time [41].  

 

2.5.7. Adversarial autoencoder (AAE) 

The AAE is a brilliant idea to mix the autoencoder architecture with a GAN notion for adverse loss. 

The variative autoencoder (VAE) employs a similar idea except that the latent code is regulated using 

adverse loss, instead of the KL-divergence used by the VAE [42]. In variative autoencoder, a KL-divergence 

is used to match the encoded latent code with a normal distribution (or any arbitrary distribution) [43]. AAE 

substitutes this with an adverse loss if the encoder adds an extra discriminating element. Unlike GAN, where 

the generator's output is the produced data (mostly picture) and the discriminator's input is both genuine and 

phony data, AAE's generator creates a latent code and attempts to convince the discriminator that the latent 

code is sampled from the selected distribution (see Figure 7) [44]. 
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Figure 7. Adversarial autoencoder layers [44] 

 

 

2.6.  DL evaluation metrics 

It is essential to have a good evaluation metric in place to help find a classifier throughout the 

classification training. A proper assessment measure is therefore a crucial element in making a distinction 

and getting the best classifier [45]. When evaluating deep learning models, certain metrics must be used, such 

as accuracy, precision, recall, F1 score, MSE, MAE, and the AUC. In order to calculate these metrics, four 

different measures are used [46]: 

 True Positive (𝑇𝑃): is the number of positive class records classified correctly.  

 True Negative (𝑇𝑁): is the number of negative class records classified correctly.  

 False Positive (𝐹𝑃): is the number of negative class records classified wrongly.  

 False Negative (𝐹𝑁): is the number of positive class records classified wrongly. 
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2.6.1. Accuracy 
Is the percentage of correct predictions among all predictions [47], and it is calculated using (1): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

 

there are many flaws in accuracy, however, including a lack of uniqueness, a lack of discriminability, a lack 

of informativeness, and a preference for data from the majority class [45]. 

 

2.6.2. Precision 
Is the percentage of all positive results that were accurately identified [48], and it is calculated using (2). 

 

Precision =
TP

TP+ FP
 (2) 

 

2.6.3. Recall 

Is the proportion of accurately identified positive results among the total number of existing positive 

classes [48], and it is calculated using (3). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
  (3) 

 

2.6.4. F1-score 
The F1-Score is a subtle combination of precision and recall. It is interesting, even more than 

accuracy, because the number of true negatives (𝑇𝑁) is not considered [49]. A high number of true negatives 
(𝑇𝑁) will have no effect on the F1-score. It is calculated using (4). 

 

F1 =
2

P−1+ R−1 (4) 

 

2.6.5. Receiver operator characteristic (ROC)-Area under curve (AUC) 

ROC curve is a binary classification task evaluation metric. It is a probabilistic curve that plots the 

‘true positive rate’ against the ‘false positive rate’ at various threshold levels, separating the 'signal' from the 

'noise.' The area under the curve (AUC) is a measure of a classifier's ability to differentiate between classes 

which are used to summarize the ROC curve. The greater the AUC, the better the model's accuracy in 

differentiating between positively and negatively categories [50]. 

 

2.6.6. Mean absolute error (MAE) and root mean squared error (RMSE) 
MAE and RMSE are two of the most widely used metrics for evaluating the accuracy of continuously 

varying variables [51]. MAE measures the average erroneous magnitude without taking into account the 

direction of the errors. All disparities have the same weight in the test sample, so the average of the absolute 

errors between prognostication and actual observation is used [52]. It can be calculated using (5): 

 

𝑀𝐴𝐸 =  
1

𝑛
 ∑ |𝑦𝑗 − �̂�𝑗|𝑛

𝑗=1   (5) 

 

RMSE is a quadratic evaluation rule that also measures the average magnitude of the error. The difference 

between what was predicted and what was observed squared is the square root of that difference [52], It can 

be calculated using (6). 

 

RMSE = √
1

n
 ∑ (yj − ŷj)

2n
j=1

2
  (6) 

 

 

3. METHOD 

For our research we applied the following combination of the related keywords, "("deep learning" 

AND (IoT OR "Internet of Things") AND ("PV" OR photovoltaic OR "solar panel")) " that corresponds to 

the purpose of this review and obtained approximately 32 documents as a result, published from 2018 until 

September 2021 (Figure 8). Following that, we excluded some papers for the reason that they were only the 

first few pages of conference proceedings and not actual articles, and we also excluded some irrelevant 

papers due to their relevance to our research area; they concentrated on forecasting solar radiation without 
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including the maintenance context and that has no bearing on our subject. These gathered papers (see  

Table 1) were extracted from the Scopus database, which is the largest abstract and indexing database of 

peer-reviewed literature, containing publications, conference proceedings, patent records, and websites in the 

most important subject fields [53].  

