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ABSTRACT

Alzheimer’s disease (AD) is a non-curable neuro-degenerative disorder that has no
cure to date. However, it can be delayed through daily activity assessment using a
robust electroencephalogram (EEG) based system at an early stage. A selection tech-
nique using a Shannon entropy to signal energy ratio is proposed to select optimal
EEG channels for AD detection. A threshold for channel selection is calculated using
the best detection accuracy during backward elimination. The selected EEG channels
are decomposed using tunable Q-wavelet transform (TQWT) into nine different sub-
bands (SBs). Four features: Katz’s fractal dimension, Tsallis entropy, Relyi’s entropy,
and kurtosis are extracted for each SB. These features are used to train and test sup-
port vector machine, k-nearest neighbor, ensemble bagged tree (EBT), decision tree,
and neural network for detecting AD patients from normal subjects. 16-channel EEG
signals from 12 AD and 11 normal subjects recorded using the 10-20 electrode place-
ment method are used for evaluation. Ten optimized channels are selected, resulting in
32.5% compression. The experimental results of the proposed method showed promis-
ing classification accuracy of 96.20% with the seventh SB features and EBT classifier.
The significance of these features was inspected by using the Kruskal-Wallis test.
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1. INTRODUCTION
In recent years, human life expectancy has increased due to the constant development of medical health

care systems. In the UK, life expectancy is increased to 79 and 83 years for male and female respectively [1].
However, this leads to getting more neurological disorders that can have adverse effects on the daily routine
of human beings. Though developed countries explore human brain, the Alzheimer’s disease (AD) is still a
non-curable neuro-degenerative disorder. If AD is left without proper treatment, it can lead to the death of
AD patient. Almost 20-25% people of age more than 65 years suffer from mild cognitive impairment (MCI).
For every three seconds, someone develops dementia somewhere in the world. It is reported that almost 50
million people have dementia in the year 2020. This AD rate is rising to double every 20 years, it will reach
80 million in 2030 and 150 million in 2050 [2]. AD is caused due to spread of brain cell loss, senile plaques,
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and neurofibrillary tangles. As the progression of AD, the cognitive deficits like judgment, planning etc will be
observed in the AD patients [3]. Thence, it is desire to develop a robust method to detect AD at an early stage.
The AD shown predominant abnormalities in electroencephalogram (EEG) such as reduction in complexity,
slowing, and perturbations in synchrony. In earlier reported work, the EEG has shown promising results for
other neurological disorders like motor imagery, sleep stages, seizure, and alcoholism detection [4] because of
its high temporal resolution, portability and non-invasive nature [5].

In earlier reported work, EEG-based different entropy algorithms have been introduced to detect AD
such as approximate entropy (ApEn) [6], spectral entropy (SpEn), sample entropy (SampEn) [7], multiscale en-
tropy (MSE) [8], auto mutual information (AMI) [9], quadratic sample entropy (QSE) [10], and fuzzy entropy
(FuzzyEn). It was found that the ApEn, SampEn, SpEn, and FuzzyEn values are lower in AD patients’ EEG
than NC [11]. Abásolo et al. [9] utilized AMI and ApEn features to detect AD and reported 90.91% of max-
imum classification accuracy. However, these entropies are biased estimators and very sensitive to parameter
value. For instance, Fiscon et al. [12] used both fast Fourier transform (FFT) and wavelet domain features with
decision tree (DT) and reached upto 93% classification rate. Despite having an EEG dataset of AD, MCI, and
normal controlled (NC) subjects, they performed only binary classification. Burcu et al. [13] has developed
an efficient technique to detect AD from NC. Authors used power spectral density (PSD) and coherence-based
features with support vector machine (SVM) and k-nearest neighbor (KNN) classifiers. Consequently, obtained
an accuracy of 93% and 94% for SVM and KNN respectively. In a recent study, [14] utilized empirical mode
decomposition (EMD) and wavelet-based Hjorth parameters (HP) with SVM and KNN to detect the AD from
NC subjects. They achieved 95.79% of accuracy using SVM.

