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 Blind people present dificulties for reaching objects of interest in the daily 

life. In this sense, the integration of a path planning module for assisting 

blind people in purposeful navigation is noteworthy. In this work, we present 

an algorithm that leverages the high capability of an embedded computer 

with graphics processing unit (GPU) NVIDIA Jetson TX2 for computing 

optimal paths to objects of interest. The algorithm computes the optimal path 

to the objective, considering changes in the environment and changes in the 

position of the user. The algorithm is efficient for computing new paths 
when the environment changes by reusing parts of previous computations. In 

order to compare the performance, the algorithms were implemented and 

evaluated in MATLAB, C++ and CUDA, for different size of the grid and 

percentage of unknown obstacles. We found that the implementation on 
GPU has a speed up of 20 times W.R.T the implementation in C++ and more 

than 400 times W.R.T the implementation in MATLAB. These results boost 

us to integrate this module to our main system based on a stereo camera and 

a haptic belt and so provide to the user assistance in purposeful navigation at 
real time. 
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1. INTRODUCTION 

People with severe visual impairment, especially the ones with total loss of sight, struggle to move 

and carry out activities in unfamiliar environments [1], which reduces their opportunities in education, work, 

health, and social activities, affecting considerably their quality of life. Purposeful navigation consists in 

setting a destination and computing a path to guide the user to the target. There are few systems that provide 

assistance to blind people in purposeful navigation, like [2]-[6]. Some reasons for this shortage are listed 

next. i) These applications require to process dense data at real time, so a computer with high computational 

capabilities is needed; ii) These applications require that the user moves and carries the hardware, so the 

computer must also be portable; iii) These applications require complex algorithms to localize in indoors 

without the help of global positioning system (GPS) (like the ones presented in [7]-[9]), detect static and 

dynamic obstacles, and build incrementally a representation of the environment; iv) Until few years ago, the 

algorithms for object detection were not efficient. With the advent in the last years of advanced algorithms of 

artificial intelligence applied to computer vision (like the ones presented in [10]-[12]), efficient modules for 

object detection than run on graphics processing unit (GPU) have been plausible; v) Most algorithms for path 

planning were focused on video games and driverless vehicles (like the ones presented in [13]-[16]), 

especially due to economic interests. 

https://creativecommons.org/licenses/by-sa/4.0/
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These difficulties have been overcome, due to advances in embedded computers with high 

capabilities, in vision sensors, and in efficient algorithms of computer vision. Moreover, more researchers are 

interested in developing these assistive tools and more funds are available. Next, we present outstanding 

systems for assisting blind people to navigate safely in unknown environments and that include a module of 

path planning for guiding them to objects of interest. 

In the paper, Lee and Medioni [2] consists of a glass mounted RGBD camera with inertial 

measurement unit (IMU) sensors, a laptop carried by the user in the back that runs the software at real time, 

and a vest-type interface with four vibration motors. It estimates the position of the camera with visual 

odometry, segments the floor using normal vectors and random sample consensus (RANSAC), creates a 3D 

voxel map and a 2D traversable map, and guides the user to objects of interest in dynamic indoor 

environments. An optimal path is computed in the 2D map using D*Lite algorithm [17]. Audio and haptic 

feedback is delivered to the user while he/she can specify the destination using a smart-phone application.  

In the paper, Islam et at, [3], an indoor navigation system for assisting blind people is described. 

The system consists of a cap with IR receivers, an Arduino Nano for processing data, a headphone for the 

feedback with voice commands and an ultrasonic sensor for detecting obstacles. The experiments were 

carried out in a room with 16 IR transmitters that allow to know the position of the user. The system loads a 

grid of the room that defines free and occupied cells. The user can define the destination cell through a braille 

keypad. After defining the destination cell, the system finds a path to it, with a simple algorithm that 

generates non optimal paths. 

