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Abstract 
 The Vehicle Routing Problem (VRP) is an important management problem in the field of physical 

distribution and logistics. Good vehicle routing can not only increase the profit of logistics but also make 
logistics management more scientific. The Capacitated Vehicle Routing Problem (CVRP) constrained by 
the capacity of a vehicle is the extension of VRP. Our research applies a two-phase algorithm to address 
CVRP. It takes the advantages of Simulated Annealing (SA) and ant colony optimization for solving the 
capacitated vehicle routing problem. In the first phase of proposed algorithm, simulated annealing provides 
a good initial solution for ant colony optimization. In the second phase, Iterative Local Search (ILS) method 
is employed to seeking the close-to-optimal solution in local scope based on the capacity of the vehicle. 
Experimental results show that the proposed algorithm is superior to original ant colony optimization and 
simulated annealing separately reported on partial benchmark problems.   
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1. Introduction 
The Ant Colony system (ACS) [1] is a meta-heuristic which is inspired by the trail 

following behavior of real ant colonies. One of the most efficient Ant Colony Optimization (ACO) 
based implementations is based on ACS, which introduced a particular pheromone trail 
updating procedure for intensifying the search in the neighborhood of the best computed 
solution.Recently, some improved ant colony algorithm was used to solve the problems of error 
compensation for a high-precision numeral control machining system [2] and fuzzy controller 
problem of the autonomous parking [3].  

Vehicle Routing Problem (VRP) is an NP-complete problem and has important practical 
value. More and more of the VRP research is attention because many real-life problems can be 
attributed to VRP. The capacitated vehicle routing problem (CVRP) is one of the elemental 
problems in supply chain management. The objective of CVRP is to provide each vehicle with a 
sequence of delivers so that all customers are serviced, and the traveling cost of vehicles is 
minimized [4–7]. It is hard to solve this problem directly when the number of customers is large 
[8, 9]. Silvia Mazzeo et al. [10] have improved Capacitated Vehicle Routing Problem (CVRP) by 
means of an ACO algorithm. A deoxyribonucleic acid computing and modified Adleman-Lipton 
model accelerates the search on large nodes CVRP in a decentralized model [11]. 

Local search is a generally applicable approach that can be used to find approximate 
solutions to hard optimization problems. The basic idea is to start from an initial solution and to 
search for successive improvements by examining neighboring solutions. In this paper, we 
apply iterated local search (ILS) [12] in second stage. ILS is a very simple and powerful meta-
heuristic that has proved to be the best performing approximation algorithms for the well known 
Traveling Salesman Problem [12]. 

Nevertheless, most solutions obtained are worse than the best solution found so far. In 
this paper, we create a hybrid algorithm (HACS-SA) that combines the strengths of both search 
heuristics. It has both the advantage of SA, the ability to find feasible solutions, and that of 
ACO, the ability to avoid premature convergence and then search over the subspace. Finally 
our HACS-SA is tested by partial benchmark problems and compared the performance with 
original ant colony optimization and simulated annealing separately. 
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The paper is organized as follows. Section 2 introduces the CVRP and the solution 
construction mechanism used by the ACS. Section 3 presents hybrid HACS-SA algorithm. In 
Section 4 we provide experimental results of HACS-SA on a set of benchmark problems and 
compare to the performance of ACS and SA. We conclude in Section 5 with a brief summary of 
the contributions of this paper.  

 
 

2. CVRP and ACS 
2.1. Capacity Vehicle Routing Problem 

The vehicle routing problem deals with a single depot distribution system servicing a set 
of customers using a homogeneous fleet of vehicles. It is a very complicated combinatorial 
optimization problem that has been worked on since the late fifties, because of its central 
meaning in distribution management. 

The vehicle routing problem can be described as follows [13]: n customers must be 
served from a (unique) depot. Each customer i ask for a quantity qi of goods. A fleet of v 
vehicles, each vehicle a with a capacity Qa, is available to deliver goods. A service time si is 
associated with each customer. It represents the time required to service him/her. Therefore, a 
VRP solution is a collection of tours.  

CVRP is the basic version of the VRP where the vehicles have limited carrying capacity 
of the goods that must be delivered. In other words, CVRP is similar to VRP, but CVRP has an 
additional constraint that every vehicle must have uniform capacity of a single commodity. Since 
CVRP contains one or more TSP as subproblems, it is more difficult to solve than TSP. 