Sharma et al. in [15], evaluated the parameters PSD, crest factor, fractal dimension, kurtosis, skew-
ness, and entropy from AD and NC EEG signals. The SVM and artificial neural network have trained and
tested using these parameters with a 10-fold cross-validation technique and reached to 89% accuracy. Simi-
larly, Durongbhan et al. in [16], investigated the frequency and time-frequency based features to detect AD.
The results obtained from the this method demonstrated that the classification accuracy reached up to 93% for
FFT and 95% for the wavelet-based feature set by KNN classifier with k = 2.

In the above discussed state-of-art techniques are bounded by their performance over many limitations,
which are as follows: i) The non-linear features (different types of entropies) fail to capture spectral informa-
tion of EEG signals as they are used in the time domain; ii) The FFT-based methods suffer from localization
problems in time and frequency. Hence, it’s difficult to identify significant features from EEG signals; iii)
Several studies proposed methods on wavelet-based techniques. However, the selection of the mother wavelet
function and number of levels is a tedious task; and iv) On the other hand, the earlier proposed methods have
utilized EEG signals captured from all channels. Hence, there is an increase in computational complexity and
data redundancy.

We proposed a novel framework for detecting AD patients from NC subjects based on channel opti-
mization and feature extraction from Tunable-Q Wavelet Transform (TQWT) to address these limitations. The
main contributions of the proposed technique are as follows: i) The present study proposed a novel method to
optimize the number of EEG channels used for the detection of AD patients from NC subjects; ii) To overcome
the limitations of FFT and wavelet transform limitations, the TQWT decomposition technique is employed
to get the EEG subbands (SBs); iii) Four features, namely, Katz’s fractal dimension (KFD), Tsallis entropy
(TsEn), Renyi’s entropy (ReEn), and kurtosis (K), were extracted from decomposed EEG SBs; iv) The signifi-
cance of these features has been checked using Kruskal-Walli’s (KW) test; and v) Combination of TQWT and
different classifiers such as decision tree (DT), SVM, KNN, neural network (NN), and ensemble bagged tree
(EBT) have been exploited with a ten-fold cross-validation technique.

2. PROPOSED METHOD
The proposed method consists of four steps: i) channel optimization, ii) TQWT decomposition, iii)

feature extraction, and iv) classification. The channel optimization has been done using Shannon entropy
to signal energy ratio. In the second step, the EEG signals from selected channels were decomposed using
TQWT into nine SBs. Subsequently, four features are extracted for the selected SBs. Finally, these features
were employed to train and test set of five different classifiers with a ten-fold cross-validation technique. The
proposed method has illustrated in Figure 1.
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2.1. EEG dataset
In the present study, the 12-AD and 11-NC subjects were recruited from Alzheimer’s Patients’ Rela-

tives Association of Valladolid (AFAVA) for the EEG recordings. The 12 AD patients (7-female and 5-male)
having age 72.8 ± 8.0 (mean ± standard deviation (STD)) years. AD patients were gone through the clinical
evaluation, including brain scan and physical test with mini-mental state examination (MMSE) to check their
cognitive ability. The MMSE score for AD patients is in the range of 13.2 ± 5.92 points (mean± STD). On
the other hand, 11-NC (4-female and 7-male) age-matched subjects were enrolled for EEG recordings. The
ages of NC subjects varied from 72.7± 6.2 years (mean ±STD). After clinical and physical evaluation of NC
subjects, it was found that they didn’t have any present or past neurological disorder. All EEG signals were
recorded using 10-20 electrode placement method by study room 2.3.411 EEG system (Oxford instrument)
using 16-electrodes namely, Fz , Cz , Pz , O1, O2, F3, F8, Fp1, Fp2, F4, F7, C3, C4, T4, T3, T6, and T5 during
day time in multiple sessions. EEG signals are captured during the eye-closed and resting state of the subject
in order to reduce the artifacts from EEG recordings. The total five seconds EEG signals were sampled at
256 Hz sampling frequency using 12-bit analog to digital converter. All subjects willingly participated in the
EEG recording activity and written informed consent was taken from NC subjects and caregivers of demented
patients. The local ethical committee approved this process of EEG recording of Hospital Clinic Universitario
de Valladolid (CUV) [17]. This EEG data of AD and NC already used in the [17], [18]. All EEG signals
recorded using 16 electrodes are used in the proposed study. The typical sample EEG plots for AD patient and
NC subject recorded from Cz electrode is shown in Figures 2(a) and (b).
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Figure 1. Flow diagram of proposed method

