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Abstract 
 In this paper, we propose a PolGALS language for safety critical GALS(Globally 

Asynchronous Locally Synchronous) systems. The formal syntax and semantics are given and 
its compilation and implementation are defined. The language is based on timed CSP 
(communicating sequential process) style rendezvous between clock domains, aiming at 
modelling the timed behavioral of safety critical GALS systems. PolGALS is used to design 
timed behavioral pattern to implement timing requirements, e.g. delay, timeout, deadline, timed 
interrupt, etc. PolGALS provides a mechanism for implementation of timed behavioral pattern 
and potential for their formal verification because it is based on a PolGALS model of 
computation and its formal semantics.  
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1. Introduction 
Safety critical GALS systems should have higher reliability to ensure not to be deployed 

into applications which have relatively rigid performance requirements, such as traffic control, 
health care and automotive safety systems.  Further, these systems must be strengthened to 
meet the request of stringent fail-safe reliability to avoid economic, human or ecological 
catastrophes resulted in by failure in those applications. An important feature of these systems 
is the ability to provide continual and timely response to unpredictable changes of the state of 
the environment [1][2]. Safety critical GALS systems will not be operated in a controlled 
environment, and must be robust to unexpected conditions and adaptable to subsystem 
failures. 

The basic problem of designing safety critical GALS system is the unentirely predictable 
physical world. Time is an important aspect of system specification and therefore specification 
language support for time is needed. By decoupling the specification from implementation and 
using formal mathematical models of computation for specification, GALS systems can be 
performed with fast simulation and efficient synthesis. The complex GALS systems can be 
modeled as a hierarchical composition of the simpler models of computation. Some of these 
simpler models of computation have finite state, such as types of finite state machines, dataflow 
models and synchronous/reactive models. Thus the analysis of the system can be performed at 
compile-time. 

System develop languages are suitable for complex GALS systems, generally 
considered as a set of communicating processes, which have hard real-time constraints and 
communicate synchronously or asynchronously. System develop languages can be classified 
into two separate types, formal and informal. Formal languages are based on rigorous 
mathematical foundations, such as Esterel, CRP, SHIM and CRSM [3][4][5], which are suitable 
for formal verification and compilation. Informal languages are harder to compile and more 
difficult to be verified for lack of formal semantics, for example, SystemC [6]. However, the 
System develop Languages, which hides details of time constraints in the language, has failed 
because no widely used language expresses timing properties. High-level requirements in real-
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time systems are often stated in terms of deadline, time out and timed interrupt. 
The authors' opinion is that the system-level designing language should specify time 

constraint. A new specification language named PolGALS is proposed which provides higher 
reliability and portability. The paper is organized as follows: Section 2 gives motivation PolGALS 
program, highlighting the main features of the language. Section 3 decribes the PolGALS 
program syntax. The formal semantics and MoC are presented in Section 4 and the compilation 
procedure is explained in Section 5. Finally, the paper ends with conclusions and future 
research. 
 
 
2. Motivation and Related Work 

To figure out the status of the current time languages and motivate the introduction of 
the new language, the comparison of some well-known approaches is discussed in the 
following.  Many system level languages separate control and data-driven computations and 
attempt to insert timing features into system level programming languages. Their syntax and 
semantics are more suitable for designing digital circuits, but the timing description of capacity is 
limited. Lee summarized timing features in program [7]. Much earlier, Modula-2 [8] gives control 
over schedule of co-routines, which makes it possible for programmers to exercise some coarse 
control over timing.  The synchronous languages have no explicit timing constructs, but their 
predictable and repeatable approach to concurrency can yield more predictable and repeatable 
timing than most alternatives [9], such as Esterel, Lustre and Signal, so that they are limited by 
the underlying platform. Ada can not express timing constraints. Real-Time Java augments the 
Java model with a few ad-hoc features that reduce variability of timing [10].  Real-time Euclid 
expresses process periods and absolute start times [11]. Time C introduces extensions to 
specify timing requirements based on events, with the objective of controlling code generation in 
compilers to exploit instruction level pipelining [12]. Rather than new languages, an alternative is 
to annotate programs written in conventional languages. Lee gives taxonomy of timing 
properties that must be expressible in such annotations [13]. Munzenberger gives annotations 
for SDL to express real-time constraints [14]. 

