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 Many types of medical pictures have to be fused, as single-modality medical 

images can give limited information because of the imagery and the 

complicated architecture of the human organ. This study proposes to offer a 

platform on which to make clinical diagnoses and to increase the accuracy of 
the target identification and the quality of the fused pictures by combining 

the benefits of nonsubsampled contourlet transform (NSCT) and fuzzy 

entropy. A picture is first broken down into low frequency or high frequency 

subbands through NSCT. In line with the various features of the low and 
high frequency components the respective fusion rules must be 

implemented. It calculates the level of membership of low frequency 

coefficients. The fusion of coefficients is also calculated and then utilized to 

retain picture features. By increasing regional energy, high-frequency 
components are merged. Inverse transformation produces the final fused 

picture. Experimental results have shown that, based on subjective visual 

effect and objective assessment standards, the suggested technique produces 

a satisfactory fusion effect. This process may also achieve high average 
gradient, standard deviation (SD), and edge preservation and maintain the 

fused picture features well. Effective reference can be provided by the 

outcome of the suggested algorithm for patients' assessment. 
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1. INTRODUCTION  

For clinical diagnosis, several sorts of medical pictures are supplied. Medical pictures of single 

modality can only give limited information owing to the imagery and complexity of the architecture of 

human organ. Various modal pictures therefore need to be merged. This technique takes a picture as a study 

subject and uses several sources of image information in a fresh image to generate a highly informative 

profile using particular algorithms [1]. Medical image fusion algorithms address the lack of image 

information gained through a single imagery mode which allows for full use of supplementary information 

from each mode and improves the precise diagnosis and the location of lesions of illness [2]. With the advent 

of fusion technology, multi-scale analytical tools have been presented [3]. Wavelet transform (WT) is the 

most common technique [4]. However, WT has limitations, including limits, details and texture of pictures, 

to the capacity to communicate information. In picture fusion, the block effect frequently occurs and 

decreases fusion quality outcomes. Multi-scale geometric analysis techniques have also been developed for 

presenting high-order singular features, such as Laplace transformation, curvelet transformation, and 

https://creativecommons.org/licenses/by-sa/4.0/
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contourlet transformation (CT). Anisotropy and directed selection may effectively be found in the CT theory 

[5]. This hypothesis has nevertheless numerous weaknesses since image interpolation and removal might lead 

to the absence of a translation invariance in CT that leads to the occurrence of spectrum aliases [6]. 

Therefore, Wang et al. [7] suggested the CT non-substantiation theory (NSCT). CT is enhanced in this theory 

to provide an invariance in translation and retains its original benefit. Images are unsure and frequently fuzzy. 

With its fuzzy logical reasoning, the fuzzy set theory gives a solution and theoretical basis to the fuzziness of 

images induced by uncertainty [8]. Given that this theory may be used to examine the visual features of 

pictures, fluctuating technology plays a key part in image processing, given the random nature and human 

visual properties it addresses [9]. The theory of fuzzy sets is classified by applying the membership of 

components to evaluate the extent of their affiliation [10], [11]. The uncertainty of picture information is 

explained by local intuitionist fuzzy entropy, and its magnitude is a crucial foundation to evaluate if a pixel 

has edges or features. Therefore, it is possible to differentiate the detailed signal and the whole picture 

characteristic utilizing fuzzy entropy for image fusion. Sugeno was utilized to multimodal medical image 

fusion using its intuitionist, bizarre set [12]. Fusion of pictures is made possible with intuitionist fuse set 

technology that improves the brightness and contrast of fused images [13]. Peruru et al. [14] provides the 

fusing procedure for the quality of fusion information, which is based on discrete WT and intuitionist fuzzy 

sets. With intuitional fuzzy systems to resolve uncertainty the quality of the fused pictures may be 

dramatically improved. In the field of medical picture fusions, scientists suggested many viable methods 

[15]. The following two algorithms primarily include: space-based and transformed domains algorithms. 