The classic CVRP can be described as follows: N customers geographically dispersed 
in a planar region must be served from a unique depot. Each customer asks for a quantity qi 
(i=1, 2,…, n) of goods. The transport cost from node i to node j is cij. m vehicles with a fixed 
capacity Q are available to deliver the goods stored in the depot. Each customer must be visited 
just once by only one vehicle. The objective of the problem is minimizing the total cost of all 
routes without violating the individual capacity of each vehicle. The depot is denoted by i=0. The 
model can be written as follows: 

 

(1)
m n n

k
ij ij

k=1 j=0, j i i=0

min c x


  
   

 

k
ij

m n
k

ij
k=1 j=1

1 if vehicle k goes from i to j
x = (2)

0 otherwise

            s.t. x m i = 0






 

 
n n

k k
ij ji

j=1 j=1

x = x 1 i = 0 k {1,2,...,m} (3)   ，

 
 

m n
k

ij
j=1 j=0, j i

x = 1 i {1,2,...,n} (4)


 
 

 
m n

k
ij

j=1 i=0,i j

x = 1 j {1,2,...,n} (5)


 
 

 
n n

k
i ij

i=1 j=0, j i

d x Q j {1,2,...,n} (6)  
≠  

 
The objective function Equation (1) is minimizing the total distance traveled. Constraint 

Equation (2) assures the number of vehicles originating from the depot is not more than m. 
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Constraint Equation (3) states that each of the k vehicles has to leave and go back to the depot. 
Constraints Equation (4) and Equation (5) assure that each customer is visited exactly once. 
Constraint Equation (6) is the capacity constraints. 

 
2.2. Ant Colony System 

ACS is based on the way real ant colonies behave to find the shortest path between 
their nest and food sources. It simulates the described behavior of real ants to solve 
combinatorial optimization problems with artificial ants. To solve the VRP, the artificial ants 
construct vehicle routes by successively choosing cities to visit, until each city has been visited. 
Whenever the choice of another city would lead to an infeasible solution for reasons of vehicle 
capacity or total route length, the depot is chosen and a new tour is started. 

This heuristic uses a population of m agents which construct solutions step by step. 
When all the ants have constructed their tour, the best solution is rewarded so as to encourage 
the identification of ever better solutions in the next cycles. 

Construction of vehicle routes: This process is responsible for the construction of 
new solutions. This is achieved using probabilistic stepwise solution construction. ACS goal is to 
find a shortest tour. In ACS m ants build tours in parallel, where m is a parameter. Each ant is 
randomly assigned to a starting node and has to build a solution, that is, a complete tour. A tour 
is built node by node: each ant iteratively adds new nodes until all nodes have been visited. 
When ant k is located in node i, it chooses the next node j probabilistically in the set of feasible 
nodes Ni

k (i.e., the set of nodes that still have to be visited). The probabilistic rule used to 

construct a tour is the following: with probability q0 a node with the highest 
α β k

ij ij i[τ  ]  [η ] , j  N
 

is chosen, while with probability (1−q0 ) the node j is chosen with a probability pij proportional to
α β k

ij ij i[τ  ]  [η ] , j  N
. 

With Ω = {vj ∈ V|vj is feasible to be visited} ∪ {v0}, city vj is selected to be visited after 
city vi according to a random-proportional rule [14] that can be stated as follows: 
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And IN j represents the number of customer C j which has not been selected. 
Pheromone trail update: Once solutions have been evaluated, they can influence the 

pheromone matrix through a pheromone update process. After an artificial ant k has constructed 
a feasible solution, the pheromone trails are laid depending on the objective value Lk. For each 

arc (vi, vj) that was used by ant k, the pheromone trail is increased by
k
ij kΔτ  = 1/L

. In addition to 
that, all arcs belonging to the so far best solution (objective value L∗) are emphasized as if σ 
ants, so-called elitist ants had used them. One elitist ant increases the trail intensity by an 
amount ∆τij

∗ that is equal to 1/L∗ if arc (vi , vj ) belongs to the so far best solution, and zero 
otherwise. Furthermore, part of the existing pheromone trails evaporates (ρ is the trail 
persistence) [15]. Thus, the trail intensities are updated according to the following: 
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Wwhere m is the number of artificial ants. 
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3. Hybrid Algorithm HACS-SA 
3.1. Applied SA in the First Phase 

Metropolis et al. introduced the original concept of simulated annealing (SA) [16]. 
Kirkpatrick et al. employed SA in solving the problems of combinatorial optimization [17]. 
Recently, Li et al. [18] combined ACO and SA algorithm to address the dual resource 
constrained job shop scheduling problem. 

