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Abstract 
In the computer network, bondage number is one of the most important parameters to measure 

the control theory of the computer network, denoted by ( )b G  for a network graph G . So computing ( )b G  

of some particular known gr-aphs is extremely valuable. In this paper, we determine 
,2( )nb S  and the 

precise lowerbound of  ( )b G  of  ( , )n k -star graphs, denoted by 
,n kS , followed by some relative 

conclusions of n -star, denoted by 
nS  as the isomorphism of 

, 1n nS  . 
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1. Introduction 
It is widely known that bondage number is one of the most important parameters to 

measure the resilience of graphs of computer network. For the particular known graphs, so far 
the results of this aspect are a few such as bondage number of de Bruijn and Kautz digraphs 
[9], bondage number in oriented graphs [10]. Especially, Huang and Xu [11] got a good lower-
bound and a good upper-bound of bondage number of vertex-transitive graphs, but the precise 
lower-bound of bondage number of ( , )n k -star graphs (vertex-transitive graphs) and 

,2( )nb S  can 

not be got by their results. Next, we see conception of bondage number: 
Definition 1.1. Let G  be a graph, and S  be a nonempty subset of ( )V G , then S  is one 

dominating set of G  if all nodes of G  is either in S , or adjacent to a node of S . Moreover, we 

call that S  is dominating number of G  if S  is minimum in all dominating sets of G , denoted 

by ( )G . 

Definition 1.2. Let G  be a undirect graph, and B  be a nonempty edge-subset of ( )E G , 

then minimum B  is bondage number of G  if ( ) ( )G B G   , denoted by ( )b G . 

In a network graph, predecessors have shown that computing ( )b G  are extremely 

difficult. So computing ( )b G  of some particular known graphs is very valuable. For example, the 

( , )n k -star graphs was first proposed in 1995 by W.K Chiang et al [1]. Because of good 

topological properties of ,n kS , its many properties have been researched such as diameter and 

connectivity [1, 8], pancyclicity [2], (1) ( )s G  and (2) ( )s G  [3-7], fault hamiltonicity and fault 

hamiltonicity connectivity [4, 12], independent number and dominating number [13] and so on. 
In this paper, we determine ( )b G  of ( , )n k -star graphs, so that can get ( )nS  and the good 

lower-bound of ( )nb S  of n -star, denoted by nS  as the isomorphism of , 1n nS  . 
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2. Preliminaries 

For given integers n  and k , where 1 1k n   , let  1,2,....,nJ n  and let (P n  

, )k  be the set of k -permutations on nJ  for1 1k n   , that is,   1 2, { ... kP n k p p p

: , ,1 }i n i jp J p p i j k     .  

Definition 2.1. The ( , )n k -star graph, denoted by ,n kS , is an undirected graph with 

vertex-set  ,P n k . The adjacency is defined as follows: a vertex 1 2... ...i kp p p p  is adjacent to 

a vertex 

(1) 1 2 1 1 1i i kp p p p p p   , where 2 i k  ( swap 1p  with ip ). 

(2) 2... kxp p , where  :1n ix J p i k    ( replace 1p  by x ). 

Figure 1 shows a (4,2)-star graph 4,2S . 

 
 

 
 

Figure 1. The Structure of a (4,2)-star Graph 4,2S  

 
 

The edges of type (1) are referred to as i -edges ( 2 i k  ), and the edges of type (2) 
are referred to as 1-edge. The vertices of type (1) are referred to as swap-adjacent vertices, and 
the vertices of type (2) are referred to as unswap-adjacent vertices. We also call i -edge as 

swap-edge, and call 1-edges as unswap-edge. Clearly, every vertex in ,n kS  has ( 1)k   swap-

adjacent vertices and ( )n k  unswap-adjacent vertices. Usually, if 1 2... kv p p p  is a vertex in

,n kS , we call that ip  is the i -th bit for each i   1, 2,...k . 

By Definition 2.1, we know , 1n n nS S   and ,1n nS K  where nS  is n -star graph and 

nK  is complete graph with order n . So ,n kS  is a generalization of nS . It has been shown by 

Chiang and Chen [1] that nS  is an  1n -regular,  1n -connected vertex-transitive graph 

with  ! !n n k  vertices. 

The following content, we mainly determine the dominating number of ,n kS  for obtaining 

main results of Section 3. Since ,1n nS K  , we only consider the case 2k   in the following 

discussion. 

Lemma 2.2.    
 ,

1 !

!n k

n
S

n k






 for 2 1k n   . 