The CCNY smart cane [4] is based on the Google Tango software [18] that runs on a mobile device 

(the phone/tabled hybrid Lenovo Phab2 with integrated 3D depth sensor, gyroscope and accelerometers), 

mounted on the user’s chest. It provides simultaneous localization and mapping (SLAM), has the ability to 

remember key visual features such as doors and rooms (stored in an area description file (ADF)) and is able 

to find objects by utilizing IR sensors. The system plans a path using A* search algorithm [19] and guides a 

visually impaired person to objects of interest in indoor environments with both haptic (two vibrating motors 

mounted on the white cane) and audio feedback. For an easier guidance the iterative end-point fit algorithm 

[20] is used, so the user receives information of the rotation before walking straight.  

The wearable system [5] presents a planner that combines static and dynamic planning, that runs at 

real time. It consists of a binocular camera for obstacle detection, a GPS/inertial navigation system for pose 

estimation in outdoors, a laptop, and a headset. In global planning, a local target is determined by aiming-

tracking to the global path for each frame. In local planning, an improved dynamic weighted A* algorithm 

[21] is implemented. Moreover, an autoregressive model predicts the position of dynamic obstacles with 

changing acceleration. The proposed algorithm produced a smaller number of expansion nodes than A* in 

both static and dynamic environments.  

In the paper, Zhang and Ye [6], a robotic navigation aid for blind people is presented. It estimates its 

pose using a RGB-D camera (Intel RealSense D435) and an IMU. Visual-inertial odometry is carried out 

with color, depth and inertial data for computing the pose of the user in indoor environments, at real time. 

The floor plane is computed from the depth data and IMU data. A graph of nodes is built, where each node is 

a point of interest and the edges represent the distance between the nodes. The system uses a motorized 

rolling tip mounted on a white cane in order to guide the user along the planned path (robocane mode). Other 

option for feedback is through a speech interface (white-cane mode). The mode is automatically selected 

using a decision tree model. The software was developed based on ROS framework. The A* algorithm was 

used for path planning, in similar way to [22]. 

In this paper, we present the selection, implementation and evaluation of a path planning algorithm 

(efficient dynamic search (EDS)), implemented in MATLAB, C++ and CUDA, running on a laptop and on 

an embedded computer (the NVIDIA Jetson TX2 developer kit), for guiding at real time a blind person in 

indoor/outdoor environments. This algorithm is robust to dynamic obstacles and to changes in the pose of the 

user since he/she moves following the computed path. We evaluated the path planning algorithm in an 

occupancy 2D grid that was built incrementally in real environments with data from a stereo camera, the Zed 

Mini. Synthetic data was included to the grid for defining unknown obstacles and up-sample was carried out 

for obtaining grids of different sizes. The contributions of our work are next; i) The design of a system for 

assisting blind people in purposeful navigation, considering the requirements for a real application; ii) An 

algorithm for path planning implemented on GPU for real time performance, robust to changes in the 

environment and to changes in the position of the user; iii) The experimental results that validate the 

efficiency of the proposed algorithm. 

This paper is organized as follows. In section 2, we present the methodology used for selecting and 

implementing the path planning algorithm that best fits to the requirements of our project. In section 3, we 

describe the experiments carried out for computing an optimal path in an occupancy grid with real and 

simulated data, with different size, percentage of unknown obstacles, and executed in different programming 

languages and platforms. Finally, in section 4, we present the main conclusions obtained in this work.  



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 26, No. 1, April 2022: 450-461 

452 

2. RESEARCH METHOD  

In the first stage of our project, we achieved to build a global occupancy grid that differentiates free 

and occupied regions. The vibration patterns generated by a belt, warn to the user that an obstacle is close 

and its direction, in order to avoid it. The camera is the Zed Mini from StereoLabs and the embedded 

platform is the Jetson TX2 from NVIDIA as shown in Figure 1(a). The belt was built with four vibration 

motors, which are controlled with an Arduino Nano. We carried out experiments in a paved courtyard with 

size of 9m long and 5m width. It is surrounded by walls, windows and small gardens. Boxes are used as 

obstacles as shown in Figure 1(b). For more details, see [23]. 

Currently, the system builds an occupancy grid with a processing speed of 7,56fps. The occupancy 

grid results of projecting 3D points to the floor and defining a threshold in height. Depth data was obtained 

from depth maps of the stereo camera. This grid is a global representation of the environment since local 

information is merged during the whole trajectory, considering the pose of the user, delivered by the camera. 

