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Abstract 
Reflectance spectra of hyperspectral images of the natural scenes are supposed to represent the 

real world better than any certain classes of natural and man-made spectral reflectance. But spectral 
images contain a large volume of data and place considerable demands on computer hardware and 
software compared with standard trichromatic images. Although principal component analysis (PCA) 
based low-dimensional linear models have been widely used in spectral image encoding and compression, 
there is no a single PCA linear model derived from one data set can be guaranteed to accurate represent 
other data sets. In this study, we proposed a spectral image encoding method by a single linear model 
constructed by truncated Fourier series, in which a limited number of parameters that is proportional to the 
highest frequency cut off if the low-pass hypothesis is valid for any of the data sets. In this paper, several 
groups of hyperspectral images have been processed using truncated Fourier series, the encoded images 
are analysed in terms of chromaticity and spectral root mean square (RMS) errors. Results show spectral 
images can be efficiently compressed when the frequency reach a certain limit, and the color information 
can be well preserved.  
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1. Introduction 

The use of spectral imaging can fundamentally solve the problem of metamerism 
caused by trichromatic-imaging systems, but at the same time require not only measurements 
of RGB values, but the spectral information for each pixel of an image. In most cases, 
multispectral imaging systems use 6 or more broadband sensors, whereas, hyperspectral 
imaging systems are typically consist of 31 or 61 channels (which, for example, measure at 
every 10 nm or 5 nm interval in the visual spectrum). Hyperspectral imaging systems have been 
extensively used for both territorial and remote-sensing applications, where each individual 
band usually has a spectral resolution of 1 to 20 nm, and spectral sensitivity generally ranges 
from 350 nm (blue visible) to 2500 nm (thermal infrared) depending on applications [1-3]. During 
the past few years, hyperspectral imaging has also been introduced to new application areas 
such as paper industry, art painting, ceramic tile quality control, etc. [4, 5]. But spectral images 
whose each pixel contains full information of spectral reflectance provide a huge volume of 
redundant data for the purposed of color reproduction, it is therefore highly desirable to find a 
way to represent spectral images efficiently by compressing them into a more compact form. It 
is known any spectral reflectance distribution P() can be approximated to a specified degree of 
accuracy as a weighted sum of basis functions B(), thus 
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Where P() is the reflectance spectrum, Bi() is the ith basis function and ai is the 

coefficient or weight for the ith basis function. Once the Bi() are known, a set of weights ai is 
sufficient to specify any reflectance spectrum in the model. It has been stated that spectral 
reflectance of surfaces and spectral power distributions of illuminants are highly constrained [6-
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8], therefore they can be approximated by low-dimensional linear models of limited weighted 
sum of basis functions [9-11]. PCA technique has been widely used to derive basis functions, 
which are orthogonal with each other. The linear model based on PCA is supposed to be the 
most efficient representation of the original reflectance spectra, but only valid when PCA are 
applied on the same data sets.  It has been stated that if one set of reflectance spectra needs a 
linear model of N parameters to represent, and another set needs a linear model of M 
parameters to represent, the adequate number of parameters for a linear model to represent the 
combined sets will be anywhere between max(M,N) and M+N [12, 13]. This suggests that there 
is not a single PCA linear model derived from one data set can be guaranteed to accurate 
represent other data sets. However, since the low-pass property of spectral reflectance makes it 
possible that a set of spectral reflectance spectra can be represented by a linear model of a 
small number of parameters, if the number of parameters by frequency limits for the two data 
sets are M and N respectively, the number of parameters for the combined set will be max 
(M,N). This suggest all data sets can be fitted appropriately by a single linear model (truncated 
Fourier linear model) with a limited number of parameters that is proportional to the highest 
frequency cut off if the low-pass hypothesis is valid for any of the data sets.  