SA is a local search technique that has been successfully applied to many NP-hard 
problems. It makes use of search strategies where cost-deteriorating neighborhood solutions 
may possibly be accepted as candidates in the search process. For SA, it randomly generates 
the new solution by changing the current solution and uses an energy function in accepting 
worse-fitness solutions so as to possibly move out of the local optimum. The Boltzmann 
distribution is used to decide whether to accept worse fitness solutions or not, and it is defined 
as [19]: 

 
(-∆E/KT)

P(∆E) = e                       (9) 
 
Where P(∆E) is the Boltzmann probability, ∆E is the difference between the fitness of 

new solution and the original solution, K is the Boltzmann constant, T is the controlled 

temperature, and 
(-∆E/KT) e is the Boltzmann factor. 

The P function is usually chosen so that the probability of accepting a move decreases 
when the difference∆E increases-that is, small uphill moves are more likely than large ones. 
However, this requirement is not strictly necessary, provided that the above requirements are 
met. 

In SA, based on the profile of the search path, we use an adaptive cooling schedule that 
adjusts the temperature dynamically. Such adjustments could be enhancing the possibility of 
reheating. The new generated solution is regarded as the next solution only when the value of 

(-∆E/KT) e is greater than a random value generated from a uniform distribution in the interval of 
[0, 1]. Thus, the solution is always updated. When the new solution is not better than its 
ancestor, the solution may still take place of its ancestor in a random manner. 

 
3.2. Applied ILS in the Second Phase 

The essence of the iterated local search meta-heuristic can be given in a nut-shell: one 
iteratively builds a sequence of solutions generated by the embedded heuristic, leading to far 
better solutions than if one were to use repeated random trials of that heuristic[20]. Many 
authors have lead to many different names for iterated local search like iterated descent [21, 
22], large-step Markov chains [12], etc. But, there are two main points that make an algorithm 
an iterated local search: (i) there must be a single chain that is being followed (this then 
excludes population-based algorithms); (ii) the search for better solutions occurs in a reduced 
space defined by the output of a black-box heuristic. In practice, local search has been the most 
frequently used embedded heuristic, but in fact any optimizer can be used, be-it deterministic or 
not. 

ILS is a very simple and powerful stochastic local search method that has proved to be 
among the best performing approximation algorithms for the well-known Traveling Salesman 
Problem (TSP) [23] and a number of other problems [24]. The essential idea of ILS is to perform 
a biased, randomized walk in the space of locally optimal solutions instead of sampling the 
space of all possible candidate solutions. This walk is build by iteratively applying first a 
perturbation to a locally optimal solution, then applying a local search algorithm, and finally 
using an acceptance criterion which determines to which locally optimal solution the next 
perturbation is applied.  

To apply an ILS algorithm, basically three procedures have to be specified. Given the 
current s0, these are a procedure Perturbation, that perturbs the current solution s leading to 
same intermediate solution s', a procedure LocalSearch that takes s' to a local optimum s'', and 
an AcceptanceCriterion that decides from which solution the next perturbation step is applied 
[25]. 
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3.3. The Proposed Algorithm 
In HACS-SA, Equation (7) and Equation (8) are used to construct solutions and update 

pheromone trails. In implementation, the value of τmin is considered as  
min

best

1
τ  =  

2 N L  where N is 
the number of customer [26]. After updating pheromone trails, the Iterative local search is 
performed to find the best solution. The procedure of HACS-SA can be described as following: 

 
Apply SA to generate the initial best solution: 

Set parameters: T,γ,m, M. 
If( random() < P(∆E)) 
Snew:=Sold  
 While (not matched for the termination condition) do 

Place each ant on a randomly selected node 

Construct CVRP’s route by Eq. (7) 
//Apply ILS to Improve the CVRP solution 

Generate some initial solution s0 
     s = LocalSearch(s0) 
    repeat{ 

         s' = Perturbation(s,history) 

         s''= LocalSearch(s') 

         s = AcceptanceCriterion(s, s'',history) 

        }until termination condition met 

Update the pheromone matrix by Eq. (8) 

End 

 
 

4. Experimental Results 
In order to verify the effectiveness of HACS-SA, 12 instances of CVRP benchmark 

problems are selected from Augerat Set A (instances A32k5, A54k7, A60k9, A69k9 and 
A80k10), Augerat Set B (instances B57k7, B63k10 and B78k10) and Christofides and Eilon 
(instances E76k7, E76k8, E76k10 and E76k14). These include the best-known solutions to 
each problem. These problems range from 32 customers to 80 customers and from 5 vehicles 
to 14 vehicles for the solution. For each instance of the datasets, the number of customers is 
given by the first number on the instance name. The main difference between these sets of 
problems is their tightness (the ratio between demand and capacity) and the location of 
customers. 