Spatial domain-based algorithms do not require complicated picture decomposition and processing but 

conduct image computation based directly on the original image pixels. These methods are straightforward 

and can produce useful merge results, although fused pictures can lose information. Image fusion methods 

are focused mostly on the frequency domain and are more effective than the one-scale fusion approach. This 

method is based on several areas of transformation.  

First, the picture is broken down to yield numerous frequency decomposition coefficients, and 

various coefficients are subsequently processed on the basis of certain fusion criteria. Common algorithms 

include transformation of the WT, CT, and discrete cosine. The fusion outcomes are also affected by 

selection of fusion rules in various transform domains. By evaluating picture characteristics, the selection of 

appropriate fusion rules is able to improve the fusion outcomes efficiently. Traditional fusion rules include a 

weighted average process, high absolute value and regional energy. Wan et al. were the first to use CS to 

picture fusion theory [16]. CS theory can enable picture signal dimension to be merged and enhance merging 

efficiency. Arif and Wang [17] has a fusion technique based on the curvelet transformation that may be used 

efficiently for goal reconnaissance. Zhu and Bao [18] used the multimodal medical imaging CT-based fusion 

method. The algorithm can minimize the program's complexity. Gai et al. [19] presented a fusion method 

based on the neural network of impulses and on the transformation of non-sampled shearlet (NSST). The 

different frequency coefficients were selected according to the inflammatory map. Parvathy et al. [20] 

presented an approach based on NSST image fusion that may capture more picture information than existing 

multi-scale methods. The multi-scale decomposition method in a medical image fusion algorithm was 

integrated with the pulse coupled neural network (PCNN) adaptive pulse combined neural network. Although 

that approach enhances the PCNN algorithm, the final algorithm has limited efficiency [21]. In 1965, Zadeh 

introduced the idea of fuzzy sets, extensively utilized in a large number of areas. Many academics have 

investigated the processing of images based on fuzzy sets theory. Imaging technology based on fuzzy may 

produce better outcomes than standard approaches. This improvement is attributed largely to visual 

instability, typically owing to fleeting effects. The definitions and description and interpretation of the 

outcomes of image processing are unclear for edges, regions, textures and other notions. Therefore, it is 

possible and practicable to use the method of ambiguity in the picture processing. The use of fuzzy theory in 

the realm of imagery at now focuses mostly on segmentation and development. A new technique based on 

fugitive logic reasoning is presented; the threshold for the edge identification of digital pictures must not be 

established in this strategy [22]. This approach also improves the fluidity of the line and curve. Yao reduced 

the entropy criterion to a minimum to pick an optimum threshold for an image segment [23]. Adaptive 

approaches for the improvement of images based on NSCT were used and optimisation of artificial bee 

colonies were employed [24]. A technique for improved images combines histogram equalization with fuzzy 

set theory, which eliminates the frequent over-improvement and weakening of local information in standard 

enhancement algorithms [25]. An approach for improving the image, integrating PCNN, and fuzzy theory, 

has also been developed to boost contrast and visual effects [26]. While fugitive theory is infrequently 

employed in the field of pictorial fusion, this theory has now gained many academics' interest and has 

obtained good fusion findings. 

On the basis of the aforesaid study, a fusion method is suggested that utilizes fuzzy entropy images 

to guide NSCT coefficients. The algorithm's particular steps are the following. First, NSCT is utilized to 
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deconstruct the picture for getting distinct frequency subband coefficients. It calculates the degree of 

membership and the fluctuation of low frequency coefficients. The fusing of many frequency subband 

coefficients is then employed by the fuzzy entropy and regional energy. Intensively converted to detect and 

classified various image data bits and get the fused pictures, the fused coefficients for distinct frequencies. 

The aforementioned techniques can increase the adequacy of the fusion outcome for medical analysis and 

observation. The test results verify the superiority of the method presented. 