We use one of these grids, computed in the paved courtyard during three minutes as shown in Figure 2(a). 

The position of the user is defined by a cell (cell-size user). However, the real volume of the person must be 

considered for path planning. For this purpose, we dilate the grid in order to increase the size of the obstacles. 

The resulting grid is shown in Figure 2(b).  
 

 

 
(a) (b) 

 

Figure 1. Wearable system and space for experiments, (a) blindfolded person wearing the vision-based 

system, with the camera in the chest and (b) paved courtyard with boxes as obstacles 
 

 

 
(a) (b) 

 

Figure 2. Management of the volume of the user into the occupancy grid, (a) occupancy grid of 100×100 

cells of the space shown in Figure 1(b), the size of each squared cell is 10cm long and (b) occupancy grid 

after applying dilation, in order to deal with the volume of the user 
 

 

In the second stage of our project, we propose to define targets, it means, destination cells where 

objects of interest are located. Once, the destination cells are defined, a path planning algorithm must 

estimate an optimal trajectory from the current position of the user to the selected destination cell. Next, the 

system guides the user to the target with vibration patterns generated by the belt. This functionality is known 

as purposeful navigation. Figure 3(a) shows the modules that make up the main system. The global map 

makes possible to execute a path planning algorithm that estimates an optimal path over a much larger space 

than in the case of local representations. The small size of the cells allows to represent detailed information 
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of the environment and therefore to make correct computation of the optimal path. However, it presents a 

higher computation load in planning. Moreover, the movement of the user is considered to be without non-

holonomic constraints. It is turned into eight neighbors in the rectangular grid with costs of 10 units in 

straight direction and 14 units in diagonal direction.  

The user follows an estimated path. If a discrepancy between the map and the environment is 

detected then the map is updated, a new path from the current location to the goal is computed and this 

process is repeated until the goal is reached as shown in Figure 3(b). 
 

 

  

  

(a) (b) 

 

Figure 3. Diagrams for describing the main system and the path planning process, (a) modules that make up 

the main system, the path planning module is highlighted in yellow and (b) processes to reach the goal 
 

 

In real situations, it is common that when the user is moving to a goal through an estimated path, 

he/she realizes that the path is blocked, for example, due to a door that was closed. Conversely, a shortcut 

that was not in the previous map could exist. In that moment, the path must be computed again at real time to 

keep moving.  
 

2.1.  Context and requirements of our application 

For selecting the most appropriate algorithm for path planning we consider the next context. 

 The environment is a plain terrain with free and occupied spaces that are represented by cells so the cost 

to traverse these cells can take two values: a cost to straight neighbors of 10 units and 14 units for 

diagonal neighbors (non-uniform cost). The cost to occupied cells is infinity. 

 The environment can change suddenly, for example, a door can be opened or closed, a person can move 

and obstruct the path of the user, a chair can be moved to another position, among others (dynamic 

environment). Moreover, the representation of the environment is built incrementally along the time due 

to the limited range of sensing (range defined by the horizontal field of view of the camera of 80° and 

the range of measurement in depth of 3.0m) and it includes data with uncertainty (partially known 

environment), so a discrepancy between the map and the environment could occur.  

 The user is moving from the starting cell in order to reach the goal cell, considering the haptic 

instructions and the computed path (moving user). 

 The user needs permanent and immediate feedback for reaching the goal and this feedback must result 

from updated representations of the environment, considering that it can change suddenly (real time 

processing and feedback) 

 The destination (static goal) must be defined as coordinates in the 2D occupancy grid like in [24]. We 

propose, as future work, to compute it by averaging the 3D points obtained from depth data inside a 

bounding box generated by a module of object detection like [10]-[12]. 
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2.2.  Comparison of path planning algorithms 

A planner generates a sequence of actions or a sequence of states. A path planner computes a 

sequence of state transitions through a graph, creating a path from point A to point B. We are interested in a 

path planner that generates an optimal path in a dynamic environment. Based on the context and 

requirements of the application previously explained, we make a comparison of some outstanding algorithms 

for path planning. 