The physical constraints of spectral reflectance lead to low-pass hypothesis for spectral 
reflectance. The studies of frequency limited functions proposed a hypothesis that the spectral 
reflectance are frequency-limited and low-pass functions [14-17] based on the physical 
properties of smooth reflectance spectra of most material surfaces. Fourier analysis 
decomposes a signal into a set of sinusoidal components represented by a phase spectrum and 
an amplitude spectrum. For a reflectance function P(), the discrete Fourier transform (DFT) as 
a expansion of Fourier series as: 
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Where for any non-negative integer n, 
T
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2
  is the nth harmonic (in radians) of 

the reflectance function P, while an and bn are the even Fourier coefficients and odd Fourier 
coefficients respectively, T is the period of the signal and usually T=300 nm in the range of 400 
nm to 700 nm. A relation exists between the Fourier frequency limitation (band limit) of a 
collection of signal and the number of significant independent samples required to represent the 
signal in the collection. This relationship can be expressed as: 

 
N=(2fT)+1           (3) 

 
Where (x) stands for the highest integer number smaller than x, and f is the band limit 

and T is signal extent, which in the case of spectral reflectance, f is in cycles per nanometre, 
and T is 300 nm. If a band limit of 0.01 cyc/nm is selected, the number of independent samples 
N of 7 is obtains, which means the range of integer n of Equation (3) will equals (N-1)/2=3. Thus 
the truncated Fourier series of 7 basis functions are used as a linear model to approximate the 
original reflectance spectra as Equation (4):  
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Although it is obvious that mathematically a PCA based linear model which is the 

optimal model to represent the spectra data set will always be more efficient than a truncated 
Fourier linear model, the truncated Fourier linear model can be more independent. As a 
universal single linear model, it is important to determine the band limit of the truncated Fourier 
model when the model is used to represent spectral reflectance. In this work, spectral 
reflectance data sets from hyperspectral images were formed, and the truncated Fourier model 
was applied to each data set as an encoding of spectral information. The objective of this study 
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is to evaluate the performance of using the truncated Fourier linear model to represent spectral 
images.  

 
 

2. Research Method 
In this work, we collect several groups of spectral images which are consisted of a set 

of forest and coral images [18], a set of indoor images [19] and a set of natural and indoor 
images [20, 21]. According to their image contents, 6 image groups are classified into Forest, 
Coral, Rural, Urban, Flower and Man-made. Forest and Coral image groups contain 12 forest 
and 10 coral images respectively. Forest images consist of objects include trees, grass, leaves, 
rock and soil, while Coral images only consist of various corals. Rural images include 3 images 
(resolution varies from 663×721 pixels to 700×820 pixels) of rural scenes in the Minho region of 
Portugal, each containing rocks, trees, leaves, grass, and earth. Urban images contain 4 
images of urban scenes (three are in similar resolution from 681×418 pixels to 700×608 pixels, 
one is in resolution of 1017×1340 pixels), from the cities of Porto and Braga, Portugal, which 
include various buildings and small amount of trees. Flower images consist one red flower 
(460×460 pixels), one yellow flower (1019×1337 pixels) and a smaller amount of leaves. Man-
made images contain indoor scenes (one 820×810 pixels, five 250×250 pixels), which consist of 
objects including fabric, colour chart, paper, plastic, etc. The Forest and Coral images have a 
spectral dimension of 40, and images for all other groups have a spectral dimension of 31 (in 
the range of 400-700 nm and sampled at 10 nm intervals). Each image contains a large volume 
of data (for example, one forest image contains 128×128×31 values). In order to reduce the 
computational complexity, only 1024 pixels are randomly selected from each image, and the 
chosen reflectance sets of each image group are combined together to form a large reflectance 
spectra set which represents the particular class of scenes (this is possible because one object 
is composed of many pixels which all have identical or similar spectral reflectance). This method 
has been applied to all image groups except for Man-made. For the Man-made image group 
1024 pixels were randomly selected from all 5 small images (250×250 pixels) and another 1024 
pixels were randomly selected from the large image (820×810 pixels). The reason to do this is 
to balance the occurrence of reflectance in each different scene, since those 5 small images 
were derived from a larger hyperspectral image which captured one scene, their reflectance 
spectra are considered to be a single set rather than 5 separated sets. In this study, a set of 
uniform surface spectra was also considered for comparison. It is a set of 1269 Munsell 
samples [14] each measured between 400 nm and 700 nm at 10 nm intervals.  

