
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 24, No. 3, December 2021, pp. 1804~1813

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v24.i3.pp1804-1813  1804

Journal homepage: http://ijeecs.iaescore.com

Multicriteria Cuckoo search optimized latent Dirichlet

allocation based Ruzchika indexive regression for software

quality management

R. Chennappan1, Vidyaa Thulasiraman2
 1Department of Computer Science, Periyar University, Salem, India

2Department of Computer Science, Government Arts and Science College for Women, Barugur, India

Article Info ABSTRACT

Article history:

Received Dec 22, 2020

Revised Oct 15, 2021

Accepted Oct 27, 2021

 The paper presents the software quality management is a highly significant

one to ensure the quality and to review the reliability of software products.

To improve the software quality by predicting software failures and

enhancing the scalability, in this paper, we present a novel reinforced Cuckoo

search optimized latent Dirichlet allocation based Ruzchika indexive

regression (RCSOLDA-RIR) technique. At first, Multicriteria reinforced

Cuckoo search optimization is used to perform the test case selection and

find the most optimal solution while considering the multiple criteria and

selecting the optimal test cases for testing the software quality. Next, the

generative latent Dirichlet allocation model is applied to predict the software

failure density with selected optimal test cases with minimum time. Finally,

the Ruzchika indexive regression is applied for measuring the similarity

between the preceding versions and the new version of software products.

Based on the similarity estimation, the software failure density of the new

version is also predicted. With this, software error prediction is made in a

significant manner, therefore, improving the reliability of software code and

service provisioning time between software versions in software systems is

also minimized. An experimental assessment of the RCSOLDA-RIR

technique achieves better reliability and scalability than the existing methods.

Keywords:

Generative latent Dirichlet

allocation model

Ruzchika indexive regression

Multicriteria reinforced Cuckoo

search optimization

Software quality management

This is an open access article under the CC BY-SA license.

Corresponding Author:

R. Chennappan

Department of Computer Science, Periyar University

Salem, Tamilnadu, India

Email: Chennappanphd@gmail.com

1. INTRODUCTION

Software quality prediction facilitates minimizing the software costs and it identifies the risk-prone

software components. Software quality estimation is a process of focusing on software development efforts.

Reliability analysis is a significant indicator for predicting software quality and it has important research

significance in recent days to increase reliable software by quantitatively estimating the software reliability.

Therefore, software reliability prediction models are extremely useful for testing engineers to take critical

decisions, such as the testing resource allocation and software release time evaluation. To construct the

software system more efficiently, novel recent techniques and methodologies are needed for predicting and

estimating software reliability. To improve the reliability of software development, failure prediction using

machine learning is the most significant area of interest.

The existing methods are described in the major issues such as failure to perform optimal test case

selection, scalability performance was not considered, lesser software reliability, higher time consumption,

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Multicriteria Cuckoo search optimized latent Dirichlet allocation based Ruzchika … (R. Chennappan)

1805

minimal scalability, the efficiency of the failure prediction was not improved, and failure to provide the

accurate predictions. To overcome the issues, motivated by this fact, the novel reinforced Cuckoo search

optimized latent Dirichlet allocation based Ruzchika indexive regression (RCSOLDA-RIR) technique is

developed. The strengths of the proposed technique enhance the software quality management, reliability,

and scalability, and reduces the service provisioning time. The main contribution and novelty of the proposed

methodology are summarized as follows:

− The main contribution of the proposed RCSOLDA-RIR technique is introduced to enhance the software

quality management for performing the component-based failure prediction. The contribution is achieved

by Multicriteria reinforced Cuckoo search optimization technique, generative latent Dirichlet allocation

(GLDA) model, and Ruzchika indexive regression.

− Multicriteria reinforced Cuckoo search optimization is applied to find the optimal test case with lesser

cost and minimum time. The novelty involved in multicriteria reinforced Cuckoo search optimization is to

apply the Multicriteria optimization function. According to the multicriteria function, the fitness is

evaluated for all test cases. Depended on the fitness value, the test cases ranked and determine the current

best solution to achieve higher scalability.

− Generative latent Dirichlet allocation model to analyze the component failure density of the given

software product with the selected optimal test cases. It is used to determine the software failure

probability of every component and topic with minimum service provisioning time.

− The novelty involved in Ruzchika Indexive Regression in RCSOLDA-RIR to find the similarities among

two neighboring versions to predict the software quality. Ruzicka's similarity function introduces the

similarity value between zero and one. When the similarity value is higher than the threshold, that is said

to be the higher similarity. Otherwise, it is said to be less similar. Therefore, improving the reliability of

software.