 

 

2. METHOD AND MATERIAL 

2.1. Fuzzy entropy 

There are some distinctions between fuzzy and conventional conceptual conceptions of sets. A 

degree of membership will be used to indicate the degree to which different types of fuzzy sets belong [27]. 

First, it will assume a collection of data 𝑋 =  {𝑥1, 𝑥2. . .  𝑋𝑁}, in where (𝑁) is the total classification sample 

number. (𝜇𝑖𝑘) is used to represent the degree of (𝑘) sample membership for class I for any data point (𝑥). 

The following formula must be met by (𝜇𝑖𝑘), expressed as (1) to (3). 

 

∀𝜇𝑖𝑘 ∈ [0,1] (1) 

 

∑ 𝜇𝑖𝑘 = 1 𝐶
𝑖=1  (2) 

 

0 < ∑ 𝜇𝑖𝑘 = 1 < 𝑁 𝐶
𝑖=1  (3) 

 

The number of clusters where (𝐶) is. By calculating the membership of each pixel with a specified 

member function, a picture (𝑋) with dimensions of (𝑅 𝑏𝑦 𝑇) may be considered as a blurred gateway, 

expressed as (4). 

 

𝑋 =∪𝑖=1
𝑀 ∪𝑗=1

𝑁 𝜇𝑖𝑗

𝑥𝑖𝑗
, 𝑖 = 1,2, … . , 𝑅; 𝑗 = 1,2, … , 𝑇 (4) 

 

The (𝜇𝑖𝑗 𝑥𝑖𝑗)⁄  equation shows the degree to which the (𝑖, 𝑗) pixels in an image form a set pixel 𝜇𝑖𝑗(0 ≤ 𝜇𝑖𝑗 ≤

1); and (𝜇𝑖𝑗) is the ambiguous characteristic of a pixel. 

Fuzzy entropy is used to determine a specific area's general ambiguity of the picture. This is the fuzzy 

entropy measurement of the window (𝑅 × 𝑇) as (5), in which (6) and (7). 

 

𝑆(𝑖, 𝑗) =
1

𝑅×𝑇
∑ ∑ [𝐴(𝑖, 𝑗) − 𝐵(𝑖, 𝑗)]𝑇

𝑗
𝑅
𝑖  (5) 

 

𝐴(𝑖, 𝑗) = −𝜇(𝑥) log2 𝜇(𝑥) (6) 

 

𝐵(𝑖, 𝑗) = (1 − 𝜇(𝑥)) log2(1 − 𝜇(𝑥)) (7) 

 

Entropy indicates content of information, whereas fuzzy entropy indicates the degree of fluidity 

[28]. High entropy fluctuation in a specific area shows that the variation in the ambiguity around the pixel is 

high. Low-fuzzy entropy refers to small changes in the region and is a flat area. Figure 1 shows the Fuzzy-

entropy histogram of a magnetic resonance tomography (MRT) image, where Figure 1(a) is the utilized MRT 

image and Figure 1(b) is the fuzzy-entropy histogram of the image. 
 

 

  
(a) (b) 

 

Figure 1. The fuzzy-entropy histogram of an MRT image for (a) the utilized MRT image and (b) the fuzzy-

entropy histogram of the image 
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2.2. Non-subsampling contourlet transform 

CT-based NSCT is proposed and implemented by means of non-desampled decomposition of the 

laplace pyramid (LP) and directional filter banks not sampled [29]. Figure 2 displays NSCT's structure. 

Image breakdown depending on the following two components are included in NSCT: multiscale and 

decompositions multidirectional. First of all, a non-sampled pyramid decomposes the original picture 

nonsubsampled pyramid filter bank (NSPFB) for low and high-pass band obtaining filter bank images. The 

nonsubsampled directional filter bank (NSDFB) is then utilized to deconstruct the source picture. The source 

image is then decomposed. The high-pass subband picture is broken down into multi-way subband images to 

deconstruct the multi-directional image. Finally, the decomposition of the multilayer subband results by 

repeating the aforementioned procedures for each picture with a low pass. NSDFB and NSPFB degradations 

in NSCT lack LP degradation in CT and filter downsampling in the direction filter bank degradation and 

extensive filtering. 

