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to spike road accident. Every year thousands of people have died due to traffic acci-
dents. Various technologies have been adopted by modern cities to minimize traffic
accidents. Therefore, to ensure people’s safety, the concept of the smart city has been
introduced. In a smart city, factors like road, light, and weather conditions are impor-
Keywords: tant to consider to predict traffic mishap. Several machine learning models have been
implemented in the existing literature to determine and predict traffic collision. But
the accuracy is not enough and there exist a lot of challenges in determining the acci-

Revised Oct 19, 2021
Accepted Oct 26, 2021

Hybrid artificial neural

netwqu ) dent. In this paper, an approach of particle swarm optimization with artificial neural
Machine learning model network (PSO-ANN) has been proposed to determine traffic collision using the dataset
Particle swarm optimization of the transport department of United Kingdom. The performance of PSO-ANN out-
Prediction accuracy performs the existing machine learning model. PSO-ANN model can be adopted in the
Traffic collision transportation system to counter traffic accident issues. Random Forest, Naive Bayes,
Nearest Centroid, K-Nearest Neighbor classification have been used to compare with
the proposed PSO-ANN model.
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1. INTRODUCTION

In this modern world, the traffic accident has already become a matter of concern. People are losing
their life due to this disastrous incident. Life becoming difficult day by day. An accident not only causes a huge
damage to the family but also can affect the economy of a country. This incident has become a barrier to the
development of a country and eventually causes great damage globally. Economy of the Americas and Europe
largely depend on on-road transportation. Even a promising country like Malaysia faces 24 deaths among every
100,000 people which is a very high number [1]. According to world statistics, the total number of accident
fatalities in 2016 was 1,350,000 worldwide. In several regions like Africa, Europe, America, South-east Asia,
Western Pacific, the fatalities number was 246,719, 85,629, 153,789, 316,080, and 328,591 respectively [2]. In
the UK the fatality number was 2,019 in 2016. Traffic accidents act as resistance to normal day-to-day life [3].

We witness the incident of road accidents regularly. Some main reasons are driving carelessly, traffic
rule violations, and most importantly the increased number of vehicles [4]. Chong et al. tried to find out factors
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that are significant to determine the severity of injury of the injured in traffic accidents [5].

Machine learning can be used to predict traffic mishap that will help to save lives. The damage and
the injury can be rescued and even lives can be saved with the prompt arrival of assistance through a smart
system developed using these models. Several approaches of machine learning models such as decision tree,
support vector machine (SVM), regression model, random forest, and naive bayes. are used to get good results
in traffic collision prediction, but most of them are not well optimized for big datasets. For example, SVM is a
non-parametric classifier machine learning model. Non-parametric classifiers are slower to train as they often
have to train more parameters. They required more training data to estimate the mapping function. Again, there
is also the risk of overfitting while training data with a non-parametric classifier. To overcome this overfitting
problem, artificial neural network (ANN) is used which also performs better for large datasets and complex
computing. It is a parametric classifier. However, ANN models are more prone to stuck in local minima.
Hybridizing ANN with particle swarm optimization (PSO) will reduce this problem as the PSO algorithm finds
global optima efficiently and quickly. The hybrid algorithm of PSO-ANN is shown on Algorithm 1. Based
on the outcome of previous researches, the PSO-ANN method has been proposed in this study to detect the
collision of the traffic [6].

Algorithm 1 ANN-PSO algorithm

neural network initializing
input layer, hidden layer (activation : tanh(x)), output layer (activation : softmax(x))
forwardpropagation
a. neuron activation
return activation+ = weight[i] * inputs]i]
b.transfer activation functionusing sigmoid function
return (1.0/(1.0 + exp(—activation))
compute for the softmax of thelogits
softmax = logits / sumof exp.
computeloss
return loss = negative log likelihood / number of sample
swarm forward propagation
input (number of particles, dimensions)
for each particle
calculateloss

end for
return loss
wnitialize swarm (cl, ¢2, w)
compute global best using PSO
Repeat until the maximum number of iterations or the minimum error conditions are met.
for each particle
compute the value of data fitness

if (fitness > pBest) pBest = current fitnessvalue
if (pBest > gBest) gBest = pBest
end for

update the inertia weight
for each particle
compute the value of particle velocity
use gBest and velocity toupdate particle data
end for
while condition is not satis fied
return g Best as the best option of the global optimum
cost optimization (iteration : 1000)
compute accuracy (prediction, targeted value)

2. RELATED WORK

There has been a lot of research into predicting the traffic collisions. Recurrent neural network (RNN)
was employed in traffic collision severity prediction in a study conducted by Sameen and Pradhan, based on
1130 accident data that happened on the north-south expressway (NSE) in Malaysia between 2009 and 2015.
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The dataset was split into two parts: 80 percent for training and 20 percent for validating and the RNN model
was used to calculate the result for 100 iterations. The accuracy of the RNN model was 71.77 percent. On
the other hand, multilayer perceptron (MLP) and bayesian logistic regression (BLR) models achieved 65.48
percent and 58.30 percent accuracy respectively. As a result, the RNN model, which outperformed the MLP
and BLR models, was chosen [7].