 

 

 
 

Figure 8. Scopus indexed papers per year 

 

 

Table 1. Summary of reviewed literature 

Year Article Title 
Deep Learning 

Model 

Type of 

maintenance 

Anomaly 

/Goal 

Context 

/Dataset 

Best performance 

results 

2021 [54] Digital twins in solar farms: An 

approach through time series and 

deep learning 

DT: CNN and 

LSTM 

Preventive General 

anomalies 

Own collected 

data: 22427 

Samples 

Precision: 0.53 

Recall: 0.92 

AUC: 0.97 

2021 [55] Deep Learning Enhanced Solar 

Energy Forecasting with AI-

Driven IoT 

CNN and 

LSTM 

Predictive Power 

Prediction 

Own collected 

data 

RMSE (STP): 

1.30 

2021 [56] Deep Learning at the Edge for 

Operation and Maintenance of 

Large-Scale Solar Farms 

ANN Preventive Shading Own 

collected data 

RMSE<0.05 

2020 [57] Using Siamese networks to detect 

shading on the edge of solar farms 

ANN-Siamese 

Neural 

Network 

Preventive Shading Own collected 

data: 600 

samples 

F1 Score: 0.94 

2020 [58] Very Short-Term Solar Irradiance 

Forecasting at a Sub-Minute Scale 

Based on WT-Cnns 

WT-CNN Predictive Power 

prediction 

Own 

collected data 

MAE: 1.63 

RMSE: 2 

2020 [59] IOT based solar energy prophecy 

using RNN architecture 

CNN-LSTM Predictive Power 

prediction 

Own collected 

data 

MAE: 0.2 

MSE: 0.1 

2020 [60] A new architecture based on iot 

and machine learning paradigms 

in photovoltaic systems to 

nowcast output energy 

CNN-LSTM Predictive Power 

Prediction 

Opera digital 

systems 

Dataset [61] 

MAE: 274.87 

RMSE: 531.08 

2020 [62] Integrating iot devices and deep 

learning for renewable energy in 

big data system 

LSTM Predictive Power 

prediction 

Own collected 

data 

RMSE: 85.49 

2020 [63] Power Prediction via Module 

Temperature for Solar Modules 

Under Soiling Conditions 

MLP Predictive Power 

prediction 

Own 

collected data: 

800 samples 

MAE: 0.08 

RMSE: 0.10 

2020 [64] Deep Convolutional Neural 

Network for Automatic Detection 

of Damaged Photovoltaic Cells 

CNN Corrective Physical 

crack 

Own collected 

Data: 3336 

samples 

Recall: 0.74 

Precision: 0.70 

F1 Score: 0.69 

2019 [65] DA-DCGAN: An Effective 

Methodology for DC Series Arc 

Fault Diagnosis in Photovoltaic 

Systems 

DA-DCGAN Preventive Arc faults Own collected 

Data: 40 000 

samples 

Accuracy: 98.5% 

2019 [66] CNN based automatic detection of 

photovoltaic cell defects in 

electroluminescence images 

CNN Preventive Cracks and 

microcracks 

elpv Dataset 

[67] 

Accuracy: 

93.02% 
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4. FINDINGS 

These research findings in the preceding part (Table 1) will be examined in this section; first, we 

will illustrate the comparison criteria used: 

 Deep learning model: The deep learning models utilized in the mentioned papers 

 Type of maintenance: Corrective, preventive, and predictive maintenance 

 Anomaly/goal: Define the type of default detected/the main purpose of the model 

 Context/dataset: the data used to train and test the proposed deep learning model 

 Best performance results: This criterion displays the highest results for the proposed model or the used 

metrics such as accuracy, recall, precision, F1 score, MAE, MSE, AUC, or others. 

Regarding the used data in each paper, big and small datasets are used to train the DL model; some 

include thousands of entries, while others contain just a few; these entries may be realistic or synthetic, 

created by the authors [54]–[59], [62]–[65]. A number of datasets are created by researchers for their own 

study purposes, while some are taken from well-known and publicly available datasets [60], [66], such as 

“elpv-dataset”. In general, the more data needed to solve a problem, the more complex the problem is. As an 

example, training models for tasks such as class identification when there are many classes and/or little 

variation among the classes necessitates using a large number of input data. Too little training data, as is 

well-known, leads to poor approximations. With an over-constrained model, it will be difficult to learn from 

the limited training dataset, while with a model that is under-constrained, it will be much easier. An overly 

optimistic and too high variance estimate of model performance will be the consequence of using insufficient 

test data. 

