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 A new method for recognizing automatically Arabic handwritten words was 

presented using convolutional neural network architecture. The proposed 

method is based on global approaches, which consists of recognizing all the 

words without segmenting into the characters in order to recognize them 
separately. Convolutional neural network (CNN) is a particular supervised 

type of neural network based on multilayer principle; our method needs a 

big dataset of word images to obtain the best result. To optimize our system, 

a new database was collected from the benchmarking Arabic handwriting 
database using the pre-processing such as rotation transformation, which is 

applied on the images of the database to create new images with different 

features. The convolutional neural network applied on our database that 

contains 40,320 of Arabic handwritten words (26,880 images for training set 
and 13,440 for test set). Thus, different configurations on a public 

benchmark database were evaluated and compared with previous methods. 

Consequently, it is demonstrated a recognition rate with a success of 

96.76%. 
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1. INTRODUCTION 

The system of Arabic handwritten recognition makes easier the transformation of Arabic 

handwriting into its symbolic representation. There is several system of Arabic handwritten recognition: the 

recognition of handwritten text, words and characters. Our method focus on Arabic handwritten words 

recognition which are recognized by two approaches, the analytical approaches and the global approaches. 

This later addresses word recognition recognizes each letter that composes the word, but the letter 

segmentation is a difficult operation. Therefore, it is proposed the global approach which recognizes the 

words as a whole without trying to locate each of the letters that compose it. The global approach is basic of 

our investigation.  

On the other side, neural networks are computing system allows recognizing, and contain three 

layers: input layer, hidden layers and output layer. The deep neural network has made it possible to make 

great progress in several recognition problems in scientific research, such as the detection of objects (for 

example, [1]-[4]), Arabic handwritten characters [5]. Deep neural networks using several hidden layers, 

hence it needs a large number of connection parameters and needs very large images of the database. In our 

work, the convolutional neural network (CNN) was used with a small number of parameters and easy for 

training, using the Arabic handwriting database (AHDB). Moreover, CNN has the ability to learn from very 

large number of complicated inputs (images or sounds), nonlinear mappings [6], [7]. The use of the same 
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filter and weight for each input of convolutional layer is an advantage of CNN, to decrease the number of 

paramters and increase the performance [8].  

In several investigation in the literature, researchers used several classifiers in order to recognize the 

Arabic handwritten words or the characters such as a methods of hidden markov models (HMM) [9]-[14], K-

nearest-neighbors (KNN) [15], [16], support vector machine (SVM) [17], neural networks [18]-[20], [5], 

[21], [22]. Otherwise the method of classification selected still owned weak points [23]. For instance, a huge 

computation to compute kernels is necessary in SVM method [24], also, the extreme learning machine 

(ELM) performing unstably because of the random weights among the input and hidden layers [25]. 

Likewise, the multilayer perceptron (MLP) is based on back-propagation that is decelerate training [26]. 

Ghadhban et al. [23] proposed the incorporation of a good classifiers with easier computation and can obtain 

strong performance of recognition of Arabic handwriting [23]. Despite of research works in the literature 

made by researchers to increase the performance of Arabic handwriting recognition methods, the field still 

confronts problems related to computation time and result. Rabi et al. [27], the HMM based reference 

method was enhanced by the use of hybrid HMM/MLP, and hidden Markov models to extract the statistical 

and geometrically features. While in a recent paper, authors proposed method for recognizing Arabic 

handwritten word without segment them into sub letters merging the scale invariant feature transform (SIFT) 

as feature extractor and SVMs as classifer [28]. Likewise, in our previous work [29], we have proposed an 

amethod for recogning Arabic handwritten text using an integration of n-gram model. 

The system of recognition of Arabic handwritten text needs the text segmentation into text lines and 

lines into letters or words for recognizing them, the segmentation and recognition of characters is difficult 

operation, since the variations in writing style, and the linking of letters between them. Therefore, the 

proposed method used the global approach which does not need segmentation of characters, by convolutional 

neural network. In related works, the algorithms presented applied on a small database of Arabic handwritten 

words [30]-[33] (IFN/ENIT, AHDB...), and it makes a problem in recognizing all Arabic handwritten words 

images. That leads us to create a new database of Arabic handwritten words by modification of pre-

processing of word images (such as rotation transformation) to better the yield of the results of words 

handwritten Arabic recognition. 