Alkheder and Tammneh proposed two models such as the ordered probit model and ANN to examine
the severity of traffic accidents [8]. The Probit model is a form of regression model that examines the relation-
ship between categorical and numerical variables [9]. In traffic accident data from the Emirate of Abu Dhabi,
the ANN and the ordered probit model were employed (2008-2013). At the time of the accident, 48 distinct
attributes were collected from 5973 separate instances. The ordered probit model had a lower accuracy of 59.5
percent than the ANN model, and the ANN model had a higher accuracy of 74.6 percent for traffic collision
prediction [8].

Al-Raddaideh and Daoud investigated the prediction of traffic accidents using three categorization ap-
proaches: random forest (RF), artificial neural networks (ANN), and support vector machines (SVM). Cleaning,
normalization, feature selection, and transformation were performed on the dataset. The dataset was divided
into two parts: 66% for training and 34% for testing, with 10-fold Cross-Validation applied. The RF model
had an accuracy of 80.6 percent, while the ANN and SVM models had 61.4 percent and 54.8% accuracy, re-
spectively. As a result, RF will be an apparent choice for anticipating the severity of a traffic accident due to its
more trustworthy decision-making process [10]. In a study of predicting crash injury severity, fuzzy c-means
clustering-based support vector machine (SVM-FCM) shows better result than fuzzy c-means clustering-based
feed-forward networks (FNN-FCM). The crash database of the United Kingdom from 2011 to 2016 was used
in this study [11].

When it comes to predicting collision, Bayesian networks are more useful. Zong et al. discovered
that Bayesian networks outperformed the regression model in predicting the severity of traffic accidents. The
dataset in this case contained police-reported traffic accident records from the Chinese province of Jilin in 2010
[12]. According to Zheng et al. and colleagues, the TASP-CNN model performed better for predicting the
severity of traffic accidents. The weights of each feature of the traffic collision were calculated, and the FM2GI
technique was used to convert the feature matrix to a gray image. The method entails converting a single feature
relationship from the accident dataset into gray photos, then combining it as an input variable to test or train
the model in parallel [13].

To forecast traffic flow, the particle swarm optimization (PSO) was combined with an artificial neural
network (ANN) [14]. PSO is popular because of its speed and ability to search in high-dimensional prob-
lem spaces [15]. According to B. Bashumathi and S. Moorthi’s research, ANN-PSO is useful for harmonic
estimation in active filters, and it converges to a about 50-60% lower error value than the Adaline approach
[16]. PSO-ANN has an accuracy of 82.42 percent for detecting skin illness, according to Chakraborty’s et al.
research. More than 25000 photos of various diseases are included in the dataset [17]. In a hybrid PSO-ANN
study, Darmawan and colleagues demonstrated that a person’s sex can be inferred using the bone length of the
left hand. However, when looking at the age groups of 16-19 and 7-9, these two age groups exhibited superior
outcomes than the other age groups [18], with an average of 80% above correctness.

3. METHODOLOGY

The dataset is encoded into numerical representation from categorical data using “One Hot” encoding
technique. After encoding, training and testing data is split into 70-30% ratio. The input layer, hidden layer, and
output layer sizes were set to 12, 5 and 3 respectively to initialize the neural network. The “tanh” function was
utilized as an activation function in the hidden layer, and ’softmax” was employed as an activation function
in the output layer. The hidden layer accepts the input data and processes it using an activation function in
forward propagation. The activation function is responsible for making a neural network non-linear [19]. The
tangent, hyperbolic, sigmoid, and linear functions are commonly chosen activation functions [20].

The softmax function is applied to the logits layer, which holds raw predictions, in order to bring the
result closer to one or zero. The softmax function [21] is used to calculate cross-entropy loss, which is based
on the corresponding probability of the network output of the proper category. After that, we built a function
that will propagate over the entire swarm. Swarm is initialized, and then PSO is used to compute the global
best solution.
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The position of particles in PSO has been upgraded to provide the current position, personal best
position, and swarm’s global best position. Particles calculate their distance from each other and migrate
toward the eventual ideal position of the swarm in each iteration [22]. The process was repeated until the
1000th iteration. Finally, the prediction accuracy has been calculated using the test set. In our approach of
implementing particle swarm optimization (PSO) with artificial neural network (ANN), the (1), (2), and (3) are
used:
t+1
mn

t t t t t t
v = Uy + cl’rln[Pbest,m - xmn] + CQTZn[GbeSF - xmn} (1)

vtmn is the velocity vector of particle m in dimension n at time 7, according to (1), at time 7, z%,, is the velocity
vector of particle m in dimension n. And Plfm,m (2) is particle m ’s personal best location in dimension n as
determined from startup to time 7. And from initialization through time #, Gy, (3) is the global best location of
particle m in dimension n, r1n and r*2n are random integers from uniform distribution U(0, 1) at time ¢, c1
and c» are positive acceleration constants that are employed to level the contribution of the cognitive and social

components, respectively.