For each spectral reflectance function, a DFT was performed using the fft function 
available in Matlab. The proportion of spectral energy below a certain frequency is represented 
by the proportion of cumulative power in that spectrum, which can be calculated by dividing the 
sum of power of each frequency by the total cumulative power in that spectrum. Figure 1 
illustrates the process of calculating the proportion of the cumulative power for one Munsell 
reflectance sample. Because the sampling wavelength is 400 nm to 700 nm at 10 nm, the 
sampling resolution of 31 results in a Nyquist frequency of 15 cycle per 300 nm, so the range of 
frequency content is from 0 to 15 cyc/300 nm at 1 cyc/300 nm intervals (0 to 0.05 cyc/nm at 
0.0033 cyc/nm intervals) as shown in Figure 1. For the Forest and Coral reflectance spectra, 
which have a sampling resolution of 40 across the wavelength of 400nm to 700nm, the range of 
frequency content is from 0 to 20 cyc/300 nm at 1 cyc/300 nm intervals (0 to 0.06667cyc/nm at 
0.0033cyc/nm intervals). 

As mentioned by other authors, most of the reflectance spectra have a null or residual 
amount of energy in the short wavelength but have a high level, if not a maximum of energy at 
700nm, any difference between the values of the spectra at the two ends introduces spurious, 
high frequency components into the power spectrum. To attenuate these artifacts, a Hanning 
window function was used to multiply to the original spectral reflectance before it was 
transformed to the Fourier domain. The Hanning window has very little energy above 2 
cyc/300nm, for the windowed version, the discarded energy above a certain frequency which is 
equal or higher than 2 cyc/300nm will be belong to spectral reflectance, while for frequency limit 
is less than 2 cyc/300nm, the discarded energy includes both Hanning window and spectral 
reflectance which can not be separated. The power spectra after applying Hanning window are 
of poor quality, but the intention is to obtain an overall estimation of power in various parts of the 
power spectrum, which is possible in spite of the obvious smearing. 
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Figure 1. Procedure for Calculating the Proportion of Spectral Energy below Particular 
Frequency Limit (cyc/300nm) for One Spectral Reflectance Sample 

  
 

In our study, the DFT as a truncated Fourier series were used as a linear model to fit 
the original reflectance spectra of different group data sets by the following form: 
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Where P() is the reflectance spectrum, ci is the coefficient, and fN is the Nyquist 

frequency, which satisfies n=2fNT+1, where T is the signal extent (usually 300 nm). For any 
frequency there are two basis functions: a sine and a cosine functions. The number of basis 
functions increases with the increase of frequency fi from 1 to fN, and a truncated serious at i 
(0<i<N) represent a reconstructed reflectance spectrum with a band limit of fi.  In the study, the 
linear model for spectral reflectance in terms of truncated Fourier series was implemented by 
making magnitudes of a series frequency to be zero to remove the energy above a certain band 
limit, an inverse Fourier transfer (ifft function available in Matlab) was then applied to obtain the 
reconstructed reflectance spectrum.  

The Hanning window was multiplied to each individual original spectral reflectance 
before DFT, the reflectance modelled by truncated Fourier series was then divided by the 
original Hanning window to create the reconstructed reflectance. The chromatic errors between 
original and reconstructed spectra were calculated in terms of CIELAB ∆E*ab for each band 
limit from 1 to fN, and RMS errors were used to evaluate the performance of spectral 
reconstructions. 
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3. Results and Discussion 
Table 1 lists the average proportion of cumulative power for each of the 7 sets of 

reflectance spectra. It is obvious that for all sets of reflectance data, with the increasing of band 
limits, the proportion of cumulative power increases and reaches 100% at a certain frequency 
which is usually the Nyquist frequency. Although showing a similar trend, different data sets 
illustrate various degree of change: Flower set shows the largest variation and urban set shows 
the smallest variation.  