The rest of the paper is organized as follows: in section two, discusses the related works, and section

three provides the methodology of research in detail, and section four describes the experimental evaluation

of different techniques using the schoolmate dataset, the results and discussion are presented in section five,

and the conclusion is provided in Section six.

2. RELATED WORKS

A hybrid Wolf Pack algorithm and particle swarm optimization (WPA-PSO) was developed in [1] to

increase the software reliability. The designed algorithm failed to improve the efficiency of the failure

prediction. A fuzzy PSO algorithm to train the artificial neural network (ANN) based software reliability

model (FPSONNM) [2] was developed to increase the software reliability. But the optimal test case selection

was not performed A multi-objective technique was introduced in [3] to select the minimal test suite. The

designed technique failed to consider reliability estimation. Ant colony optimization (ACO) [4], antlion

optimization (ALO) algorithm [5] were discussed. Differential search algorithm (DSA) was developed in [6]

for optimal choice and allocation of shunt Flexible AC transmission systems (FACTS) device. An error

iterative analysis model was developed in [7] to predict software failures. An artificial bee colony algorithm

and particle swarm optimization (ABC-PSO) were designed in [8]. However, it failed to consider better

scalability performance. A component-based software failure prediction was performed in [9] for reducing

the complexity of the system. A generalized software reliability growth method was developed in [10] for

detecting the software failure data.

A multi-criteria test case selection method [11] was introduced. However, it failed to choose the

optimal test cases for detecting more faults. An optimized neuro-PSO-based software maintainability

prediction model was introduced in [12] to optimize the software maintenance prediction result. Different

machine learning algorithms were developed in [13] to increase the accuracy of software failure prediction.

But the algorithms failed to perform the scalability analysis. The soft computing techniques were introduced

in [14] for predicting software reliability. A new framework was developed in [15] for detecting the error in

the software system. But the designed framework failed to accurately detect the error with the help of test

cases. A novel canonical correlation analysis was performed in [16] for identifying the heterogeneous fault

prediction. However, the correlation analysis failed to validate the generalization ability of software defect

prediction. A median absolute deviation threshold-based spectral classifier was developed in [17] to increase

the software quality. A new nonnegative sparse graph-based label propagation model was introduced in [18]

to identify the software defects. However, efficient defect prediction performance was not achieved. A

learning deep feature representation (LDFR) was developed in [19] to identify the software faults. The deep

learning concept was introduced in [20]-[21] to improve the software reliability factors.

Autoregressive integrated moving average (ARIMA) and long short-term memory model (LSTM)

were used in [22] to reduce the error rate. Logistic regression and random forest were introduced in [23] to

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 24, No. 3, December 2021: 1804 - 1813

1806

improve the accuracy. An enhanced software quality monitoring framework was developed in [24]. An

ensemble oversampling method [25] and finding faults using ensemble learners (ELFF) [26] were presented

to predict the defects. However, it failed to investigate the factors that may impact the defects in a new

software version. Different software piracy techniques were introduced in [27] to resolve privacy in software

development.

3. RESEARCH METHOD

The test case is a set of conditions or rules to test the quality and satisfying the user requirements.

The combination of test cases collectively named test suites. When considering a large number of test cases,

the system consumes more time for testing the software products. Accordingly, the quality of the software

gets reduced. In this paper, a novel technique called RCSOLDA-RIR is introduced for improving the

software quality by using test cases on open-source applications.

Figure 1 given illustrates the flow process of the proposed RCSOLDA-RIR to achieve better

scalability and reliability. Initially, the different software program source codes are taken from the

schoolmate dataset for testing the quality. The RCSOLDA-RIR technique performs component-based

software quality development. The component is an independent piece of code that deals with the amount of

functionality. Initially, the Multicriteria reinforced Cuckoo search optimization technique is applied for

choosing the optimal test case for testing the given software program codes. The generative latent Dirichlet

allocation (GLDA) model is applied in the RCSOLDA-RIR technique to measure components and the topic

failure density with the selected optimal test cases. Finally, Ruzchika Indexive Regression is applied to

predict component failures. This process of the RCSOLDA-RIR technique is explained in the following

subsections.