 

 

2. METHOD  

2.1.  Motivation  

To increase the performance of Arabic handwritten words recognition, we use several knowledge of 

the research work. In recent years the variations styles of Arabic handwritten words, making it interested to 

work on and propose a new method solving the problems of Arabic handwritten recognition. The 

segmentation and recognition of letters is difficult operation, since the style of handwriting is varied, and the 

letters linked for each other, it’s sufficient to recognize the whole words without characters segmentation, 

using convolutional neural network. To be able to obtain good decisions on a deep learning system, we need 

a big data (images). All databases of Arabic handwriting words in the literature didn’t contain a huge number 

of images to obtain a good result, we proposed a method that makes images from AHDB using preprocessing 

of images (such as rotation). That helps our method more performance. 

There are several authors used CNN for the stage of the extraction of features of the images [30], 

[34]. There are others which combines CNN and other classifiers (SVM and HMM) to classify the 

handwritten Arabic words [30], [34]. In our work, CNN used for extracting the feature and classification 

steps of Arabic handwritten words recognition. 

 

2.2.  Architecture 

Usually, Arabic handwriting word recognition system apply a few preprocessing steps on the input 

images, to increase the performance of recognition. Moreover, for the system of recognition based on CNN, 

the pre-processing step is not necessary to apply a several operations on the input images, to reduce the 

variability handwriting. In our proposed system, the operations using in the pre-processing step are: 

binarization, normalization and transformation of rotation. The size of the input image is 100×100 after 

normalisation. After the pre-processing step, which prepare the input data of CNN, the input data x1; x2; …. 

xn are word images. We use three layers type (convolutional layers (CONVL) pooling layers 

(POOLL)fully connected layers (FCL)), M × M × H images are the input data ofCONVL (M is the height 

and width of the input image, H is the number of channels), the number of pixels in the each image is M×M. 

In our system we use gray scale images with H=1 (one channel) but for RGB image, we use three channels 

H=3 as shown in Figure 1.  
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Figure 1. Architecture of proposed method 

 

 

The architecture of our CNNstart by the first layer is CONVL consisting of 8 feature maps 

calculated by overlapping N×N kernel on the input M × M raw gray scale image. With N=5 and M=100. 

Then we apply the nonlinear activation function using rectified linear units (ReLU), which consist to choose 

the max between the pixel of the image and the value 0. For each feature map we apply POOLL using max-

poolingwhich aims to extract the maximum of pixels using non-overlapping kernel 2×2. Lastly, the FCLs 

apply on the output of the CONVL and POOLL, as in a norm convolutional neural network system. 

 

2.3.  Preprocessing  

2.3.1. Binarization  

If the images of the database are in grayscale or color, the binarisation operation aims to extract the 

background of the word for transferring into the binary images: pixek=1 in the background, and pixel=0 in 

the textor reciprocal. The global thresholding used for calculating one threshold to the whole image. The 

pixels that are above the threshold affect 0 and others affect the value 1 [34]. 

 

2.3.2. Normalization 

In the system of CNN, the database images should be the same size. It is known, the operation of 

normalization make the images in the same forms related to size [29]. In the present investigation, the size 

100x100 was selected and presented in the same size. 

 

2.3.3. Rotation 

Convolutional neural networks need a big training data, in the literature, there is not a database of 

Arabic handwritten words sufficient for our system. We proposed a method to create images from the 

existing database, we proposed to modify the images to change their characteristics, and the method used is a 

transformation of rotation. Given a point in the image, its new coordinates after the transformation of rotation 

of the whole image around its origin by the angle θs as shown in (1). 