Figure 2. Sample EEG signals of Cz electrode for five second time: (a) AD and (b) NC

2.2. Channel selection method
It is not feasible for any proposed technique to use EEG signals from all the channels. It is desired to

develop a method with optimal channel selection to reduce the data redundancy, and computational complexity
[19], [20]. EEG signal from each channel is filtered into delta (δ: 0.5-4 Hz), theta (θ: 4-8 Hz), alpha (α: 8-13
Hz), and beta (β: 13-30 Hz) EEG SBs [21]. The channel selection criteria Shannon entropy (ShEn) to signal
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energy (E) ratio (SESER) were measured from all EEG SBs from each channel. Afterwords, to remove the
redundant EEG channels backward elimination process has been adopted. The SESER is given by (1),

SESER =
ShEn

E
=

−
∑

Pmlog(Pm)∑
s(n)2

(1)

where, Pm are the probabilities of a datum being in bin and s(n) represent samples in EEG data sequence. The
signals showing maximum E, minimum ShEn, and minimum SESER value were employed on EEG channels.
Out of 16 EEG channels only ten most significant channels (Cz , Pz , O1, O2, Fp1, Fp2, C3, T4, T3, and T5) were
selected for feature extraction process followed by classification. The Pseudo code for channel optimization
have been represented in Algorithm 1.

Algorithm 1 Pseudo code for channel selection algorithm
1: Filter EEG signal into EEG SBs. Find ShEn/E ratio. Get max(ACC) = TH , channel count j = 16;
2: while (1 ≤ i ≤ 16) do
3: Remove Cj

4: if ShEn/E ≥ TH then
5: Reject the channel Ci;
6: j ← j − 1;
7: else
8: j ← j − 1, Don’t reject Cj

9: end if
10: i← i+ 1;
11: end while
12: The value of j gives the number of optimal channels.

2.3. Tunable Q-wavelet transform (TQWT)
The TQWT is widely used decomposition technique in biomedical signal processing applications. It

has the ability to detect the oscillatory and transient components from the signals. TQWT consists of two
variable parameters named redundancy (R) and quality factor (Q). Q and R can be changed to get the required
time-frequency resolution. The TQWT is consists of a filter bank with two channels, and it can be used
iteratively until to get desired time-frequency resolution [22]. The lowpass filter (LPF) can be expressed as:

H0(w) =


1, |w| ≤ (1− β)π

Θ(w+(β−1)π
α+β−1 ), (1− β)π < |w| < απ

0 απ ≤ |w| ≤ π

(2)

the expression for high-pass filter (HPF) frequency response is as (3) [22]:

H1(w) =


0, |w| ≤ (1− β)π

Θ( απ−w
α+β−1 ), (1− β)π < |w| < απ

1 απ ≤ |w| ≤ π

(3)

the expression for Θ(w) shown in above equations is as (4) [22]:

Θ(w) =
1

2
[cos(w) + 1][2− cos(w)]0.5, |w| ≤ π (4)

where α and β are the scaling parameters of LPF and HPF in the range of 0 to 1. These parameters should be
selected to satisfy α + β > 1. The Q is depending on the SB central frequency (f0) and Bandwith Bw and
Q = f0/Bw. The α and β can be measured from Q and R using β = 2/(Q+1) and α = 1− β/R [22]. In the
proposed method we have mentioned that EEG signals from selected channels have been evaluated to detect
the AD from NC. In decomposition of EEG signals using TQWT, the selection of the parameters like Q, R, and
J is very important. We adopted the systematic search technique for optimization of Q, R, and J parameters.
The parameters Q and J were varied in the range 1 to 10. The experimental results showed that at Q = 1 and
J = 8 the proposed method provides the highest accuracy. The Value of R=3 to avoid the unwanted excessive
ringing of wavelets while performing the TQWT. Here, to find the discriminant features from EEG signals of
AD and NC, we selected Q = 1, R = 3, and J = 8. Thus, nine different SBs from each raw EEG signal have
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been evaluated to detect the AD patient from NC subjects. The frequency response of TQWT for specified
values of Q, R, and J has shown in Figure 3.