Figure 1. Flow process of proposed RCSOLDA-RIR technique

3.1. Multicriteria reinforced Cuckoo search optimization

Initially, the source codes are collected from the different version management systems. In software

engineering, a component is an independent part of source codes. After collecting the components, the

defects of each source code line are identified by testing the quality of the software. The testing of source

code lines in a given software program application is performed through the optimal test suites. A test suite

comprises the number of test cases. Among the multiple test cases, an optimal test case is selected to test the

quality of the software program. The proposed RCSOLDA-RIR technique uses the multicriteria reinforced

Cuckoo search optimization to choose the optimal test case. In existing, Cuckoo search optimization is used

to solve the optimization issues and discover the best solution. Multicriteria denote an optimization technique

that considers the multiple objective functions. Multiple objective functions are used to minimize the cost and

time. Reinforced means strengthen the optimization algorithm by using the multicriteria function. Reinforced

Cuckoo search optimization is used to solve the multicriteria problem. The flow process of the multicriteria

reinforced Cuckoo search optimization is illustrated in Figure 2 [28]. Figure 2 demonstrates the flow process

of the multicriteria reinforced Cuckoo search optimization for obtaining the optimal test case selection. The

multicriteria reinforced Cuckoo search optimization is a population-based search process in which the

number of Cuckoos (i.e. test cases) is initialized in search space.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Multicriteria Cuckoo search optimized latent Dirichlet allocation based Ruzchika … (R. Chennappan)

1807

Figure 2. Flow process of multicriteria reinforced Cuckoo search optimization

In the search space, the population of the Cuckoo (i.e. test case) is initialized.

𝛿𝑖 ∈ 𝛿1, 𝛿2, … . 𝛿𝑛 (1)

After the population generation, the fitness is computed based on the multicriteria function as (2).

φ
F
= argmin⁡(𝑃𝛿𝑖 , 𝑄𝛿𝑖) (2)

Where,φ
F
 denotes a fitness of each test case, ‘𝑃𝛿𝑖’ indicates the cost of the test case, ‘𝑄𝛿𝑖

’ symbolizes the

time consumed by a test case to test the quality of a given software program. The cost of the test case ‘𝑃𝛿𝑖’ is

measured as (3).

𝑃𝛿𝑖 = [𝑆𝜇] + [𝑇𝜇] + [⁡𝐾𝜇] (3)

Where, ‘𝑆𝜇’ stand for memory utilized to store the source codes and ‘𝑇𝜇’ designates the amount of memory

consumed to test the quality, ‘𝐾𝜇’ shows the memory utilized to store the operational knowledge of the software

system. Then the time consumption to test the quality of a given software program is measured as (4).

𝑄𝛿𝑖
= 𝑡⁡[𝑡𝑆𝑃] (4)

Where ‘𝑡(𝑡𝑆𝑃)’ symbolizes the amount of time consumed by the test case to test the overall software product

quality. Based on the fitness value, the test cases are ranked in an ascending order to find the current best

solution.

From Table 1, the five test cases are ranked based on the fitness value. As a result, higher-ranked

test cases are chosen to test the software product lines to predict the defects in each component. The

algorithmic process of the multicriteria reinforced Cuckoo search optimization based test case selection is

described as Algorithm 1.

Algorithm one given illustrates multicriteria reinforced Cuckoo search optimization to select the

optimal test case for software code testing. Algorithm 1 shows the optimal test case selection to test the

quality of given software programs taken from the dataset. The numbers of test cases are initialized in search

space. After the initialization, the fitness of each test case is measured based on the multicriteria function.

Based on the fitness value, the test cases ranked and find the current best solution. This process is iterated

until the maximum iteration gets reached. Therefore, the selected test cases are used to test the quality of the

program with minimum time.

Table 1. Test case ranking
Test Cases Rank

𝜹𝟏 1

𝜹𝟐 2

𝜹𝟑 3

𝜹𝟒 4

𝜹𝟓 5

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 24, No. 3, December 2021: 1804 - 1813

1808

Algorithm 1: multicriteria reinforced Cuckoo search optimization
Input: Set of test cases in the test suite 𝛿1, 𝛿2, … . 𝛿𝑛
Output: Select optimal test cases for software code testing

Begin

1. Initialize the population of test cases 𝛿1, 𝛿2, … . 𝛿𝑛
2. While (t <max_iter)

3. For each test case 𝛿𝑖
4. Compute the fitness ‘φF’

5. Rank 𝛿1, 𝛿2,… . 𝛿𝑛 based on 𝜑𝐹
6. Find current best 𝛿1, 𝛿2, … . 𝛿𝑛
7. Choose the current best 𝛿1, 𝛿2, … . 𝛿𝑛 for testing the software program
8. End for

9. End while

10. End

3.2. Generative likelihood latent Dirichlet allocation model
After finding the optimal test cases, the generative latent Dirichlet allocation model is designed in

the RCSOLDA-RIR technique for increasing the reliability of the system by predicting the software failure

density based on the posterior probability distribution. Here, the generative model is a statistical model of the

joint probability distribution on observable variables i.e. topics in software products, and a target variable i.e.

failure occurrences.

In existing, LDA is unsupervised machine learning. It is a statistical topic model which has been

broadly applied to abstract semantic information from software source code and a failure density by using

mapping failures. LDA is used to predict the component failures for software source code topic mining. By

applying the generative latent Dirichlet allocation model, the probability of the failure occurrences of the

components is measured using optimal test cases. Therefore, the probability distribution [29] is obtained as (5).