 

(
𝑥′
𝑦′

) =  (
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
) (

𝑥
𝑦) (1) 

 

2.4. Convolutional neural network layers 

2.4.1. Convolutional layer 

The input of this layer is images x1, x2, …, xn. The form of the input data of CONVL is M × M × H 

image (M is the height and width of the input image as shown Figure 2, H is is the channels number per 

pixel), the number of pixels of the input image equal M × M and Hequal one channel for binary image, three 

channels for RGB image. N x N ×F is the size of K filters(kernels) used in the CONVL(N is the height and 

width of filters (kernels) and F is the same number of channels image H varied for each filter (kernel) Figure 

2(a). The size ofK feature maps is M-N+1 makes when the filter convolved with the image shown in Figure 

2(b). The goal of convolutional layer is extracting salient features of the inputs images. 

In our proposed approach, we used the activation function rectified linear units (ReLU) that applies 

the output of convolutional layer. In order to affect the max with the pixel and the value 0 to replace the 

negative pixels by the value 0. The activation function use is ReLU non-linearity applied to each output of 

CONVL and FCL. The ReLU [35] aims to increase the nonlinear properties of the global network without 

transferring the receptive elements of the convolution layer. 
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(a) 

 

 
(b) 

 

Figure 2. Convolutional layer: (a) example of convolutional operation and (b) example of single 

convolutional layer  

 

 

2.4.2. Pooling layer 

After each convolutional layer, we apply pooling layer on the output data. This layer used to 

decrease the dimensions of the feature maps. We pooled with max or average pooling with size q × q for each 

feature where q comprised between 2 and 5 for large inputs. Pooling layers aims to reduce the size of the 

feature maps. There are several types of pooling ( Max and Average), we use max-pooling in our approach 

with size 2×2 which consist to select the maximum pixel from the block of the feature map of the 

convolutional layer output. The feature map containing the most important features of the previous feature 

map is the output of max-pooling Figure 3. 
 

 

 
 

Figure 3. Pooling layer 

 

 

2.4.3. Fully connected layer  

We apply fully connected layer after many convolutional and max-pooling layers, which allows 

using the results of the convolution/pooling process to classify the image into a label. This layer aims to 

connect all neurons of the precedent layers with each unique neuron it has, and converts it into a single vector 

of values, every neuron of the output layer represents a classification label which contains a probability that a 

certain feature belongs to a label. Finally, we apply the softmax function on thenetwork output to compute a 

probability value for each class. 

The architecture of our convolutional network of Arabic handwritten words recognition presented as 

following: INPUT CONVL ReLU  POOLL CONVL ReLU  POOLL CONVLReLU  

POOLL FCL. The first layer is C1 convolutional layer consisting of 8 feature maps calculated by 
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overlapping 5×5 filter on the input 100×100 raw binary image, the output size of the C1 is ((100-5)+1=96), 

there are 8 feature maps of 96×96. P2 is the max-pooling layer which applies on the output of the C1 layer 

non-overlapping 2×2 kernel, the size of the output is (96/2=48) with 8 feature maps of the same size (48×48). 

At layer C3 second convolutional layer, we have 16 feature maps calculatedon the output of P1by 

overlapping 5×5 filter, the size of output is (48-5+1=44), we obtained 16 feature maps of 44×44. At layer P4, 

there are 16 feature maps of 22×22(44/2=22) computing by max-pooling on the output of C3 by non-

overlapping 2×2 filter. The convolutional layer C5, we obtained 32 feature maps of 20×20 calculated by 

overlapping 5×5 kernel with padding=1 on the output of P4, the output size is ((22-5+2×1)+1=20). The last 

max-pooling layer P6, we have 32 feature maps of size 10×10(20/2=10) computing on the output of the C5 

by non-overlapping 2×2 filter. Finally, we obtained (10×10×32=3,200) 3,200 features are the size of the input 

FC7fully connected layer. The output of FC7 contains 96 classes which composed using softmax classifier to 

produce 96 output classes Figure 4. 