From a technical perspective, almost all of the research papers used the widely-used CNN or LTSM 

algorithms [55], [62], [64], [66]. Besides some developed their own variants of the CNN or LTSM models 

[54], [55], [58]–[60], and the rest of them worked on the traditional ANN and MLP [56], [57], [63], and one 

paper worked with a GAN variant named it “DA-DCGAN” [65]. The authors applied classification classes 

ranging from 2 (binary anomaly detection) [56], [57], [64]–[66] through to 3 for the [54] (multiclass 

classification), other authors used regression methods to predict the output power of the solar plant [55], 

[58]–[60], [62], [63]. The number of model outputs in these studies matched the number of classes. For each 

of the possible classes of input data, the model produced a probability value, and the highest probability 

value was selected as the predicted class. 

In accordance with the main objectives of these research papers (the maintenance of photovoltaic 

solar panels), some are attempting to build a model able to detect any default occurring while the solar plant 

is running in order to prevent any breakdown. The first thing that stands out is that the majority of the papers 

are dealing with the power prediction [55], [58]–[60], [62], [63]. The connection between the system output 

prediction and his maintenance is not immediately apparent at first glance, but in fact, PV maintenance can 

be effectively aided by forecasting power generation: it is considered as a reference for alert thresholds, and 

more important is the stability of the electrical network, when our plant is ongrid. The shading phenomenon 

is also considered as a major factor of degradation in the solar PV industry. It is to blame for the module's 

temperature rising, resulting in a reduction in power output. The proposed models in the papers [56], [57] are 

showing good results, with an error value lower than 0.05 (RMSE). For the rest, they are specialized in the 

physical anomalies such as cracks microcracks. With the help of these models, the maintenance team could 

plan an intervention to correct the default or a modification in the operating process, for a better productivity 

in the future. 

There are a variety of metrics used by the authors to evaluate the DL models performance, and each 

one is tailored to the model that was used in that particular research. For each article, we provide the best 

resulting metric in Table 1. The most often used metric was RMSE in [55], [56], [58]–[60], [62], [63], 

followed by MAE in [58]–[60], [63], both of these metrics represent an average model prediction error in 

units of the variable of interest, although calculating the square root of the average squared errors has some 

interesting consequences for the RMSE, and since the errors are squared before they are averaged, the RMSE 

provides a relatively high weight to big mistakes, this implies the RMSE should be more helpful when big 

errors are especially undesirable. The previous research used other metrics such as Precision and Recall [54], 

[64]; where the precision focuses on how precise/accurate the model is at predicting the positive outcomes, it 

is a useful metric to evaluate when the cost of false positive is significant, and the Recall essentially 

determines how many of the actual positives the model obtain via classifying it as Positive (True Positive), it 

is a useful metric to determine the best model if there is a significant cost tied with false negative. Where 

[57], [64] used the harmony and a balance of these last two metrics; the F1 Score. [65], [66] evaluated their 

DL models using the accuracy which is the most widely used classification model evaluation metric for its 

simplicity of use and understanding, where when it comes to this metric, many true negatives contribute very 

little, whereas false negatives or false positives usually incur the costs, so the F1 Score may be a better 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Review on maintenance of photovoltaic systems based on deep learning and internet … (Younes Hammoudi) 

1069 

indicator to use if we want to strike a balance between precision and recall and there is an uneven distribution 

of classes, and in one paper [54] the authors evaluated their model using the AUC metric in addition to other 

metrics such as precision and recall. Most of the reviewed papers used this type of evaluation (a mix of 

measures) to evaluate their models. We have seen that sometimes metrics have to be compromised for each 

other as showed in the paper [64]. Indeed, the model has a good performance regarding the recall metric 

(0.90), but the precision metric is showing a lower value (0.65).  

We notice that comparing papers is difficult, if not impossible since different metrics are used for 

different tasks, taking different models, datasets, and parameters into consideration. As a result, the reader 

should proceed with care while considering our opinions in this area. Another disadvantage of these models 

is the number of defaults that are discovered. These proposed methods are relatively performant when they 

are dealing with one default and this particularity could not encourage the implementation of this model in 

the maintenance industry.  

 

 

5. CONCLUSION 

Ensuring good performance over long periods of time is only possible by keeping an eye on and 

maintaining a PV power plant. To estimate the degradation of PV cells deep learning approaches were used. 

The goal of this research was to survey the trends in PV system maintenance based on deep learning and IoT 

during the last three years and look for ways to combine the two for fault detection and diagnostics in PV 

facilities in remote areas. According to our analysis, almost all of the studies used the well-known CNN or 

LTSM algorithms, and as a precaution, some researchers developed a model that can detect defaults that 

occur while the solar plant is operating, and most of them specialized in physical anomalies. Even while 

these proposed solutions are relatively performant when dealing with a single default, their performance may 

not be enough to entice the maintenance sector to use them. In this regard, there is a need that further 

research should focus on dealing with multiple defaults at the same time using the same model. This is the 

direction of our future works.  
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