𝑃(𝜃𝑚𝑐 , 𝑧𝑡 ⁡|⁡𝜔𝑠, 𝛼𝑝, 𝛽𝑓) =
𝑃(𝜃𝑚𝑐,𝑧𝑡,𝜔𝑠⁡|⁡𝛼𝑝,𝛽𝑓)

𝑃(𝜔𝑠⁡|⁡𝛼𝑝,𝛽𝑓)
 (5)

Where, 𝑃 denotes a probability of the failure occurrence, 𝛼𝑝 is the parameter of the topic before distribution,

𝛽𝑓 denotes a parameter of the failure distribution probability, 𝜃𝑚𝑐 denotes a joint distribution of the topic

mixture, 𝑧𝑡 indicates topics in a software product, 𝜔𝑠 indicates a set of ‘n’ source code lines. The probability

values are lie between 0 to 1. If the probability is higher, then the results confirmed that the maximum

possibility of failure occurrences.

To improve the reliability of the system, the Software failure density [29] for each component is

measured as (6).

𝑆𝐹𝐷𝑐 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑙𝑖𝑛𝑒𝑠𝑜𝑓𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝑐𝑜𝑑𝑒𝑠
 (6)

Where, 𝑆𝐹𝐷𝑐 indicates a software failure density of components. The failure density describes that the failure

occurred in the component at the time ‘𝑡’. Using the above ratio as motivation, the failure density of a

topic [29] is estimated as (7).

⁡𝐹𝐷𝑡 = ∑ 𝑆𝐹𝐷𝑐(𝑗)
𝑚
𝑗=1 (7)

Where, 𝐹𝐷𝑡 denotes a failure density of topics,𝑆𝐹𝐷𝑐(𝑗) indicates a software failure density of the ‘j's

component. Using 7th equation, failures are mapped to topics for finding the failure-proneness of the topic. In

this way, the failure density of all the topics in the software products is measured for accurate failure

prediction of the software program.

Algorithm two process describes the step by step process of generative latent Dirichlet allocation for

finding the software failure probability of each component and topics. With the chosen optimal test case,

each line of source code topic for the given software product is tested and identified the failure density. This

helps to design an efficient new software product according to the user needs. Generative latent Dirichlet

allocation is used to reduce the service provisioning time.

Algorithm 2: Generative latent Dirichlet allocation
Input: Schoolmate Dataset, input software products𝛾1, 𝛾2, 𝛾3, . , 𝛾𝑛, topics 𝑧𝑡 = 𝑧1,𝑧2, 𝑧,…𝑧𝑡 ,

Components 𝐶𝑚 = 𝐶1,𝐶2, 𝐶2,…𝐶𝑚⁡

Output: failure density prediction

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Multicriteria Cuckoo search optimized latent Dirichlet allocation based Ruzchika … (R. Chennappan)

1809

Begin

1. For each topic 𝑧𝑡

2. For each Component ‘𝐶𝑚’
3. Measure failure probability 𝑃(𝜃𝑚𝑐, 𝑧𝑡⁡|⁡𝜔𝑠, 𝛼𝑝, 𝛽𝑓)with test cases

4. Compute the software failure density ‘𝑆𝐹𝐷𝑐’
5. Compute failure density of a topic ‘𝐹𝐷𝑡’
6. End for

7. End for

End

3.3. Ruzicka indexive regression-based failure prediction

The proposed RCSOLDA-RIR technique uses the Ruzicka indexing regression for handling the

large size of open-source software applications in the software quality management process to predict the

component failure in the new version of the software products. Based on this concept, the technique provides

better performance for analyzing the topics of consecutive versions of software products with a minimal

amount of time consumption. Regression analysis is a set of statistical processes for measuring the

relationships between two variables (i.e. consecutive versions of software products). The relationship

between the consecutive versions of software products is measured using the Ruzicka similarity index.

Regression is carried to test the system efficiently by using a test suite that focuses on important and very

perceptible functionality.

Figure 3 illustrates the Ruzicka Similarity indexed regression for predicting the failure component in

software products before its release. Let us consider the topics of consecutive versions of input software

products ‘𝑧𝑖 , 𝑧𝑖+1 for software quality management. Jaccard's similarity coefficient is called Ruzicka

Similarity. The Ruzicka Similarity index is measured based on the consecutive versions of software products

for designing a new software product with the failure-free operation of the input software program. The

Ruzicka similarity is expressed as (8).