2.4. Feature extraction
EEG signals are decomposed into nine different SBs using TQWT to extract significant and dominant

features. These SBs are used to extract the four features, namely, KFD, TsEn, ReEn, and K. Further to check
the significance of the features KW test have been employed on feature vectors. The KW test is non-parametric
technique used to check whether samples belongs to same distribution. It has ability to evaluate the two or
more independent samples of different or equal sizes [5], [19]. TsEn is used to evaluate the physical behaviour
of any system. It is a generalization of ShEn. It can be used in the applications of detecting spikes, bursts, and
EEG rhythms. TsEn measure has proved to be more robust compared to ShEn. It can be expressed as [23]:

TsEn =
1

q − 1

(
1−

N∑
m=1

pm(v)q

)
(5)

where, q is parameter which is greater than 0. Pm are the probabilities of a datum being in bin. N is number
of samples in EEG. ReEn has been used as feature in many applications of EEG such as epilepsy, drowsiness
detection etc. It generalizes the Hartley entropy, collision entropy, ShEn, and the min-entropy. It is utilised to
calculate entanglement. It can be expressed as [5]:

ReEn =
1

q − 1

(
log

N∑
m=1

pm(v)q

)
(6)

where, q is parameter value between 0 and 1. N is maximum number of segments in EEG signal. The KFD This
is one of the most important type of fractal dimensions used to measure the complexity of any non-stationary
signals. The KFD can be defined as the sum and average of Euclidean distances between successive points of a
sample D and b respectively, are measured also the maximum distance between the first point and other point
of the sample l. The fractal dimension can be expressed as [24]:

KFD =
log(D/b)

log(l/a)
=

log(m)

log(m) + log(l/b)
(7)

where, m = D/a. In this experiment the KFD values of each EEG subband have been calculated and used
as EEG features. The kurtosis (K) can be expressed as a measure of how outlier-prone a distribution is. The
kurtosis of a distribution is given by [25],

K =
E(x− µ)4

σ4
(8)

where, µ is mean and σ is standard deviation (STD). The significance of these features have been investigated
by KW test.
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Figure 3. TQWT-based frequency responses starting from the approximate SB to the detailed SBs
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2.5. Classification
In present study, to detect the AD from NC using KFD, TsEn, ReEn and K feature sets, we explored

various classifiers namely fine-DT, cubic-SVM, cosine-KNN, wide-ANN and EBT. The classifiers, as men-
tioned earlier, are the most powerful, fastest and popular machine learning algorithms in the biomedical signal
processing field. The DT solves the various problems of machine learning by tree representation with less
computations for data reprocessing. The SVM is robust classifier which can be utilised in multi-class or binary
classification or regression. It works on the principle of maximizing the margin in two different classes. To
separate the two classes, an optimal hyper-plane is created as decision surface.

The SVM can effectively and efficiently handle the non-linear data, and it avoids the problems of
overfitting while testing [20], [26]. The KNN is a faster algorithm due to no training time requirement. Its
performance depends on the value of k. In EBT algorithm, we select multiple subsets of training data randomly.
Afterwords, each subset is employed to train the DT. The overall performance is the avarage of all predictions
of various DTs. In this study, the parameters of all classifiers are selected optimally by using experimental
evaluation. The different performance evaluation parameters, including accuracy (ACC), specificity (SPE),
sensitivity (SEN), precision (PPR), F1-score, Mathew’s correlation coefficient (MCC), and Cohen’s kappa
value (κ−value), are calculated to justify the significance of proposed method [27].