Breadth first search [25] computes an optimal path in static environments for every node of the 

graph, which has uniform cost. It uses a first in, first out (FIFO) queue: nodes are removed from the front and 

placed at the back. As result, the exploration is equal in all directions. This continuous expansion of unvisited 

nodes closest to the start is called the wavefront optimality principle. 

Dijkstra’s algorithm [26] is used in graphs of non-uniform costs (varying costs). It favors the 

exploration of lower cost paths by using a priority queue based on the total cost from the start location to the 

current location. In this way, the wavefront optimality principle is preserved in non-uniform cost graphs, 

resulting that the exploration is faster in nodes with lower cost. It computes the path to all nodes of the graph, 

like Bread First Search. 

A* algorithm [19] is optimized for computing a path for a single location, unlike the previous 

algorithms that expands in all directions. It is done by favoring the expansion in directions that seem to lead 

to the goal, using a heuristic function that indicates how close a node is to the goal. The priority of the queue 

is based on the sum of both the actual distance from the start and the estimated distance to the goal, computed 

with the heuristic function. This sum represents an estimate of the total path cost from the start to the goal 

passing through state s. If the heuristic does not overestimate the cost to the goal, this algorithm is optimal. 

D* algorithm [27] has the capability to efficiently replan a new path to the goal considering changes 

in the environment. It is considered as a generalization of A* for dynamic environments (dynamic A*). It 

computes optimal paths as new information is delivered. It is efficient since it modifies its previous costs 

locally (not from scratch). The improved version D* lite [17], is algorithmically simpler and determines the 

same path than D*. However, both D* and D* lite are not parallelizable.  

Dynamic search [28] is based on the wavefront approach, similar to breadth first and Dijkstra’s 

algorithm, expanding in all directions. However, it presents an efficient strategy for repairing trajectories 

when the environment changes, by reusing previous computations, avoiding so to restart the process of 

propagation of the wavefront. Moreover, it runs on GPU, leveraging the fact that it is highly parallelizable. 

The algorithm is also robust to agent movement, to multiple agents and maintains optimality guarantees.  

 

2.3.  Selection of the most appropriate path planning algorithm 

The high computational power of GPUs has been used in the last decades for many applications that 

require real time performance. These applications are not limited to graphics processing, but include 

scientific computation in many fields of knowledge. These applications in video games [13], simulations 

[29], mobile robotics [30], deep learning [31], among others, evidence a substantial acceleration of the 

algorithms, especially the ones that do similar work across data points without requiring synchronization, it 

means, many simple and independent tasks. On the other side, an algorithm with many complex conditions, 

for example, with nested if-statements, does not leverage the whole capability of a GPU. 

Plath planning implemented on GPU have been used for tasks such as inspecting large structures in 

3D space [32]and for tackling efficiently multiple agents in large environments [33]. Moreover, the use of 

path planning algorithms on assistive tools in navigation for blind people is limited to few systems like [2]-[6], 

so we consider important the advances of path planning algorithms implemented on GPU, for these kinds of 

applications that require online processing on embedded computers.  

Considering the context of the tackled problem, the algorithm selected is dynamic search on GPU 

[28]. It works in non-uniform and dynamic environments, delivers an optimal path, is robust to changes in the 

environment and to changes in the position of the user, reuses the previous computations, the solution is 

complete, admissible and feasible, and is highly parallelizable. The high performance boosted by parallel 

processing is essential for our purpose of reaching online processing of dense data. Note that D* has similar 

characteristics than dynamic search but the former is not parallelizable.  

 

2.4.  Implementation on GPU of the algorithm for path planning 

We implemented and evaluated an algorithm based on dynamic search on GPU [28]. We began with 

a sequential implementation using MATLAB (for fast prototyping) and C++. Then, we implemented the 

algorithm on GPU, using CUDA. Finally, we compared their performance and the speed up obtained on 

GPU, running on a laptop and on the NVIDIA Jetson TX2. Figure 4 shows the pseudocode for computing an 

optimal path from start node ss to goal node sg. This process is repeated for each new start node ss after the 
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user moves following the computed path and finishes when the goal is reached by the user or when the 

algorithm finds that there is not an admissible path to the goal. 