 

 

 
 

Figure 2. Structure of NSCT 

 

 

All NSCT subbands of decomposition are merged using filter banks downsampling. The picture in 

the subband has the same size and invariance of translation. The subband picture therefore exhibits high 

multiscality and multi-direction, thereby avoiding the Gibbs. NSCT transforms the two source pictures (𝐼𝑖) 

and (𝐼𝑣) with the following terms as (8) and (9). 

 

𝐼𝑖 = 𝐿𝑖(𝑥, 𝑦) + ∑ 𝐻𝑗,𝑟
𝑖 (𝑥, 𝑦) 𝐽

𝑗=1  (8) 

 

𝐼𝑣 = 𝐿𝑣(𝑥, 𝑦) + ∑ 𝐻𝑗,𝑟
𝑣 (𝑥, 𝑦) 𝐽

𝑗=1  (9) 

 

After decomposition it is possible to extract the (𝐻) high-frequency and (𝐿) low-frequency coefficients. In 

the formula, (𝐽) refers to the number of layers of decomposition, (𝑗) refers to the scale size and (𝑟) refers to 

the direction. 

 

2.3. Strategy for high-frequency subbands 

After NSCT decomposition, the approximation information left in the HF coefficients is diminished. 

The high-frequency fusion coefficients are useful data. The region energy can take into account the 

correlation between the pixels in the region and can further reflect the local features of the picture. The centre 

pixel with wide range energy shows the evident characteristics of the image. This article thus chose 

guidelines for fusing pictures based on regional energy. First of all, the centre pixels (𝑥, 𝑦), the specified size 

(𝑅 𝑏𝑦 𝑇) is the regional block and the region's energy is calculated, expressed as (10). 

 

𝐸(𝑥, 𝑦) =
1

𝑅×𝑇
∑ ∑ 𝐻𝑗,𝑟

2 (𝑥𝑚, 𝑦𝑛)𝑇
𝑛=1

𝑅
𝑚=1  (10) 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Improvement of the medical fusion process of images by fuzzy entropy and … (Shimaa Janabi) 

1177 

The merging of high frequency signals is then performed Maximizing energy for the region. The regulations 

are like (11). 

 

𝐻𝑗,𝑟
𝑟 (𝑥, 𝑦) = {

𝐻𝑗,𝑟
𝑖 (𝑥, 𝑦), 𝐸𝑗,𝑟

𝑖 (𝑥, 𝑦) > 𝐸𝑗,𝑟
𝑣 (𝑥, 𝑦)

𝐻𝑗,𝑟
𝑣 (𝑥, 𝑦), 𝑒𝑙𝑠𝑒

 (11) 

 

2.4. Strategy for low-frequency subbands 

Most picture energy is represented by low-frequency coefficients. This study mixes these 

coefficients with regional entropy size calculation. First of all, Gauss's function calculates the membership 

degree of the low frequency coefficient. The Gaussian function is intuitive, the computation is 

straightforward, the curve is smooth and hence extensively utilized. The following is the expression as (12). 

 

𝜇(𝑥, 𝑦) = 𝑒
−

|𝐿(𝑥,𝑦)−𝑐|2

2𝜎2⁄
  (12) 

 

In which 𝐿(𝑥, 𝑦) is the gray value of a point and the regional mean and variance cantered on (𝐿) is marked 

with (𝑐) and (𝜎2) correspondingly. Finally, the fuzzy entropy 𝑆(𝑖, 𝑗) in the region (𝑖) determined using (5). 

The region chosen for this investigation is three by three in size. A significant entropy in the region shows a 

major change in texture and the presence of edge information in the region. 

In contrast, a modest local entropy in the area shows that the picture may belong to the flat area and has 

general characteristics. Appropriate entropy thresholds are determined by this study with the mean value S 

and SD std of a fused picture. The following rules are expressed as (13) and (14), The fusion rule is as (15), 

where expressed as (16) and (17). The suggested NSCT based and fuzzy entropy fusion technique is shown 

in Figure 3. 

