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Abstract 
In this paper, an approach based on the particle swarm optimization is used to optimize the 

workspace and global stiffness of the 3UPU mechanism simultaneously due to the fact that the workspace 
is affected while optimizing the stiffness of the mechanism and vice versa. When optimizing one particular 
performance, one needs to have an objective function. Here the workspace volume of the mechanism is 
used as an objective function to evaluate the workspace performance of the mechanism. The leading 
diagonal elements of the stiffness matrix represent pure stiffness in each direction, but this stiffness 
changes when the moving platform position changes. We call this stiffness as local stiffness. When using 
the local stiffness as an objective function for stiffness optimization, it can only represent the stiffness in 
one particular position. Here the global stiffness of the mechanism is used as an objective function to 
optimize the stiffness of the mechanism. The global stiffness represents mean stiffness over the 
workspace. 
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1. Introduction 

Parallel mechanisms have been widely used in machine tools [1-4] and other industrial 
areas [5-9], this is because the parallel mechanisms possess high stiffness, high precision, 
good acceleration, high loading capacity, etc. The disadvantage of parallel mechanisms is the 
small workspace. The workspace volume can be used as an objective function for workspace 
optimization [10]. Stiffness is another important factor to evaluate the performance of parallel 
manipulators since high stiffness can lead to high precision. The leading diagonal elements of 
the stiffness matrix of the mechanism represent pure stiffness in each direction, but this stiffness 
changes when the moving platform position changes. We call this stiffness as local stiffness. 
When using the local stiffness as an objective for stiffness optimization, it can only represent the 
stiffness in one particular position; it cannot reflect the stiffness in other positions. Here the 
global stiffness of the mechanism is used as an objective function to optimize the stiffness of the 
mechanism based on the global performance index [11]. The global stiffness can represent 
mean stiffness over the workspace. Since the stiffness of the parallel mechanism is affected 
while optimizing the workspace, the global stiffness and the workspace volume of the 
mechanism are optimized simultaneously. There are several methods to multi-objective 
optimize several objective functions which are conflicting with each other [12-14], such as 
Pareto front theory, particle swarm optimization method, genetic algorithm, weighting objective 
method, etc. Here a method based on the particle swarm optimization is applied to achieve the 
goal.  

 
 

2. Jacobian Analysis of the Mechanism 
This mechanism has three translational degrees of freedom. The moving platform is 

connected to the base by three identical U-P-U legs. The schematic representation of the 
mechanism is shown in Figure 1. The fixed coordinate system (X,Y,Z)O  is attached to the 

center of the base, and the moving coordinate system (x,y,z)P  is attached to the center of the 
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moving platform. b is the angle between X axis and line 1OB , p  is the angle between x axis 

and line 1OP .  

 
 

 
 

 

Figure 1. Schematic Representation of the 3UPU Mechanism 
 
 

The coordinates of points iB  with respect to the fixed coordinate system are denoted as 

( 1, 2,3)ib i  ; the coordinates of points iP  with respect to the moving coordinate system are 

denoted as ip . The length of each leg can be written as:   

 

i i iL p q b                                                                    (1) 

 

Where [x,y,z]Tq   is the vector of point P  with respect to the fixed base. The velocity of point 

iP  can be expressed as the following:    

 

iPi i i iv s L s


                                                                                              (2) 

 

Where i is the angular velocity of the ith leg with respect to the base and is  is the unit vector 

along the ith leg. The following equation can be derived by multiplying is  in both sides of 

Equation (2):  
 

T
i Pi is v L



                                                                                                         (3) 

 
Equation (3) can be rewritten as the following:  
 

PJv q


                                                                                                              (4) 

 

Where Pv  is the velocity of the center of the moving platform. The Jabobian matrix of the 

mechanism can be expressed as follows:   
    

1 2 3

TT T TJ s s s                                                                                          (5) 
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3. Workspace of the Mechanism   
The workspace volume V  will be used can be used as an objective function for the 

workspace optimization. The volume of the workspace can be computed by using fast search 

method [10]. When  3bR  , 1pR  , 30b  
, 15p   , the workspace is shown in Figure 

2(a); when  3bR  , 2pR  , 30b  
, 15p   , the workspace is shown in Figure 2(b); 

when 2bR  , 2pR  , 30b  
, 15p   , the workspace is shown in Figure 2(c); when 

3bR  , 2pR  , 30b  
, 0p   , the workspace is shown in Figure 2(d). The workspace 

volume for different structural parameters of the mechanism is listed in Table 1.  
 