 

 
 

Figure 4. Pseudocode for path planning based on dynamic search, called efficient dynamic search EDS 

 

 

The input parameters are the coordinates of the start node ss, the coordinates of the goal node sg and 

information of the environment as an occupancy grid. The result computed by the algorithm is the optimal 

path from ss to sg. Note that the start node changes according to the movement of the user when it follows the 

trajectory to reach the goal. We manage three maps: map of costs g(s), map of predecessors pred(s), and map 

of inconsistencies incon(s). Each map has a read only and write only version. Next, we give more details of 

these maps and of the main processes of the algorithm. 

Init cost. For the first occupancy grid of the environment, a map of costs is created. Free cells are 

assigned a cost of -1, g(s) =-1, representing that these cells need to be updated. Occupied cells are assigned 

infinite cost, g(s) = inf. The cost of the goal cell is set to zero, g(sg)=0. 

Set inconsistencies according to changes of the environment. If a cell changes from free to occupied 

then the cost in the map is set to infinity and the predecessor to null, since an obstacle has not predecessor. 

On the other side, if a cell changes from occupied to free then the cost in the map is set to -1, indicating that 

this cell needs to be updated. In both cases, the map of inconsistencies for this cell is set to 1. 

Propagate inconsistency. If the predecessor of a cell is inconsistent then set inconsistency to current 

cell, delete inconsistency of predecessor and set cost of current cell to -1.  

Update the map of costs. We define the parent (predecessor) of any state s’ (successor) as the state s 

that was expanded and that generated s’. On GPU each thread is in charge of updating an individual cell s, by 

evaluating the neighbors s’.  

When a cell is updated, we must use the costs of neighbor cells that have not been updated. Since 

each thread on GPU reads, modifies and writes a cell of the grid, but the order in which it occurs is 

undefined, we do not know if we are reading an updated or not updated value. This concurrency problem 

(race condition) is common in massive parallel processing [34]. For tackling this problem, we use two maps, 

one for read-only gr(s) and other for write-only gw(s). The same solution to race condition is applied to the 

map of predecessors pred(s), and map of inconsistencies incon(s). 

When the kernel kernel_planner is called, the map of cost is updated. The map for read-only gr(s) 

will not change, since data will be modified in the map for write-only gw(s). Once the whole map for write-

only has been updated, it is copied to the map for read-only gr(s). In this way, updated data will be read in the 

next call of kernel_planner. 

The kernel_planner updates costs of cells for expanding the wavefront and of cells that have been 

marked as inconsistent. This task makes the algorithm efficient since it avoids to reset the entire map. The 

expansion of the wavefront goes from the goal to the start cell. In each iteration the cost is updated by 

minimizing the cost function presented in (1). 
 

𝑔(𝑠) = 𝑚𝑖𝑛𝑠′∈𝑠𝑢𝑐𝑐(𝑠)∧𝑔(𝑠′)≥0(𝑐(𝑠, 𝑠
′) + 𝑔(𝑠′)) (1) 

 

where s’ is a successor of s, c(s,s’) is a function that computes the cost to move from s’ to s, g(s’) is the cost 

to move from goal to s’, and g(s) is the cost to move from goal to s. This minimization is carried out with 

successors s’ that are not obstacles (g(s’) ≠ inf), that have been updated and that are not inconsistent (g(s’) ≥ 0). 
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Draw the optimal trajectory. Once the goal is reached, the trajectory can be obtained by following 

the least-cost path from the goal to the current cell. This information is recovered from the map of 

predecessors that points to the parent of each cell. We begin with the predecessor of the start cell and we 

finish when the predecessor of a cell is the goal cell. Compute flag_stop. The inner while loop finishes when 

the number of iterations reaches a maximum or when the map of costs does not change any more and the 

number of inconsistencies does not decrease any more. 