 

𝑡ℎ𝑟1 = 𝑆 (13) 

 

𝑡ℎ𝑟2 = 𝑆 + 𝑠𝑡𝑑 (14) 

 

𝐿𝑟 = {

𝐿𝑖(𝑥, 𝑦), 𝑆𝑖 > 𝑡ℎ𝑟2𝑆𝑣 < 𝑡ℎ𝑟1

𝐿𝑣(𝑥, 𝑦), 𝑆𝑣 > 𝑡ℎ𝑟2𝑆𝑖 < 𝑡ℎ𝑟1

𝜎𝑖𝐿𝑖(𝑥, 𝑦) + 𝜎𝑣𝐿𝑣(𝑥, 𝑦), 𝑒𝑙𝑠𝑒

 (15) 

 

𝜎𝑖 =
𝑆𝑖(𝑥,𝑦)

𝑆𝑖(𝑥,𝑦)+𝑆𝑣(𝑥,𝑦)
  (16) 

 

𝜎𝑣 = 1 − 𝜎𝑖 (17) 

 

 

 
 

Figure 3. Flowchart of the medical image fusion method 
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3. RESULTS  

The algorithm proposed is simulated in order to show its correctness on the MATLAB platform. The 

benefit of the fusion method is checked by fusion and comparison in references [4], [5], [30]–[33] of medical 

images with image fusion algorithms. An image fusion algorithm based on wavelet transform is used in [4]. A 

fusion algorithm based on contourlet transform and weighted regional variance is applied in [5]. Arif and Wang 

[17] uses an image fusion technique based on transforming the curvelet and Laplacian energy. Wang et al. [30] 

uses a fusion technique based on consistency between WT and the neighbourhood. Ellmauthaler et al. [32] 

uses an NSCT fusion algorithm and regional energy. Cai et al. [33] uses an NSST-based picture fusion 

method with neighbourhood structure characteristics. NSCT is divided into three levels, with eight 

orientations in each. In this investigation. For pyramid and scale breakdown filters "9/7" and "pkva" are 

respectively accepted. The fusion results from various algorithms are shown in Figures 4-6. The picture of 

the CT shows skeletal information and lesions. The image is computed tomographic. Their impact on the soft 

tissue of the injury itself is, however, weak, whereas the soft tissue and its lesions are shown effectively in 

the picture of the MRT. The tissue may be acquired in detail at several angles and plane. 

This figure helps to grasp the focal details; however, the image of the skeleton is fluffy. The 

merging of images of CT and MRT can be used to diagnose and locate disease. In Figures 4(a)-(i) the fusion 

results on pictures of a male patient with speech problem and an acute stroke are shown. Figures 4(a) and (b) 

are the original MRT and CT images of the patient. Fusion results pictures in Figure 5 from a male with left 

occipital infarction are shown in Figures 5(a)-(i). Figures 5(a) and (b) are the original MRT and CT images of 

the patient. Fusion results pictures of a woman with Alzheimer's illness and serious focal contractions in the 

lateral area are presented in Figure 6. Figures 6(a) and (b) are the original MRT and CT images of the patient 

correspondingly. The fusion picture is assessed objectively by using the mean gradient (AG), spatial 

frequency (SF), edge protection (𝑄𝐴𝐵/𝐹), and SD. Clarity is also known as AG. Large AG values show 

excellent clarity of picture [34]. SF shows the merged image's sharpness. A big SF shows excellent clarity of 

the picture. The quantity of high frequency fusion information may be calculated using the (𝑄𝐴𝐵/𝐹) picture 

[20]. The large values of (𝑄𝐴𝐵/𝐹)show good outcomes of fusion. The picture contrast is changed by SD [35]. 

Large SD values show the distinct outlines of the edge [36]–[38]. 