 
 

Table 1. Average Proportion of Cumulative Power of Corresponding Frequency 

Frequency 
cyc/300 nm 

Proportion of cumulative power 

Forest Coral Rural Flower Urban 
Man-
made 

Munsell 

0 0.7346  0.7492  0.7363  0.6837  0.8011  0.7554  0.7817 

1 0.9768  0.9623  0.9780  0.9247  0.9928  0.9269  0.9812 

2 0.9931  0.9699  0.9936  0.9582  0.9968  0.9795  0.9971 

3 0.9973  0.9729  0.9971  0.9661  0.9977  0.9917  0.9992 

4 0.9981  0.9762  0.9989  0.9709  0.9982  0.9942  0.9997 

5 0.9985  0.9807  0.9992  0.9739  0.9984  0.9957  0.9998 

6 0.9986  0.9825  0.9993  0.9766  0.9987  0.9972  0.9999 

7 0.9988  0.9842  0.9994  0.9793  0.9988  0.9979  1.0000 

8 0.9989  0.9858  0.9995  0.9820  0.9990  0.9984  1.0000 

9 0.9991  0.9872  0.9996  0.9845  0.9991  0.9987  1.0000 

10 0.9992  0.9885  0.9996  0.9870  0.9993  0.9990  1.0000 

11 0.9993  0.9897  0.9997  0.9895  0.9994  0.9991  1.0000 

12 0.9994  0.9910  0.9998  0.9922  0.9995  0.9993  1.0000 

13 0.9995  0.9920  0.9999  0.9949  0.9997  0.9995  1.0000 

14 0.9995  0.9930  0.9999  0.9975  0.9998  0.9997  1.0000 

15 0.9996  0.9940  1.0000  1.0000  1.0000  1.0000  1.0000 

16 0.9997  0.9952  **** **** **** **** **** 

17 0.9998  0.9963  **** **** **** **** **** 

18 0.9999  0.9974  **** **** **** **** **** 

19 0.9999  0.9986  **** **** **** **** **** 

20 1.0000  1.0000  **** **** **** **** **** 
 (**** not available) 

 
 

Arbitrary percentage of 99% and 99.9% cumulative power level have been selected as 
criterions, the corresponding band limits for different group data sets were estimated by a linear 
interpolation of frequency series, and the results are shown in Table 2. The resulting band limits 
for the non-windowed and windowed cases are fundamentally different for some data sets. It 
has been mentioned in the literature that straightforward DFT on the spectral reflectance will 
lead to misestimating of the power spectrum because of the “windowing” effect of the 
reflectance its own. The result in Table 2 shows the great effects of the “windowing” of 
reflectance spectra of low frequency such as the Rural and Man-made data sets: without 
applying Hanning window, the “windowing” effect of spectral reflectance causes unexpected 
power at high frequency; while after adding Hanning window, the “windowing” effect is reduced, 
therefore the power spectrum reflects correct percentage of cumulative power.  

The Hanning window has the effect of reducing the candidate band limits by reducing 
the “windowing” effect of spectral reflectance, but it is also noticed that for Munsell set of 99% 
criterion, there is a little increase. This doesn’t mean the using of Hanning window is wrong. On 
other hand, it shows the phenomenon that after applying Hanning window, for all data sets the 
cumulative energy at 0 cyc/300 nm (DC component) is always lower than Non-window vision, 
and for Munsell set the cumulative energy at both 0 and 1 cyc/300 nm is lower than Non-window 
vision. This is because Hanning window has a cut of at 2 cyc/300 nm with most energy below 1 
cyc/300 nm. Also because the band limit is estimated by a linear interpolation, the resulting 
band limits which are below 2 cyc/300 nm is not as accurate as band limits estimated beyond 2 
cyc/300 nm.  
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Table 2. Candidate Frequency Band Limits for All Data Sets of both Window and Non-window 
Versions based on Criterions of 99% and 99.9% Proportion of Cumulative Power 