 

 

 
 

Figure 4. CNN proposed for Arabic handwritten words recognition 

 

 

3. RESULTS AND DISCUSSION  

3.1.  Dataset  

A big training data of handwritten words images is needed from the convolutional neural network 

for obtaining better yield. For that, a dataset of Arabic handwritten words was collected and made using a 

benchmarking database, Arabic handwriting database (AHDB). This database included words images 

produced by writing legal amounts on Arabic checks and Arabic handwritten pages of 100 scripters [36], it’s 

available in (http://handwriting.qu.edu.qa/dataset/), and contains 105 forms of Arabic handwritten words 

composed from 96 class of words, thus, the total image is 10,080 was not enough for an input of 

convolutional neural network to obtain a good result. Therefore, these images were used to collect other 

images. It was aimed to solve that problem, thanks to the pre-processing such as rotation transformation by 

two ways to make new images. Afterwards, we obtained a total image of words in each class 420 word 

images i.e. 40,320 images, and, the 96 class of database was divided into two data: a training data (26,880 

words: 280 images per class) and a test data (13,440 word images: 140 images per class). 

 

3.2.  Experiments and results 

As part of this work, a method of Arabic handwritten words recognition has proposedusing 

convolutional neural networks aiming to transform handwriting word images into their symbolic 

representations. The programming language used is MATLAB 2018a, the programwereimplemented in 

MATLAB 2018a CUDA SDK v.7.5, 1.70 GHz Core i5 PC with GPU NVIDIA GeForce GT 635M and 6G 

memory performed on windowsystem. We apply our method onthe 13,440 test word images (140 images for 

each class) to recognize the Arabic handwritten words. The result of our method was rated by computing the 

success rate of recognition of the obtained result, also we applied the method on 40,320 images of 

handdwriting Arabic words written by various scripter, divided into two sets : training sets 26,880 word 

images (280 for each class) and test sets 13,440 word images (140 for each class). Our algorithm is runningwith 

8 epochs, but CNN start to decrease error of miss-classification from epoch 6 Figure 5(a). The result of our 

system is very promising, since we could achieve a successful recognition rate of 96.76% Figure 5(b). 

A comparison was made between the results of our method with previously published methods of 

Arabic handwriting words recognition. Table 1 exhibits the successfulrecognition rates of previous work of 

Arabic handwritten words recognition. Clearly, our proposed method of Arabic handwritten word recognition 

by convolutional neural networks using AHDB database is the best one. 
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(a) 

 

 
(b) 

 

Figure 5. Recognition and miss-classification rate of Arabic handwritten words: (a) recognition rate and  

(b) miss-classification rate  

 

 

Table 1. Word extraction rates 
Method Classifier Data Rate 

Alkhoury [9] CNN, SVM HACDB and IFN/ENIT 94.17% for HACDB, 92.95% for 

INF/ENIT 

Elleuch et al. [1] SVM HACDB 91.14% 

Jayech et al. [2] MSHMM IFN/ENIT 91.10%(set a) 

Tamen et al. [31] HMM/MLP IFN/ENIT 89.03% 

Kessentini et al. [10] Multilayer perceptron, SVM and ELM IFN/ENIT 96.82% 

Alkhateeb et al. [11] CNN based HMM IFN/ENIT 89.23% 

Amrouch et al. [32] SVM AHDB 99.08% 

Lamsaf [33] k-nearest-neighbors (KNN) AHDB 86.7% 

AWNI [12] deep convolution neural networks AlexU-W and IFN/ENIT 96.11%, 

Proposed method Convolutional neural network (CNN) AHDB Database 96.76% 

 

 

4. CONCLUSION 

An Arabic handwritten word Recognition is an active field in research that still needs to improve its 

performance. In the present paper, a method of Arabic handwritten words recognition has been proposed 

using convolutional neural network (CNN), in order to use new technologies in pattern recognition. The 

convolutional neural network is suggested for recognizing Arabic handwritten words; comparing to other 

system of deep learning, CNN gives the best result in big data of image proccessing field. There isn't a big 

database of Arabic handwritten words to use for CNN system, we proposed to collect a new database from 

the benchmarking Arabic handwriting database (AHDB) using the pre-processing, we apply the 

transformation of rotation on the images of the database to create new images with different features. The 

method is applied on the benchmarking databse AHDB and reachesthe best result. 
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