Two pictures were successfully merged by the seven algorithms in Figures 4 to 6. Fused pictures are 

capable of observing skeletal tissue information, soft tissue information, and lesions and further analysis based 

on the outcome. By comparison, the general image quality of Figures 4(c), 5(c), and 6(c) is flat and poor in 

contrast. Figures 4(d), 5(d), and 6(d) have improved outcomes compared to Figures 4(c), 5(c), and 6(c). 
 

 

   
(a) (b) (c) 

 
  

(d) (e) (f) 

   

(g) (h) (i) 
 

Figure 4. Fusion results of: (a) MRT2 image, (b) CT image, (c) result of reference [4], (d) result of reference 

[5], (e) result of reference [30], (f) result of reference [17], (g) result of reference [32], (h) result of reference 

[33], and (i) result of the proposed method 
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(a) (b) (c) 

   

   
(d) (e) (f) 

   

   
(g) (h) (i) 

 

Figure 5. Fusion results of: (a) MRT2 image, (b) CT image, (c) result of reference [4], (d) result of reference 

[5], (e) result of reference [30], (f) result of reference [17], (g) result of reference [32], (h) result of reference 

[33], and (i) result of the proposed method 
 

 

   
(a) (b) (c) 

   

   
(d) (e) (f) 

   

   
(g) (h) (i) 

 

Figure 6. Fusion results of: (a) MRT2 image, (b) CT image, (c) result of reference [4], (d) result of reference 

[5], (e) result of reference [30], (f) result of reference [17], (g) result of reference [32], (h) result of reference 

[33], and (i) result of the proposed method 
 

 

While the contrast of the image is considerably enhanced, details of the texture are unclear. Dark 

pictures with poor contrast are seen in Figures 4(e), 5(e), and 6(e). These features do not promote visual 

observation. The picture spatial information can successfully be preserved in Figures 4(f), 5(f), and 6(f), 

although CT brain features are not apparent. Figures 4(g), 5(g), and 6(g) blur the soft tissue border. Image 
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details cannot be successfully preserved in Figures 4(h), 5(h), and 6(h). The edge and texture of the suggested 

algorithm, by comparison, are rich. In addition, this method provides a greater level of contrast and clarity 

than other algorithms are acquired. This enables clinicians to assess patient condition effectively with the 

findings of the suggested algorithm. 

The SF and (𝑄𝐴𝐵/𝐹) values of the picture are low and indicate their inadequate detail based on the 

algorithm referred to in references [4], [32]. The fusion picture based on the references [5], [30] algorithms 

reveal significant changes in the indications in question. The low SD of this image of fusion nevertheless 

shows the poor contrast. The image's SD is high and means an abundance of information based on the 

method provided by references [31], [33]. Other indications, however, were behind those of the image fused 

using the method provided. The objective assessment results further demonstrate that rich information, 

clarity, contrast and extra picture characteristics are contained in the fusion results of the given technique. 

 

 

4. CONCLUSION 

In line with the features of multimodal medical pictures, a NSCT-based fusion method is given. This 

technique utilizes fluid entropy to control picture fusion in the subband of low frequency and maximal local 

energy for fusion in high-frequency areas. The NSCT is very directive and has smooth edges properly 

conveyed. Furthermore, in the extraction of picture contours and forms, the performance of the suggested 

method is greater than that of previous techniques. The image fuzzy entropy can efficiently represent unclear 

image data and properly differentiate signal details and overall picture characteristics. The resulting 

technique improves the AG, SF, and (𝑄𝐴𝐵/𝐹) by 14,4%−19,7%−18,9%−30,9%− and 13,3% by 51,2% 

correspondingly respectively. This way picture data may be efficiently retained and high-quality photos are 

produced. The algorithm's high flexibility is demonstrated through subjective and objective analyses. The 

algorithm can also give reliable medical diagnostic judgment information. In the future it will be helpful to 

reduce the time required, increase the algorithm efficiency further and pick adequate fusion rules. 
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