Pbt:srtlm _ Plfesl,m lf f(xfrj_l) > Pbtest,m (2)
’ ! if f(2,7) < Progin
Ghrest = min{ P}, .}, wherem € [1,...,zlandz > 1 (3)

4. OVERVIEW OF DATASET

Road Accident data has been utilized in this research which has been published by the Transport
Department of the United Kingdom [23]. This dataset is related to environmental factors containing 2203
traffic accident records with 15 features. Reference number and accident date features are not taken into
consideration in the pre-processing step. So, in total 13 features including the class labels are being utilized for
this research. The 13 features are “Easting ( Represents integer type values situated horizontally)”, ”Northing
(Represents integer type values situated vertically)”, "Number of Vehicles”, ”The time of the accident occurred
(Values are integer types)”, ”1st Road Class”, "Road Surface (Wet, Dry, Snow, Frost)”, ”Lighting Conditions
(Daylight: Street lights present, Darkness: Street lights present and lit, No street lighting, and Street lighting
unknown)”, ”Weather Conditions”, " Type of Vehicles”, "Casualty Class (Pedestrian, Driver or rider, Vehicle or
pillion passenger)”, ”Casualty Severity (Serious, Slight, Fatal)”, ”’Sex of Casualty (Female, Male)” and "Age
of Casualty (Unique Ages sample)”. Slight, fatal and serious are the three classes found in Figure 1 (a). The
pie chart shows that percentages of the class label. According to Figure 1 (b), age of under 80 people had fatal
injuries. The severity level slightly occurred to most of all aged people. From the analysis, it is found that the
group of people aging above 60 has a higher risk to be seriously injured in a traffic accident.

Relation between Age and Severity of Accident
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Figure 1. Severity analysis of dataset using pie chart and bar chart: (a) class label is shown in the pie chart
with a percentage value and (b) bar chart of the relation between age and severity of accident
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5. RESULT ANALYSIS AND DISCUSSION

In this section, the hybridized neural network and other models are being analyzed based on accuracy,
precision, recall, and f1-score [24], [25]. Table 1 shows an accuracies comparison between PSO-ANN and
other machine learning models. The accuracy of PSO-ANN and Random forest is pretty close for this dataset.

Table 1. Accuracy table of different models
Name of Algorithms  Accuracy

PSO-ANN 85.29%
Random Forest 85.04%
Naive Bayes 84%
K Nearest Neighbor 75.18%
Nearest Centroid 55%

In Figure 2 (a) the measurement of precision, recall, and f1-score of all the machine learning models
are shown with the bar chart. With Figure 2 (b) the accuracy of nearest centroid, K-Nearest Neighbor, Naive
Bayes, Random Forest, and our proposed approach PSO-ANN have been shown. Both figures illustrate the
superiority of PSO-ANN over other machine learning models. In Figure 3, the relationship between cost and
iteration is illustrated. The cost is drastically reduced with each iteration. As iteration increases cost tensed to
be close to zero.
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Figure 2. Superiority of PSO-ANN over other machine learning models: (a) bar chart and (b) line chart of
analysis of accuracy, precision, recall and f1-score
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Figure 3. Iteration vs cost

The best accuracy is obtained by the PSO-ANN model which is 85.29%. Whereas, the lowest accuracy
result is achieved by the nearest centroid which was 55%. So, PSO-ANN can be considered as more reliable
and accurate to give collision prediction of traffic. Fl-score is more convenient than accuracy in terms of
uneven class distribution. Figure 2 shows that the highest f1-score of 0.83 which is obtained by PSO-ANN.
Again, the highest precision score of 0.82 is obtained by PSO-ANN and Random Forest, highest recall of 0.85
is secured by Random Forest whereas recall of 0.81 is achieved by PSO-ANN.

6. CONCLUSION

Road accidents should not be a deterrent to a country’s progress. This economic problem can be
alleviated if the damage, as well as traffic accidents, can be decreased. It is necessary to raise public awareness
in order to reduce traffic collisions. However, if the appropriate procedures are performed in a timely manner,
the damage can be limited. To solve this difficulty, a wide range of forecasting models have been presented.
These models progressed from linear to nonlinear forms, as well as from traditional statistical regression models
to today’s most popular machine learning models. If we can forecast the severity of an accident, we can take the
necessary precautions. The sooner we can address the problem created by the traffic accident, the sooner we can
return to normalcy. This will allow people to continue working as usual. As a result, a country’s economy will
suffer less damage. Many Machine Learning approaches utilized to detect the severity of a traffic collision in
this study. The hybrid form of partical swarm optimizer and artificial neural network (PSO-ANN) are compared
using naive bayes, random forest, k-nearest neighbor, and nearest centroid (ANN). The PSO-ANN outperforms
all of the other models.
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