Φ =
𝑧𝑖∩𝑧𝑖+1

∑𝑧𝑖+∑𝑧𝑖+1−𝑧𝑖∩𝑧𝑖+1
 (8)

Where⁡Φ symbolizes Ruzicka Similarity coefficient, 𝑧𝑖 signifies the one version of the topic in a software

product, 𝑧𝑖+1designates new version of topics in a similar software product, 𝑧𝑖 ∩ 𝑧𝑖+1 is a mutual dependence

between the topics in a software product, ∑𝑧𝑖 is the sum of 𝑧𝑖 score, ∑𝑧𝑖+1 is the sum of 𝑧𝑖+1 score. Ruzicka

similarity is used to provide better results between the similarity measures. The Ruzicka Similarity

coefficient returns the output ranges from 0 to +1. The regression returns the similarity results by setting the

threshold value as (9).

𝑌 = {
Φ > 𝜏⁡; ℎ𝑖𝑔ℎ𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦
Φ < 𝜏⁡; 𝐿𝑒𝑠𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

 (9)

Where 𝑌 denotes a regression output, 𝜏 indicates the threshold. If the similarity value ‘Φ’ is higher than the

threshold, then it is said to be higher similar. Otherwise, it returns less similarity. In this way, the similarities

of the topics in the two neighboring versions are determined. When the failure component in the preceding

version is presented in the new version hence it also creates failure while running the software program. In

this case, these failures in the software products are resolved before the release to obtain the failure-free

operation resulting in it increases reliability. As a result, the amount of time was minimized for providing the

user satisfied software program based on their requirements.

Algorithm three given illustrates the Ruzicka indexing regression to obtain the failure-free software

product for improving the software reliability. For each topic and component of the current version and the

next consecutive version of the software product, measure the similarity. If the same topics are presented in

the new version of the software product, then the failure component is predicted. Finally, the predicted failure

components are corrected and obtain the reliability of the software product.

Algorithm 3: Ruzicka Similarity indexed regression-based failure prediction
Input: Schoolmate Dataset, input software products𝛾1, 𝛾2, 𝛾3, . , 𝛾𝑛, topics 𝑧𝑡 = 𝑧1,𝑧2, 𝑧,…𝑧𝑡 ,
Output: Improve software reliability

Begin

1. For each topic in the current version ‘𝑧𝑖’
2. For each topic in the new version ‘𝑧𝑖+1’

3. Measure Ruzicka Similarity coefficient ‘Φ’
4. If (Φ > 𝜏)⁡then
5. 𝑌 returns the ℎ𝑖𝑔ℎ⁡𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦
6. else

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 24, No. 3, December 2021: 1804 - 1813

1810

7. 𝑌 returns the 𝑙𝑒𝑠𝑠⁡𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦
8. End if

9. Predict the failure component of the new version

10. Resolve the failure component
11. Obtain failure-free software product
12. End for
13. End for

End

Figure 3. Ruzicka similarity indexed regression

4. EXPERIMENTAL SETTINGS

In this section, the RCSOLDA-RIR technique and existing methods namely WPA-PSO [1], and

FPSONNM [2] are implemented in Java Language using the schoolmate data set. The SchoolMate dataset is

taken from [30]. The dataset comprises the number of open-source PHP programs to perform software

quality tests. For the experimental evaluation, 10-100 the size of software program source codes is

considered. The hardware specifications are shown in Table 2.

Table 2. Hardware specifications
Hardware Specification

Operating system Windows 10

Processor core i3-4130 3.40GHZ

RAM 4GB RAM
Hard disk 1TB (1000 GB)

Motherboard ASUSTek P5G41C-M

Protocol Internet

5. RESULT AND DISCUSSIONS

In this section, the comparative result analysis of the RCSOLDA-RIR technique and existing

methods namely WPA-PSO [1], and FPSONNM [2] is discussed. The efficiency of the RCSOLDA-RIR

technique is determined along with the metrics such as scalability, service provisioning time, and reliability

with the help of tables and graphical representations.

5.1. Reliability

The reliability is measured as the ratio of the number of source code lines that are executed without

any error to the total number of source code lines taken as input. It defines the failure-free operation of the

input software program. The reliability is measured as (10).

𝑅 = (
𝑍𝑆𝐸

𝑛
) ∗ 100 (10)

Where, 𝑅 denotes reliability,𝑍𝑆𝐸’ represent the number of source code lines that are successfully executed

without any error, ‘𝑛’ denotes the size of software program code taken as input. The reliability is calculated

in terms of percentage (%). The experimental results of reliability are reported in Table 3.