3. RESULTS AND DISCUSSION
In present study, to detect the AD from NC using KFD, TsEn, ReEn and Ku feature sets, we explored

various classifiers namely fine-DT, cubic-SVM, cosine-KNN, Wide-NN and EBT. In the present study, for the
detection of AD patients, TQWT based time-frequency method has been used to overcome the limitations of
wavelet and FFT. The TQWT parameters Q = 1, R = 3, and J = 8 are selected to decompose EEG signals
to produce nine SBs. The selected features are calculated from nine SBs. The statistical analysis of extracted
feature sets has been performed using the KW test. KW test provides the value of p probability. If values of p
< 0.05, are significant to discriminate the different classes. The p probability values for KFD, TsEn, ReEn and
K features have shown in Table 1.

Table 1. Summary of p-values calculated using KW test for AD vs NC classes in each SB
Subbands KFD TsEn ReEn K

SB1 1.01× 10−33 3.53× 10−118 3.37× 10−45 4.62× 10−14

SB2 1.94× 10−15 4.44× 10−122 9.82× 10−64 9.34× 10−21

SB3 9.93× 10−17 4.15× 10−87 6.58× 10−42 8.75× 10−7

SB4 5.29× 10−15 5.08× 10−62 1.70× 10−48 1.23× 10−5

SB5 1.15× 10−110 8.03× 10−29 7.49× 10−16 4.25× 10−8

SB6 1.00× 10−139 3.61× 10−4 5.55× 10−24 1.08× 10−17

SB7 2.01× 10−143 4.21× 10−6 6.48× 10−15 4.49× 10−11

SB8 8.92× 10−127 9.43× 10−8 5.45× 10−17 8.89× 10−5

SB9 1.07× 10−150 1.94× 10−4 9.02× 10−14 3.94× 10−12

From Table 1 it is noted that all features are having p < 0.05. Hence, all features were selected for
further analysis. The five different classifiers, namely Fine-DT, Cubic-SVM, KNN, Wide-ANN, and EBT are
trained and tested using the above evaluated feature sets. The model parameters and kernel functions for each
classifier have been adopted from various iterations. The ten number of splits in Fine-DT are selected. In
Cubic-SVM, the kernel was chosen as automatic. The parameter values such as k and number of splits are
50, and 10 were selected. The learning rate of 0.1 and the activation function as ReLu have been selected to
achieve maximum accuracy. In ANN, the layers and iteration limit were two and 500, respectively. Table 2
demonstrates the classification accuracy obtained from various classifiers for each SB. The EBT performs best
out of all five models with a classification accuracy of 96.2% using SB7 feature sets.

After EBT, the KNN performs better and provides an accuracy of 94.1% for SB7. The highest accuracy
obtained from the DT model is 91.9% for SB7, and worst is 87% for SB9. In the case of SVM, higher ACC
obtained is 93.8% for SB7 and lower ACC is 84.8% for SB9. DT and NN perform poor compared to other
classification models. The EBT performs worst for the feature sets from SB9. Out of nine SBs, the seventh SB
have the highest discriminating ability compared to other SBs. The performance evaluation parameters ACC,
SEN, SPE, precision, F1-score, MCC, and κ-value for classifiers with SB7 have presented in Table 3.
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Table 2. The classification accuracy (%) for each SB evaluated by variety of classifiers with 10-fold cross
validation technique when Q = 1, r = 3, and J = 8

Classifier SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8 SB9

Fine-DT 89.3 88.1 89.1 90.5 91.1 91.7 91.9 90.3 87.0

Cubic-SVM 93.7 91.9 93.1 92.8 93.5 93.4 93.8 92.5 84.8
Cosine-KNN 93.1 92.8 92.6 92.5 91.9 92.5 94.1 91.7 83.0

EBT 93.2 91.7 91.4 92.2 93.1 93.1 96.2 93.7 85.5
Wide-ANN 92.3 91.7 92.3 92.8 92.9 91.9 91.7 91.6 84.5

Table 3. Performance parameters of classifiers using SB7 feature sets
Classifier Kernel ACC (%) SEN (%) SPE (%) Precision (%) F1-score (%) MCC (%) κ-value (%)
SVM Cubic 93.80 89.35 96.50 93.24 94.84 86.73 86.64

KNN Cosine 93.10 86.69 96.75 91.77 94.55 85.86 85.59
EBT Bagged tree 96.20 90.49 97.50 93.48 95.09 87.37 87.28

From Table 3, it is observed that EBT has the highest SEN 90.49% and SPE 97.5%. The worst SEN
and SPE noted by DT, i.e. 86.6% and 92.5% respectively. The precision, F1-score, MCC, and κ values for
EBT are 93.24%, 94.84%, 86.73%, and 80.64% respectively.