 

 

3. RESULTS AND DISCUSSION  

We evaluated the performance w.r.t. time of two algorithms: 1). Dynamic search restarted when the 

environment changes (dynamic search from scratch DSS), and 2). Dynamic search that reuses the previous 

computations when the environment changes (efficient dynamic search EDS, defined in the pseudocode of 

Figure 4). The sequential implementations of these algorithms were done in MATLAB 2020 and C++, while 

the parallel implementation was done using CUDA. These algorithms were run on a laptop ASUS that has a 

processor Intel Core i7-6700HQ of 2,60Ghz x 8, 8GB of RAM memory, a GPU NVIDIA GeForce GTX 

960M, CUDA 10.0 and Ubuntu 18.04 as operating system. For the implementation with CUDA, the 

algorithm was executed in both the laptop ASUS and in the NVIDIA Jetson TX2 developer kit. The 

embedded computer has the dual-core NVIDIA Denver2 + quad-core ARM Cortex-A57, and the GPU 

NVIDIA Pascal with 256 CUDA cores and 8GB of memory. This device also has CUDA 10.0 and Ubuntu 

18.04. 

The map is a grid of 100×100 cells with known obstacles, taken from previous maps got in a real 

environment (see the paved courtyard of Figure 1(b) and the occupancy grid of Figure 2(b)), and unknown 

obstacles, got randomly by filling free areas up to a certain percentage (synthetic obstacles). The unknown 

obstacles are detected by the system if these have been at any moment inside the range of measurement of the 

system, otherwise these cells are considered free. 

Since the user is moving in order to reach the goal cell, a new start cell is defined and an optimal 

path is computed for each step. From the new start cell the environment is measured so the optimal path 

considers the lastest changes in the environment (see Figure 3(b)). As the user moves following the optimal 

path, new obstacles appear and cells switch from free to occupied. These changes are tackled efficiently by 

dynamic search EDS as we will see next. 

The evaluation was carried out for three sizes of the grid and three percentages of unknown 

obstacles. For computing grids of different sizes, the base grid of 100x100 cells was upsampled twice. As a 

result, we got two grids of 200x200 cells and 400x400 cells. The percentage of unknown obstacles was set to 

three values: 20%, 40%, and 60% as shown in Figures 5(a)-(d). The range of measurement was set to 3m for 

all the experiments. 

In Table 1, we present the main results obtained with DSS, such as the number of steps done by the 

user until the goal cell is reached, the average number of iterations for each step and the average time for 

each step. Note that the number of steps increases as the percentage of unknown obstacles increases, for the 

same size of the grid, since the system has to re-plan when the environment changes and a better trajectory is 

possible. This increase is more significant for a bigger grid since the environment is wider and the range of 

measurement remains in 3m, so more frequent changes in trajectory must be done. 

Figures 6 shows the behavior of the execution time for the implementation in MATLAB, for a grid 

of 400×400 cells and 40% of unknown obstacles. This behavior is similar to the other implementations of 

DSS. Note that in Matlab, the time remains around 50 seconds for all the steps. This is due to the fact that the 

map of costs is restarted for every new step that presents changes in the environment, so the same 

computations of cost must be done for the whole grid, no matter the closeness of the user to the goal cell.  

 

 

Table 1. Performance with respect to time of dynamic search from scratch DSS 

Grid Size 
% of Unknown 

obstacles 
Steps/Iter_avg 

Tmatlab_avg 

Laptop ASUS 

Tcpp_avg 

Laptop ASUS 

Tcuda_avg 

Laptop ASUS 

Tcuda_avg 

Jetson TX2 

100×100 

 

20 74/44,2432 520,2ms 14,7980ms 2,3513ms 6,9812ms 

40 78/51,8077 562,5ms 14,9760ms 2,6672ms 8,2426ms 

60 105/49,7810 443,3ms 12,4670ms 2,5662ms 7,7540ms 

200×200 20 148/109,5068 5087,0ms 145,71ms 7,1042ms 20,347ms 

40 157/126,3567 5504,8ms 154,79ms 8,0326ms 23,887ms 

60 225/157,8978 6390,8ms 163,39ms 9,9111ms 29,421ms 

400×400 20 296/195,2973 32071,5ms 1106,4ms 19,914ms 71,019ms 

40 319/267,6583 42767,9ms 1417,6ms 26,940ms 96,077ms 

60 523/325,7342 46742,9ms 1556,0ms 32,134ms 115,69ms 
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Figure 5. Occupancy grid of 100×100 cells, with occupied cells (red), free cells (green) and unknown 

obstacles (black), (a) 20%, (b) 40%, (c) 60% of unknown obstacles, and (d) unknown obstacles that are 

inside the region of measurement of the system, change to occupied cells. The other unknown obstacles are 

considered free cells from that pose of the user. The start cell is at the bottom while the goal cell is on the top 

of the grid. The trajectory for that step was drawn in blue and white 
 

 