Table 3 portrays the reliability of three techniques namely the RCSOLDA-RIR technique, WPA-

PSO [1], and FPSONNM [2]. This is owing to the application of the Ruzicka similarity used in the

RCSOLDA-RIR technique. Followed by, the quality of the software program gets improved and also

increases reliability. The average comparison results demonstrate that the reliability of the proposed

https://sourceforge.net/projects/schoolmate/?source=directory

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Multicriteria Cuckoo search optimized latent Dirichlet allocation based Ruzchika … (R. Chennappan)

1811

RCSOLDA-RIR technique is considerably improved by 8% as compared to WPA-PSO [1], and 12%

FPSONNM [2] respectively.

Table 3. Tabulation of reliability

Size of Software Program Code (KB)
Reliability (%)

RCSOLDA-RIR WPA-PSO FPSONNM

10 92 88 84

20 90 84 80

30 93 88 84
40 92 87 85

50 94 88 86

60 96 87 85
70 94 87 84

80 95 85 83

90 96 87 85
100 97 88 84

5.2. Scalability

Scalability is the ability of different algorithms to handle different sizes of input program code while

testing the software quality process. The quantitative analysis of scalability is computed as (11).

𝑆 = (
𝑍𝐶𝑇

𝑛
) ∗ 100 (11)

Where ‘𝑆’ denotes scalability, 𝑍𝐶𝑇 denotes the number of source lines of code that are correctly tested,

‘indicates the size of software program code taken as input. The scalability is measured in terms of

percentage (%). The graphical representation of the scalability is described in Figure 4.

Figure 4. graphical illustration of scalability concerning the size of the software program code.

Figure 4. portrays the scalability of the three techniques namely the RCSOLDA-RIR technique, WPA-

PSO [1], and FPSONNM [2]. This is due to the application of Multicriteria reinforced Cuckoo search

optimization is applied in the RCSOLDA-RIR technique. This is the reason for achieving the higher scalability

of the RCSOLDA-RIR technique. The average scalability results of the RCSOLDA-RIR technique are

increased by 6% when compared to WPA-PSO [1], and 11% when compared to FPSONNM [2].

Figure 4. Graphical illustration of scalability

5.3. Service provisioning time

The service provisioning time measures the amount of time consumed by the algorithm for

providing user satisfied services based on their requirements and estimated as (12).

𝑆𝑃𝑇 = [𝑛] ∗ 𝑡𝑖𝑚𝑒(𝐶𝐵𝑆𝑃) (12)

Where ‘𝑆𝑃𝑇’ indicates a service provisioning time of software program, ‘denotes the size of software

program code, ‘𝑡𝑖𝑚𝑒(𝐶𝐵𝑆𝑃)’symbolizes the time taken for designing the best software product based on

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 24, No. 3, December 2021: 1804 - 1813

1812

user requirements. The provisioning time is measured in terms of milliseconds (ms). The service provisioning

time of different techniques is reported in Table 4.

The experimental results of service provisioning time using three methods are illustrated in Table 4.

The result is evidence that the proposed RCSOLDA-RIR technique uses the GLDA model achieves lesser

service provisioning time when compared to existing techniques. The average results of the RCSOLDA-RIR

technique are reduced the service provisioning time by 20% as compared to WPA-PSO [1], and 29% as

compared to FPSONNM [2].

Table 4 Tabulation of Service provisioning time

Size of Software Program Code (KB)
Service provisioning time (ms)

RCSOLDA-RIR WPA-PSO FPSONNM

10 8 12 15

20 10 15 18

30 12 16 19
40 15 18 20

50 17 20 23

60 20 24 27
70 22 27 29

80 25 30 32

90 28 33 35
100 32 37 40

6. CONCLUSION

In this paper, the major objective of the proposed work is to get better software quality prediction by

improving the reliability of software products. The multicriteria optimization technique is employed to test

the software program quality by selecting the optimal test cases with higher scalability. The generative latent

Dirichlet allocation model is applied to find the failure probability of each component for reducing the

service provision time. The regression is applied to predict the component failure of a new version of the

software product for achieving better reliability. The proposed work is compared with the two existing

methods (i.e. WPA-PSO and FPSONNM). The results of the RCSOLDA-RIR technique provide better

performance with an improvement of reliability and scalability by 10% and 9% and reduction of service

provision time by 25% as compared to existing works. The proposed RCSOLDA-RIR technique achieves

better scalability and reliability. The proposed work is further suggested to use new research work for

correcting the failure of the software by using fault tolerance techniques.

REFERENCES
[1] L. Zhen,Y. Liu,W. Dongsheng, and Z. Wei, “Parameter Estimation of Software Reliability Model and Prediction

Based on Hybrid Wolf Pack Algorithm and Particle Swarm Optimization,” IEEE Access, vol. 8, pp. 29354-29369,

2020, doi: 10.1109/ACCESS.2020.2972826.