 Proportion of cumulative power 

 99% 99.9% 

Data set Non-windowed Windowed Non-windowed Windowed 

Forest 4.48 1.81 17.33 8.50 

Coral 13.33 11.23 19.44 19.29 

Rural 9.85 1.77 14.41 4.33 

Flower 12.61 11.19 14.76 14.60 

Urban 4.92 0.99 13.43 8.00 

Man-made 9.18 1.86 14.29 10.00 

Munsell 1.11 1.55 8.00 2.90 

 
 

Apart from the effects of Hanning window, the band limits for different data sets vary a 
lot with a certain percentage criterion. In most case, Munsell set needs lower frequency than 
other data sets to recover the same proportion of energy, while Coral and Flower data set need 
relatively higher frequency limits than the rest of data sets. Figure 2 and Figure 3 illustrate the 
average reconstruction errors in CIELAB ∆E*ab and RMS errors respectively. In general, the 
higher frequency chosen, the smaller reconstruction errors produced (both spectral and 
colorimetrical), with some exceptional cases of CIELAB ∆E*ab of relatively high frequency limits 
for some data sets, which indicates that linear modelling of truncated Fourier fitting is not 
adequate to model the chromatic response.  

 

Figure 2. Average CIELAB ∆E*ab of the 7 
Reflectance Data Sets 

Figure 3. Average RMS Errors of the 7 
Reflectance Data Sets 

 
 

CIELAB ∆E*ab of 1 unit have been selected as a threshold, the corresponding band 
limits for different group data sets were estimated by a linear interpolation of frequency series, 
and the results are shown in Table 3. It can be found, for 7 group data sets, a range of band 
limits from around 2 to 4 cyc/nm will eventually constrain the average CIELAB ∆E*ab to be less 
than 1. Although reconstruction errors always decrease with the increase of band limits, they 
are not efficiently optimized in terms of both spectral and colorimetrical errors. For a linear 
model of truncated Fourier series, the number of basis functions N is determined by  
equation (6): 
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Where fi is the frequency of 1, 2… to fN cyc/300 nm of Nyquist frequency, Table 3 also 
list the corresponding required number of basis functions, which are higher than using PCA 
based linear modelling.  

 
 

Table 3. Candidate Frequency Band Limits for All Data Sets based on a Criterion of 1 Unit 
CIELAB ∆E*ab for Average Reconstructions. 

Data set Band limit Number of basis functions 

Forest 2.50 6 

Coral 1.96 5 

Rural 3.79 8 

Flower 4.02 9 

Urban 2.25 6 

Man-made 3.86 9 

Munsell 2.64 7 

 
 

4. Conclusion 
The frequency analysis of reflectance spectra shows that the low-pass hypothesis are 

applied to most of the reflectance spectra, except for Flower and Coral data sets, which show a 
high frequency limit for the cumulative energy below a certain proportion. But all reflectance 
data sets provide a low band-limit if selecting 1 unit average CIELAB ∆E*ab as the criterion. 
This result is consistent with the low-pass property of human-visual system that the three 
classes of cones act as low-pass filters that eliminate frequency higher than 5-6 cyc/300nm. 
Although the number of linear model of the truncated Fourier series is always larger than the 
basis function of conventional PCA linear model, it provides an universal model of small number 
of parameters without the prior knowledge of spectra data sets, and the color information can be 
well preserved. As far as the low-pass hypothesis is valid for reflectance spectra, this model can 
be used for any data sets. The further study will be focused on the optimization of the truncated 
Fourier series linear modelling to minimize visual differences of reconstructed spectral images.    
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