 
 

Figure 6. Time for each step, for the algorithm DSS running on the laptop and implemented with 

MATLAB, the grid has 400×400 cells and 40% of unknown obstacles 
 

 

The average time of execution for a step of the algorithm in MATLAB is much greater compared 

with the average time in C++ and CUDA as shown in Figure 7. This is so because MATLAB is not a 

compiled language but an interpreted one. The advantage of MATLAB is the easiness to prototype code, so it 

was used for that task. Comparing the time of the implementations in C++ and CUDA, we can see an 

improvement with the last one, that is significant in real-time applications like in this case. 

Finally, we compared the implementation with CUDA, running on both the laptop ASUS and on the 

NVIDIA Jetson TX2. Note that the last one is slower than the former since it has less CUDA cores (256 

compared to 640 for the GeForce GTX 960M). Although the algorithm runs slower in the embedded platform 

and that the algorithm does not reuses previous computations of cost, the time reached is good for working 

with grid sizes up to 200×200 cells (less than 30ms). In this case, the planner must be executed with an 

appropriate interval of time, for example, one second between two consecutive steps. This time between steps 

would allow the user to move to a new position, following the computed path, before computing  

the next one. In Table 2, we present the main results obtained with EDS, such as the number of steps done by 

the user until the goal cell is reached, the average number of iterations for each step and the average time for 

each step. The range of measurement was kept constant (3m) for all the grids. Note that the number of steps 

is equal to DSS. This means that both algorithms found the same trajectory in each step until reaching the 

goal. Moreover, the average number of iterations for each step decreased and it is reflected in the reduction of 

the time for all implementations of EDS, compared to the respective implementation of DSS. It is because 

EDS reuses previous computations of cost, unlike DSS that restarts the map of costs for each new step. This 

reduction in time is more evident for steps with a start cell far from the goal (first steps) as can be seen in 

Figure 8, since the inconsistencies are generated closer to the border and the propagation finishes faster. 
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Figure 7. Comparison of execution time for the algorithm DSS implemented in MATLAB (red), C++ 

(green) and CUDA (blue and orange). The execution time for the implementation in MATLAB was scaled 

for improving the visual comparison. The implementation with CUDA was executed in both the laptop and 

the NVIDIA Jetson TX2 (orange). The grid has 40% of unknown obstacles. 
 

 

Table 2. Performance with respect to time of EDS 
Grid 

Size 

% of Unknown 

obstacles 

Steps/Iter_avg Tmatlab_avg Laptop 

ASUS 

Tcpp_avg Laptop 

ASUS 

Tcuda_avg Laptop 

ASUS 

Tcuda_avg 

Jetson TX2 

100×100 20 74/11,6351 119,4ms 5,1022ms 2,0622ms 5,0335ms 

40 78/16,4615 164,4ms 7,8480ms 3,031ms 7,7004ms 

60 105/16,0000 147,0ms 7,0913ms 2,9808ms 7,2748ms 

200×200 20 148/19,5608 958,9ms 39,578ms 4,1793ms 11,819ms 

40 157/30,1083 1416,8ms 57,691ms 6,4539ms 17,588ms 

60 225/27,5378 1143,2ms 48,395ms 5,8261ms 16,040ms 

400×400 20 296/35,7568 7121,1ms 291,8ms 13,814ms 42,637ms 

40 319/58,2382 9758,8ms 450,2ms 22,215ms 67,354ms 

60 523/59,9828 9056,8ms 423,8ms 22,312ms 69,103ms 

 

 

The implementation of EDS in MATLAB takes much more time to execute than the 

implementations in C++ and CUDA as shown in Figure 9(a), as happened with DSS. The execution time for 

the implementation in C++ is good for small grids. For a grid of 400x400 cells, the time increases too much 

and could hinder a real time application. Conversely to the implementations in MATLAB and C++, the 

implementation in the laptop using CUDA, takes a small time to execute, even for a big grid like the one with 

400x400 cells (less than 25ms). The implementation in the NVIDIA Jetson TX2 with CUDA, is outstanding 

compared to the implementations in MATLAB and C++. Although the time is bigger than the 

implementation in the laptop with CUDA, it is less than 18ms, for grid sizes up to 200x200 cells. 