Experiments were run on a Pentium IV, 2GB of RAM, 2.8 GHz processor. Solutions are 
then averaged for each problem type and the result is reported in Table 1. We used n=15 
artificial ants and set α= 1, q0 = 0.8, β = 2 and ρ= 0.1. For all problems maximum iteration times 
are m=30. 

It is noted that the parameters of ACS and SA are set as the proposed algorithm. 
Furthermore, we stop these algorithms after m=30 continuous iterations if no improved solutions 
are found. 

For large-scale benchmark problems, these instances are kelly01∼kelly20 taken from 
Toth and Vigo [27]. Each instance is solved 15 times, and the best one among 15 runs is taken 
as the solution obtained [28]. The column Optimum indicates the best known solution which 
comes from Reimann [29]. 

The simulation results are listed in Table 1 and 2. From Table 1 and 2, HACS-SA has 
better performance than ACS and SA. In Table 1, we present the results achieved by HACS-SA. 
The table shows the best solutions found by the proposed algorithm as well as the averages of 
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the best solution found in each of the 30 runs. The column Optimum indicates the best known 
solution when our research started. The results reveal that HACS-SA was able to find the better 
solutions then ACS and SA for all instances. An interesting point is that HACS-SA was able to 
find best solutions (instances A32k5, A54k7, A69k9, B78k10 and E76k8). 

 
 

Table 1.  Comparisons between HACS-SA and other Approaches for 12 Instances 
Problem Optimum HACS-SA ACS SA 

A32k5 784 784 792 795 

A54k7 1167 1167 1180 1197 

A60k9 1358 1365 1375 1389 

A69k9 1167 1167 1167 1173 

A80k10 1764 1776 1813 1842 

B57k7 1153 1159 1163 1177 

B63k10 1496 1507 1534 1534 

B78k10 1266 1266 1275 1315 

E76k7 682 687 707 707 

E76k8 735 735 735 748 

E76k10 832 846 861 867 

E76k14 1032 1037 1043 1053 

 
 
Form Table 2, HACS-SA also has the better solutions than ACS and SA. The results 

reveal that HACS-SA was able to find the better solutions (instances Kelly01, Kelly10, Kelly17 
and Kelly19) then ACS and SA. In summary, HACS-SA outperforms these existing algorithms 
for CVRP. 
 
 

Table 2. Comparisons between HACS-SA and other Approaches for Large-scale Instances 
Problem Optimum HACS-SA ACS SA 

Kelly01 5627.54 5627.54 5723.44 5846.28 

Kelly02 8447.92 8717.36 8717.36 8789.4 

Kelly03 11036.22 11470.4 11476.1 11615.1 

Kelly04 13624.52 14487.1 14556.74 13973.0 

Kelly05 6460.98 6546.18 6548.8 6546.19 

Kelly06 8412.8 8674.74 8702.46 8755.48 

Kelly07 10195.56 10650.5 10713.7 10706.8 

Kelly08 11663.55 12170.92 12188.4 12347.6 

Kelly09 583.39 583.79 603.64 603.01 

Kelly10 742.03 742.03 775.9 779.80 

Kelly11 918.45 926.7 961.47 968.80 

Kelly12 1107.19 1122.44 1191.19 1193.7 

Kelly13 859.115 875.13 895.47 893.65 

Kelly14 1081.31 1102.9 1131.6 1137.63 

Kelly15 1345.23 1369.70 1404.84 1409.70 

Kelly16 1622.69 1638.10 1726.6 1741.1 

Kelly17 707.79 707.79 726.95 731.18 

Kelly18 998.73 1017.65 1038.50 1044.7 

Kelly19 1366.86 1366.86 1425.6 1431.48 

Kelly20 1821.15 1823.15 1919.6 1924.16 
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5. Conclusion 
In this paper, a hybrid ant colony system is proposed for CVRP. It takes the advantages 

of simulated annealing and ant colony optimization. Twelve selected instances and twenty 
large-sized benchmark instances are used to verify the performance of the proposed algorithm.  
In two sets of benchmark instances, HACS-SA finds nine solutions which are equal to the best 
solutions found so far in literature. 

Future work in this area may be dedicated to apply the proposed algorithm to further 
improve the solutions obtained through ACO algorithm. Another future direction the HACS-SA 
can be used to solve the vehicle routing problems with different limitation conditions. 
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