Proof. Let   ,n kS V S  be a minimum dominating set of ,n kS , then ,( )n kS S  by 

Definition 1.1. By Definition 2.1, we have known that ,n kS  is a ( 1)n  -regular graph, so each 
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vertex of S  can at most dominate ( 1)n   vertices in ,n kS S . If ,( )n kS   ( 1)!
1

( )!

n

n k





 then 

S  can at most dominate  ( 1)!
1 1

( )!

n
n

n k

 
   

 vertices in ,n kS S . Thus, we can get: 

  

 ,

,

( 1) ! ( 1) !
( ) 1 1 1

( ) ! ( ) !

! !
( )

( ) ! ( ) !

n k

n k

n n
S V S S n

n k n k

n n
n V S

n k n k

  
         

   
 

 

 
It is contrary to the definition of dominating number. □ 

Theorem 2.3. 
,

( 1)
( )

( )n k

n
S

n k
 




！

！
 for 2 1k n   . 

Proof. By Lemma 2.2, we have shown ,

( 1)!
( )

( )!n k

n
S S

n k
 

 


. Thus, by Definition 1.1, 

Theorem 2.3 can be proved if we can construct a dominating set S , so that S   ( 1)!

( )!

n

n k




. 

We now split ,( )n kV S  into three vertex-subsets: n ( 1, 1)},nV P n k    ｛  nV   

{ ( 1, )}P n k     and 1 2 1 1 1{ , 2}.n a a k i nV p p p np p p J a       It is easy to verify 

that nV , nV   and nV   have no intersection, and ' "
n n ,( )n n kV V V V S     !

( )!

n

n k
 since 

'
n

n-1 ! ( 1)
,

n-k ! ( 1)n

n
V V

n k


 

 
（ ） ！

（ ） ！
 and "

n

( 1)!
( 1)

( )!

n
V k

n k


 


. 

Let 1 2p kp p  be any one vertex of nV , then all neighboring-edges of 1 2p kp p  must 

have one unswap-edge connected to 2 knp p  of nV . 

Let 1 2 1 1a a kp p p np p    be any one vertex of nV   , then all neighboring-edges of 

1 2 1ap p p n  1a kp p   must have one swap-edge connected to 2 1 1 1a a knp p p p p    of nV . 

Thus, we can let nV S , and n

( 1)!

!

n
V

n k




（ ）
. □ 

Corollary 2.4. In n-star graph nS , ( ) ( 1)!nS n   . 

Corollary 2.5 If let 1 2 1 \ }( )x k j n nV xp p p p J x x J  ｛ , then each xV  is a 

minimum dominating set of ,n kS  for 1, 2, ,x n  . 

Lemma 2.6. If S  is a minimum dominating set of ,n kS , then any two vertices of S  

aren't adjacent in ,n kS , and any two neighboring-vertices of S  aren't common. 

Proof. Let 1v  and 2v  be any two vertices of S , if 1v  and 2v  are adjacent in ,n kS , then 

1v  and 2v  can at most dominate (2 4)n   vertices of ,n kS S  since either 1v  or 2v  only 

dominate ( 2)n   vertices of ,n kS S . Thus, we can get that S  can at most dominate 

[( 2)( 1) 2 4]S n n     vertices of ,n kS S , and can get (| | 2S S   

   , ,)( 1) 2 4 2 2n k n kn n n S V S V S        , a contradiction. 
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If there exist two neighboring-vertices of S  who are common, then S  can at most 
dominate  1 1S n    vertices of 

,n kS S Therefore, we have ( 1) 1 | (S S n V     

 , ,) | 1n k n kS V S  , a contradiction. □ 

 
 

3. The Important Results of Bondage Number of ,n kS  

In this section, we mainly consider the bondage number of ,n kS .. 

Lemma 3.1. If let  1 2 1{ \ }x k j n nV xp p p p J x x J   , then:  

(a) Any two vertices of  x nV x J  aren't adjacent. 

(b) Any two set xV  and  , ,y nV x y J x y   have no intersection, and  ,n kV S   

1 2 nV V V  . 

(c) Any one vertex of  x nV x J  has exactly a neighbor respectively in (y nV y J  \ )x . 

Proof. In fact, the conclusion (a) is the same as Lemma 2.6. By Definition 2.1, it is easy 

to verify that (b) is correct. Next, we prove conclusion (c). Let 2 3 1x kv xp p p    be any one 

vertex of xV . If element y  isn't in xv , then xv  is only adjacent to 1 2y kv yp p p   of yV  by a 

swap-edge x yv v . If element y  is in xv , i.e the t -th bit tp y  for each \{1}kt J , then xv  is 

only adjacent to 1 2 1y kv yp p p    of yV  by an swap-edge x yv v , and the t -th bit tp x  of yv
. □ 

Corollary 3.2. The induced subgraph , [ ]n k x yS V V  of any two set xV  and ( ,yV x y  

, )nJ x y    is a bipartite graph, denoted by [ , , ]x xy yV E V . Moreover, xyE  is a unique 

complete matching of , [ ]n k x yS V V . 