The comparison of the proposed method with state of the art techniques which have used same EEG
datasets have been shown in Table 4. Abásolo et al. has developed various entropy based technique to detect
the AD from NC from EEG signals and obtained maximum ACC of 90.91% for ApEn and AMI [6], [7], [9],
[10]. Escuredo et al. proposed a MSE based method to overcome the limitations of ApEn and achieved the
ACC of 90.91%. Afterwords, Simons et al. used QSE and FuzzyEn to detect AD [8], [11]. The FuzzyEn
provided the 86.36% classification ACC. It must be noted that the above mentioned methods used only time
domain complexity features. The proposed method achieved the 96.20% ACC with TQWT and EBT from SB7.

The comparison of proposed method with the recently reported methods which used different EEG
datasets have been shown in Table 5. All the methods mentioned in the Table 5 were used wavelet based features
to detect the AD from NC. Safi et al. used wavelet based HP features and achieved maximum ACC of 95.79%
with SVM among all other studies [14]. In the proposed method, EBT classifier has provided promising results
in detecting AD patients from NC subjects using the TQWT based features from the seventh SB.

Table 4. Comparison of proposed method with earlier reported methods for same EEG dataset
Reference Features Classifier ACC (%) SEN (%) SPE (%)
Abasolo et al. [6] ApEn Threshold - 70 100
Abasolo et al. [7] SpEn and SampEn Threshold 77.27 90.90 63.64
Escurdero et al. [8] MSE Threshold 90.91 90.91 90.91
Abasolo et al. [9] ApEn and AMI Threshold 90.91 100 81.82
Simons et al. [10] Quadratic SampEn Threshold 77.27 - -
Simons et al. [11] FuzzyEn Threshold 86.36 90.91 81.82
Puri et al. [18] SpeEn and KC SVM 95.60 95.20 95.20
Proposed work TQWT based TsEn, ReEn, KFD, K EBT 96.20 90.49 97.50

Table 5. Comparison of proposed method with earlier reported methods for same EEG dataset
Ref Dataset Features Classifier ACC (%) SEN (%) SPE (%)
Oltu et al. [13] 20 AD, 15 NC Wavelet Entropy, LDA 78.43 82.35 70.59

band power
Durongbhan et al. [16] 8 AD, 20 NC Wavelet SBs magnitude KNN 83.32 72.57 87.52
Sharma et al. [15] 15 AD, 16 MCI, 13 NC PSD of wavelet SBs SVM 87.90 88.00 88.00

Safi and Safi [14] 20 AD, 31 MCI, 35 NC Wavelet based HP SVM 95.79 91.93 97.85
Proposed 12 AD, 11 NC TQWT based TsEn, EBT 96.20 90.49 97.50

ReEn, KFD, K

4. CONCLUSION
The outspread of AD is increased in recent years. The early detection of AD can delay the growth

of degeneration of neurons in a brain. Hence cost-effective, accessible techniques to detect AD are urgently

Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 3, March 2022: 1420–1428



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 1427

needed. In the present work, we developed a method to detect the AD patients from NC subjects using a novel
approach of channel optimization and TQWT based features extraction. Initially, the number of channels are
optimized using Shannon entropy to signal energy ratio. The EEG signals from 10 optimized channels were
decomposed into nine different SBs. The four different features are extracted from nine SBs to train and test
various classification models. The extracted features from SB7 with EBT produced the highest classification
accuracy of 96.20% with ten-fold cross-validation and it outperforms the state of the art methods.

It is essential to take note of that; the informational index is tiny in light of the fact that most datasets
are not publicly accessible. Large example size and very different arrangements of information are needed to
make this test accessible. Our future work will include the diagnosis of AD patients and general EEG using the
latest in-depth study methods.
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