[2] P. Roy, G. S. Mahapatra, and K. N. Dey, "Forecasting of software reliability using neighborhood fuzzy particle

swarm optimization based novel neural network," in IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 6,

pp. 1365-1383, November 2019, doi: 10.1109/JAS.2019.1911753.

[3] N. Guptaa, A. Sharmaa, and M. K. Pachariya, “Multi-objective test suite optimization for detection and localization

of software faults,” Journal of King Saud University - Computer and Information Sciences, pp. 1-13, 2020,

doi: 10.1016/j.jksuci.2020.01.009.

[4] S. A. Sari and K. M. Mohamad, “Recent Research in Finding Optimal Path by Ant Colony Optimization,” Bulletin

of Electrical Engineering and Informatics, vol. 10, no. 2, pp. 1015-1023, 2020, doi: 10.11591/eei.v10i2.2690.

[5] M. A. A. K. Alabajee, N. A. A. Saati, and T. R. Alreffaee, “Parameter Tuning of Software Effort Estimation Models

Using Antlion Optimization,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 19,

no. 3, pp. 817-828, 2021, doi: 10.12928/telkomnika.v19i3.16907.

[6] G. Jabeen, P. Luo, and W. Afzal, “An improved software reliability prediction model by using high precision error

iterative analysis method,” Software Testing, Verification and Reliability, vol. 29, no. 6-7, 2019,

doi: 10.1002/stvr.1710.

[7] G. Jabeen, P. Luo, and W. Afzal, “An improved software reliability prediction model by using high precision error

iterative analysis method,” Software Testing, Verification and Reliability, vol. 29, no. 6-7, pp. 1-22, 2019,

doi: 10.1002/stvr.1710.

[8] Z. Li, M. Yu, D. Wang and H. Wei, "Using Hybrid Algorithm to Estimate and Predicate Based on Software

Reliability Model," in IEEE Access, vol. 7, pp. 84268-84283, 2019, doi: 10.1109/ACCESS.2019.2917828.

[9] C. Diwaker et al., "A New Model for Predicting Component-Based Software Reliability Using Soft Computing,"

in IEEE Access, vol. 7, pp. 147191-147203, 2019, doi: 10.1109/ACCESS.2019.2946862.

https://ieeexplore.ieee.org/author/37087995605
https://ieeexplore.ieee.org/author/37087994668
https://www.sciencedirect.com/science/article/pii/S1319157819313850#!
https://doi.org/10.11591/eei.v10i2.2690
https://doi.org/10.12928/telkomnika.v19i3.16907
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Jabeen%2C+Gul
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Luo%2C+Ping
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Afzal%2C+Wasif
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Jabeen%2C+Gul
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Luo%2C+Ping
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Afzal%2C+Wasif

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Multicriteria Cuckoo search optimized latent Dirichlet allocation based Ruzchika … (R. Chennappan)

1813

[10] Q. Li and H. Pham, “A Generalized Software Reliability Growth Model With Consideration of the Uncertainty of

Operating Environments,” IEEE Access, vol. 7, pp. 84253-84267, 2019, doi: 10.1109/ACCESS.2019.2924084.

[11] K. Wang, T. T. Wang, and X. H. Su, ‘Test case selection using multi-criteria optimization for effective fault

localization,” Computing, vol. 100, no. 8, pp. 787-808, 2018, doi: 10.1007/s00607-018-0610-0.

[12] N. Baskar and C Chandrasekar, “Optimized neuro-PSO-based software maintainability prediction using relief

features selection method,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 15,

no. 3, pp. 1517-1526, 2019, doi: 10.11591/ijeecs.v15.i3.pp1517-1526.

[13] B. Mohammed, I. Awan, H. Ugail, and M. Younas, “Failure prediction using machine learning in a virtualised HPC

system and application,” Cluster Computing, vol. 22, pp. 471-485, 2019, doi: 10.1007/s10586-019-02917-1.

[14] C. Diwaker, P. Tomar, R. C. Poonia, and V. Singh, “Prediction of Software Reliability using Bio Inspired Soft

Computing Techniques,” Journal of Medical Systems, vol. 42, no. 5, pp. 1-16, 10 April, 2018, doi: 10.1007/s10916-

018-0952-3.

[15] M. Cinque, D. Cotroneo, R. D. Corte, and A. Pecchia, “A framework for on-line timing error detection in software

systems,” Future Generation Computer Systems, vol. 90, pp. 521-538, 2019, doi: 10.1016/j.future.2018.08.025.

[16] Z. Li, X. Y. Jing, F. Wu, X. Zhu, B. Xu, and S. Ying, “Cost-sensitive transfer kernel canonical correlation analysis

for heterogeneous defect prediction,” Automated Software Engineering, vol. 25, no. 1, pp. 1-45, 2018, doi:

10.1007/s10515-017-0220-7.