Lemma 3.3. ,2nS  has exactly n  minimum dominating sets, which are {xV xp p  

\ }( )n nJ x x J . 

Proof. By Corollary 2.5, we only prove no other dominating sets except 1 2, ,..., nV V V . 

Let X be a minimum dominating set and different from  X nV x J , and let nonempty 

,( , 2 , )
m mi i b m nX X V m J b n i J     and

m ti iX X  for m t  by the conclusion (b) 

of Lemma 3.1. 

By the conclusion (a) of Lemma 3.1 and Lemma 2.6, each vertex of 
1 1i iV X  has 

exactly one neighbor in 
1i

X X  since 
1i

V X  must be dominated by 
1i

X X  . By Lemma 2.6, 

we know that all neighboring-vertices of 
1 1i iV X aren't common, so we have 

 
   

1 1 1 ,2

1 !

2 !i i i n

n
X X V X S

n



    


. Now, let 

1i
U  be a subset of 

,2
(

nSN  
1 1

)i iV X , and 

denote that neighbors of each vertex of 
1 1i iV X only have one in 1i

U
, then 

1 1i iX X U  , 

clearly, 
1 1 1i i iU V X  .  
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Next, by the proof of Theorem 2.3, we let  
1 1{ , 2 , }iV P n i      , 

1 1{iV pi  

1\ }np J i  and 
1 1 1 1i i i iV X X X    , where 

1 1 1i ii X XU U U   , and let 
1i

XU   be in 
1i

V  ,   
1i

XU   

be in 
1i

V  , clearly, 
11i

X iU X   and 
11i

X iU X  . 

If 
1i

XU    , then neighboring-vertices of 
1i

X   in 
1i

V   can't be dominated since it is easy 

to verify 
1 1,2 ,2n i n iS V S V          , a contradiction. 

If 
1i

XU    , then neighboring-vertices of 
1i

X   in 
1i

V   can't be dominated, a 

contradiction. 

If 
1i

XU     and 
1i

XU    , then 
1i

XU   can exactly dominate neighboring-vertices of 
1i

X   

and 
1i

X   in 
1i

V   except 
1i

X  . Therefore, we have: 

  

         
1 1 1 1 11

2 2 3 2 2
iX i i i i iU n X n X n X n X n X                    (1) 

 
In addition, we have known: 
 

  
 1 1 1 1

1 !
1

2 !i i i i

n
X X X V n

n


      


                             (2) 

 
By (3.1) (3.2), we can get  

1 1
1 1i iX n X n     , a contradiction for 

1
0iX    and 

1
0iX  . Thus, X  does not exist. □ 

Theorem 3.4. 
,( )

2n k

n
b S     

, and 
,2( )

2n

n
b S     

 for 3n  . 

Proof. Let B  be a minimum bondage set of ,n kS . If 
,( )

2n k

n
b S     

, then there at least 

exists a xV , all neighboring-edges of which aren't in B  such that xV  is still a minimum 

dominating set of ,n kS  by Corollary 3.2 since each edge of B  can exactly connect two 

elements of { : }x nV x J , that is, 2 B n , a contradiction. So we have 
,( )

2n k

n
b S     

. 

Next, we construct a set B  such that 
,2( )

2n

n
B b S      

. Let xye  be any one edge of 

,2[ ]n x yS V V , then xy xye E  by Corollary 3.2. Now, we let   12 34 1, , , }n nB e e e    for even 

n , or      12 34 2 1, 1, , , , }n n n nB e e e e     for odd n . It is easy to verify that 

,2 ,2( ) ( ) 1n nS B S     by Corollary 3.2 and Lemma 3.3. □ 

 
 

4. Conclusion 

In fact, we conjecture 
,( )

2n k

n
b S     

, but need to find a suitable method for proving the 

conjecture. 
In any case, in Graph Theory, it is rather difficult to compute bondage number of the 

graphs. Up to now, the conclusions in this respect are confined only to a few specific graphs 
such as cube, de Bruijn and Kautz digraphs and so on. Thus, the paper is very valuable since it 
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solves bondage number of ( , 2)n -star graphs and the precise lower- bound of bondage number 

of ( , )n k -star graphs and n -star graphs. 
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