Figure 9(b) shows a comparison in performance w.r.t. time for implementations with CUDA, 

running on the NVIDIA Jetson TX2, of DSS and EDS. The improvement in time obtained with EDS allows 

the system to reduce the interval of time between two steps, so the path to the goal can be updated faster, 

according to changes in the environment. 
 

 

 
 

Figure 8. Time for each step, for the algorithm EDS running on the laptop and implemented with 

MATLAB. The grid has 400×400 cells and 40% of unknown obstacles 
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(a) (b) 

 

Figure 9. Comparison of performance w.r.t. time of the algorithms (a) comparison of execution time for 

the algorithm EDS implemented in MATLAB (red), C++ (green) and CUDA (blue and yellow). The 

execution time for the implementation in MATLAB was scaled for improving the visual comparison. The 

implementation with CUDA was executed in both the laptop and the NVIDIA Jetson TX2 (orange). The grid 

has 40% of unknown obstacles and (b) comparison of execution time for the algorithms DSS (red) and EDS 

(green) implemented with CUDA and executed in the NVIDIA Jetson TX2 

 

 

Finally, we compare the time for path planning of [2] with our planner, considering a grid of size 

200×200 cells. The former reports a processing time in a laptop between 15ms and 30ms, for most of the 

frames, while ours takes 6,45ms and 17,59ms on average, in a laptop and in the Jetson TX2, respectively. 

These times indicate that our algorithm, based on [28], outperforms the planner of [2] in similar conditions. 

 

 

4. CONCLUSION 

In this work, we presented the requirements for implementing a path planning algorithm applied to a 

real problem of assisting blind people to reach a goal in an optimal and safe way. The requirements found 

are: dynamic and partially known environment, non-uniform cost, moving user, static goal, real time 

processing of data and immediate feedback. We implemented and evaluated the performance w.r.t time of a 

sequential and a parallel implementation of a path planner based on the algorithm called dynamic search. The 

sequential implementation was done in MATLAB and C++ and executed in a laptop, while the parallel one 

was done with CUDA and executed in both a laptop with GPU and in the NVIDIA Jetson TX2. The 

algorithm has two versions. The first one is dynamic search from Scratch DSS that restarts the computations 

of the cost for the whole grid for each step while the second one is Efficient dynamic search EDS that reuses 

previous computations of cost. 

The execution times are highly dependent on the complexity of the environment such as the size of 

the grid and the percentage of unknown obstacles, and the range of measurement. We evaluated the 

algorithms for three different sizes of the grid and for three percentages of unknown obstacles, keeping the 

range of measurement constant, setting to a value similar to the range of the real system. Our parallel 

implementation of DSS, for the grid of 400x400 cells and 40% of unknow obstalces, improves the 

performance up to 52,62 times in the laptop and 14,75 times in the TX2, compared with the implementation 

on CPU (in C++). Our parallel implementation of EDS improves the performance up to 20,26 times in the 

laptop and 6,68 times in the TX2, compared with the implementation on CPU (in C++). Comparing the 

implementations of DSS and EDS with CUDA, the last one has a speed up of 1,21 when is executed in the 

laptop and 1,42 when is executed in the TX2. Finally, comparing EDS executed in the laptop with EDS 

executed in the TX2, we found that the embedded platform is slower with a slowdown of 3,10 times. 

However, both implementations in CUDA of EDS and DSS running on the TX2, have good performance, 

with execution time less than 18ms for EDS, and less than 30ms for DSS, for sizes of the grid up to 200x200 

cells. This performance of the module of path planning allows us to integrate it, in a future work, to our main 

system for purposeful navigation of blind people, obtaining real time replanning in dynamic environments. 
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