[17] A. Marjuni, T. B. Adji, and R. Ferdiana, “Unsupervised software defect prediction using median absolute deviation

threshold based spectral classifier on signed Laplacian matrix,” Journal of Big Data, vol. 6, pp. 1-20, 2019,

doi: 10.1186/s40537-019-0250-z.

[18] Z. W. Zhang, X. Y. Jing, and T. Wang, “Label propagation based semi-supervised learning for software defect

prediction,” Automated Software Engineering, vol. 24, pp. 47-69, 2017, doi: 10.1007/s10515-016-0194-x.

[19] Z. Xu et al., “LDFR: Learning deep feature representation for software defect prediction,” Journal of Systems and

Software, vol. 158, pp. 1-20, 2019, doi: 10.1016/j.jss.2019.110402.

[20] G. Fan, X. Diao, H. Yu, K. Yang, and L. Chen, “Software Defect Prediction via Attention-Based Recurrent Neural

Network,” Scientific Programming, vol. 2019, pp. 1-14, 2019, doi: 10.1155/2019/6230953.

[21] J. Wang and C. Zhang, “Software Reliability Prediction Using a Deep Learning Model based on the RNN Encoder-

Decoder,” Reliability Engineering & System Safety, vol. 170, pp. 73-82, 2018, doi: 10.1016/j.ress.2017.10.019.

[22] H. Bousqaoui, I. Slimani, and S. Achchab, “Comparative analysis of short-term demand predicting models using

ARIMA and deep learning,” International Journal of Electrical and Computer Engineering, vol. 11, no. 4,

pp. 3319-3328, 2019, doi: 10.11591/ijece.v11i4.pp3319-3328.

[23] Z. Rustam, F. Zhafarina, G. S. Saragih, and S. Hartini “Pancreatic cancer classification using logistic regression and

random forest,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 10, no. 1, pp. 476-481, 2021,

doi: 10.11591/ijai.v10.i2.pp476-481.

[24] M. G. Valls, J. E. Barreno, and J. G. Muñoz, “An extensible collaborative framework for monitoring software

quality in critical systems,” Information and Software Technology, vol. 107, pp. 3-17, 2019, doi:

10.1016/j.infsof.2018.10.005.

[25] S. Huda et al., "An Ensemble Oversampling Model for Class Imbalance Problem in Software Defect Prediction," in

IEEE Access, vol. 6, pp. 24184-24195, 2018, doi: 10.1109/ACCESS.2018.2817572.

[26] E. A. Felix and S. P. Lee, “Predicting the number of defects in a new software version,” PLOS ONE, vol. 15, no. 3,

pp. 1-30, March 2020, doi: 10.1371/journal.pone.0229131.

[27] A. M. Hassan and A. John, “Comparative analysis on different software piracy prevention techniques,”

International Journal of Informatics and Communication Technology (IJ-ICT), vol. 10, no. 1, pp. 1-8, 2015,

doi: 10.11591/ijict.v10i1.pp1-8.

[28] K. S. Kumar and A. M. Kumaravel, “Optimal Test Suite Selection using Improved Cuckoo Search Algorithm

Based on Extensive Testing Constraints,” International Journal of Applied Engineering Research, vol. 12, no. 9,

pp. 1920-1928, 2017, [Online]. Avalable: https://www.ripublication.com/ijaer17/ijaerv12n9_22.pdf

[29] H. Liu, L. Xu, M. Yang, M. Yan, and Z. Zhang, “Predicting Component Failures Using Latent Dirichlet

Allocation,” Mathematical Problems in Engineering, vol. 2015, vol. 6, pp. 1-15, doi: 10.1155/2015/562716.

[30] SchoolMate Dataset, 2013. [Online]. Available: https://sourceforge.net/projects/schoolmate/?source=directory

https://doi.org/10.1109/ACCESS.2019.2924084
https://doi.org/10.1007/s00607-018-0610-0
https://doi.org/10.11591/ijeecs.v15.i3.pp1517-1526
https://doi.org/10.1007/s10586-019-02917-1
https://doi.org/10.1007/s10916-018-0952-3
https://doi.org/10.1007/s10916-018-0952-3
https://doi.org/10.1016/j.future.2018.08.025
https://doi.org/10.1007/s10515-017-0220-7
https://doi.org/10.1016/j.jss.2019.110402
https://doi.org/10.1016/j.ress.2017.10.019
http://doi.org/10.11591/ijece.v11i4.pp3319-3328
http://doi.org/10.11591/ijai.v10.i2.pp476-481
https://doi.org/10.1016/j.infsof.2018.10.005
https://doi.org/10.11591/ijict.v10i1.pp1-8
https://doi.org/10.1155/2015/562716