 

Table 1. Workspace Volume for Different Parameters of the Mechanism  
 

bR  pR  b  p  Workspace volume 

Scenario (a) 3 1 30 15 81.8002 

Scenario (b) 3 2 30 15 116.2673 

Scenario (c) 2 2 30 15 146.7330 

Scenario (d) 3 2 30 0 122.8553 

Scenario (e) 3 2 20 0 138.5377 

 

 

 
(a)                                                                             (b) 

  
(c)                                                                             (d) 

Figure 2. The workspace of the mechanism under different structural parameters 
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From the above figures, one can see that the radii of the base and moving platform and 
the location of joints on the base and moving platform all affect the size and shape of the 
workspace. 

 
 

4. Stiffness of the Mechanism 
The stiffness of a parallel mechanism at a given point in the workspace can be 

characterized by its stiffness matrix. The stiffness matrix can be written as follows: 
 

T T
JK J K J kJ J                                                                                        (6) 

 
The leading diagonal elements of the stiffness matrix are the pure stiffness in each 

direction. This stiffness changes when the position of the moving platform changes. We call this 

stiffness as local stiffness. When 30b  
, 15p   , 3bR cm , 1pR cm , z=5cm, x=0, y=0, 

the stiffness matrix is the following:  
215.9 0 0

0 215.9 0

0 0 2568.1

K

 
   
  

 

From the above, one can see that the stiffness in X and Y directions is 215.9 and the 
stiffness in Z direction is 2568.1. This stiffness changes when the position of the moving 

platform changes. The stiffness mappings are illustrated in Figure 3 when 3bR cm , 

1pR cm , 30b  
, 15p   , z=5cm. 

 
 

 
(a) 

 
(b) 

 

 
(c) 

 
Figure 3. Stiffness in (a) X direction; (b) Y direction; (c) Z direction 
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From Figure 3, one can also see that the stiffness in Z direction is the maximum among 
those three, and the stiffness in Z direction reaches the maximum value 2568.1N/cm when x=0, 
y=0. If one uses the local stiffness as an objection function for optimization, it can only optimize 
the stiffness in one particular position; it cannot reflect the stiffness in other positions. Here the 
global stiffness is used as an objective function for the stiffness optimization based on the global 
performance index [11]. The global stiffness can represent mean stiffness in the workspace. 
The global stiffness can be expressed as follows:  

 

x

x

K d xd yd z
G S I

d xd yd z
   

  
, y

y

K d xd yd z
G S I

d xd yd z
   

  
, z

z

K d xd yd z
G S I

d xd yd z
   

  
 

 

xGSI , yGSI  and zGSI  are the global stiffness in X, Y and Z directions, respectively. 

When 30b  
; 15p   , the global stiffness mappings in X, Y and Z directions with the 

alteration of the radii of the base bR  and moving platform pR  are shown in Figure 4. The global 

stiffness mappings in X and Y directions are the same. 
 
  

 
(a) 

 
(b) 

 
Figure 4. Global Stiffness in (a) X Direction; (b) Z Direction 

 
 

When 3bR cm , 2pR cm , the global stiffness mappings in X, Y and Z directions 

with the alteration of the joints’ location on the base b  and moving platform p  are shown in 

Figure 5. The global stiffness mappings in X and Y directions are the same. 
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Figure 5. Global Stiffness in (a) X Direction; (b) Z Direction 
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From Figure 4 and Figure 5, one can see that the radii of the base and moving platform 
as well as the joints’ location on the base and moving platform all affect the global stiffness. The 
mappings of the sum of global stiffness in X, Y and Z directions with the alteration of the radii of 
the base and moving platform and the joints’ location on the base and moving platform are 
shown in Figure 6. 

 
 

 
 

Figure 6. The Mappings of the Sum of the Global Stiffness in X, Y and Z Directions 
 
 

 
(a) 

 
(b) 

 
Figure 7. (a) The Workspace Volume Trend (b) The Mapping of Global Stiffness in Z direction 
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Figure 8. (a) The Mapping of the Sum of Global Stiffness in X and Y Directions 

(b) The Workspace Volume Trend. 
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One can see that x y zGSI GSI GSI   is a constant value. If we use 

x y zGSI GSI GSI   as an objective function for stiffness optimization, that is obvious 

inappropriate. Some scholar proposed the stiffness in Z direction as the main stiffness and its 

stiffness can directly reflect the stiffness of whole mechanism [15]. So we will try to use zGSI  

as an objective function for stiffness optimization.   

From Figure 7 and 8, we found that the workspace volume and zGSI  have the same 

trend, which means these two objectives do not conflict with each other, and the workspace 

volume conflicts with xGSI  and yGSI . One can just optimize the zGSI  by using like genetic 

algorithm. However, x y zGSI GSI GSI  is a constant value, and the trends between  

x yGSI GSI  and zGSI  are opposite, which means x yGSI GSI  and zGSI  conflict with each 

other. If one only optimizes zGSI , x yGSI GSI  will be affected. So in the practical industries, 

engineers need to consider their own requirements to pick the right objective function for 
optimization. If the stiffness in Z direction is relatively important, then one can just optimize 

zGSI  by using like genetic algorithm. If the stiffness in X and Y direction is relatively important, 

one can use x yGSI GSI  as an objective function for optimization. Here suppose the stiffness 

in X and Y direction is relatively important, we will optimize x yGSI GSI  and the workspace 

volume simultaneously. 
 
 
5. Multi-objective Optimization based on PSO 
 

 
         Figure 9. TheGbest Value  

 
 
Traditional optimization methods have the danger of falling into local optimum. If the 

objective function does not have the convexity property, the local optimum is therefore not the 
global optimum. So we will rely on the global optimization algorithm to address this issue. 
Particle swarm optimization (PSO) as an advanced computational intelligence method, it is 
inspired by simulating the swarm behavior like bird flocking. Particle swarm optimization can be 
viewed as the improvement of genetic algorithm. The workspace volume is used as a criterion 
for workspace optimization and the sum of global stiffness in X, Y directions is used as a 
criterion for stiffness optimization. The overall objective for optimization can be given as follows: 
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WhereV  is the workspace volume of the mechanism, and f  = x yGSI GSI  is the sum of 

global stiffness in X and Y directions.  

Design variable are given as: bR , pR , b , p . Their constraints are given as follows:  

[2,5]bR cm ; [1,3]pR cm ; [20 ,40 ]b   
; [0 ,20 ]p     

The maximal velocity divisor is 2, the particles number is 24. Figure 9 shows the 
evolutionary process.   

After optimization, bR =3cm, pR =3cm, 20b  
, 20p   , 8 1.17 10Gbest   . 

Before optimization, bR =4, pR =2, 30b  
, 20p   , 82.3 10Gbest   . Gbest  is 

improved 1.99 time. 
 
 
6. Conclusion 

An approach based on the particle swarm optimization is used to the multi-objective 
optimize the workspace and global stiffness of the 3UPU mechanism. The Jacobian of the 
mechanism is first determined, and then the workspace and global stiffness is analyzed and 
found that the radii of the base and moving platform as well as the joints’ location on the base 
and moving platform all affect the workspace and global stiffness. The workspace volume of the 
mechanism is used as an objective function to evaluate the workspace performance of the 
mechanism. The sum of the global stiffness in X and Y direction is used as an objective function 
for stiffness optimization. The optimized results are shown that Gbest  is improved 1.99 times 
after optimization.  
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