That these languages separate control and data-driven computations leads to low 
adoption rate by Software developer. New PolGALS is designed by using a syntax and design 
flow  similar to general purpose programming languages, such as Java and C++. PolGALS 
extended SystemJ [15] itself with time statements. PolGALS is different from SystemJ, which 
can specify high-level time requirements for real-time such as delay, deadline, time out, and 
timed interrupt. Such tight integration of control, data-driven and time operations reduces the 
source code size and provides a much more powerful abstraction for describing large and 
complex models. PolGALS is designed for a general purpose GALS and does not target 
towards embedded systems alone, unlike many current system-level languages. It is capable of 
modeling multiple clock systems, particularly those can be modeled by a GALS MoC, and by 
using both pure Synchronous Reactive and GALS MOC. The compilation of PolGALS targets 
towards generating efficient and portable code, in this case Java code, which can be executed 
on different computing platforms. With Java as its compilation result, PolGALS is much more 
portable compared to any other current system level language. The portability of PolGALS 
allows designers to program PolGALS systems on a desktop and then performs automated 
deployment on other target architectures, such as embedded systems, without need for 
recompilation. 

 
 

3. PolGALS Language Syntax 
PolGALS not only combines features from SystemJ, timed CSP [16] with the Java 

programming language, but also combines the GALS reactive model of computation of SystemJ 
with timed CSP. Fig1 illustrates an example of PolGALS program model with two clock-domain. 

A PolGALS program consists of a number of reactions, which follows the rules of 
synchronous reactive model of computation. Each reaction executes in lock-step with a logical 
clock called "tick" in the same clock domain. Reactions exchange and synchronize by using 
CSP style rendezvous between clock domains. Reaction interacts with its environment through 
a set of input and output signals and operations on these signals. Every clock domains samples 
inputs from the environment, reacts to these inputs instantaneously and produces the outputs 
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back to the environment, thereby implementing a state machine. The synchronous, 
asynchronous, reactions and operations on signals, clock-domains and channels and 
statements are together responsible for the control-flow of PolGALS programs. 

 
 

 
 

Figure 1. An example of PolGALS program model 
 
 

PolGALS kernel statements consist of synchronous, asynchronous and time. Table 1 
and II show the PolGALS synchronous and asynchronous kernel statements, which are similar 
with SystemJ [17]. The ; operator makes two synchronous reactive statements execute 
sequentially. Abort and suspend are based on signals, while trap is the same as Esterel’s 
exception mechanism. Working as a watchdog, the abort statement preempts a program if the 
the watchdog’s signal status is true in any given tick. There are Several  kinds of abort 
statements. A weak abort statement allows the program to finish a single tick before 
preempting. A strong abort immediately terminates the program when signal status is true. 
These two kinds of abort can be further combined with an immediate signal predicate. An 
immediate abort starts checking the signal from the very first tick, while a non immediate abort 
always checks the signal after the first tick has passed. The suspend statement is similar to the 
abort statement. The difference is that the suspend statement pauses in the presence of signal 
S instead of preemption, The trap statement is a control flow based preemption statement 
similar to those found in modern imperative languages like Java or C++. When the exit 
statement is executed in the trap body, the program execution terminates immediately. The 
while statement means an infinite iteration statement in PolGALS program. The synchronous 
parallel operator || runs two or more reactions concurrently. All reactions forked by the || 
operator start and finish together. The synchronous statements consist of the jterm(p) 
statements, which are usually used for data-driven computations. Data-driven computation 
provides a much more powerful programming abstraction because it can be freely mixed with 
reactive control flow.  

As shown in Table II ,the asynchronous statements represent the asynchronous MoC 
implemented in PolGALS. Signals are basic means of communication which have a status and 
possibly a value in PolGALS program. Signals can be either local or interface qualified with 
either the input or the output. The first two kernel statement is used to declare channels, 
including the output channel to send data across clock-domains and the input channel to 
receive data  from a corresponding input port. These output and input ports of channels are 
initialized internally at channel declaration. An output port is used by the send statement to send 
data, while the input port is used by the receive statement to receive data. The send and receive 
statements are used to synchronize and transfer data over channels. Rendezvous in PolGALS 
is closely related to the scheduling of clock-domains and the asynchronous operator(><). 
PolGALS uses rendezvous for synchronization between sending and receiving reactions. 
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Table 1. Kernel Statements and Their Description  
Synchronous Kernel Statements Description 

; 
pause 

[output] [input] [type] Signal S 
emit S(exp) 

p1;p2 
while (true) {p} 

present (S) {p1} else {p2} 
[weak] abort ([immediate] S) {p} 

[weak] suspend ([immediate] S) {p} 
trap (T) {p} 

exit T 
p1 || p2 
Jterm(p) 

jtermp (p)=#s 
jtermp (p)=#c 

dummy statement 
dummy statement 
signal declaration 
signal emission 

sequential statement 
infinite loop 

conditional statement 
preempt watchdog 

halt watchdog 
trap exception mechanism 

exit from trap 
parallel statement 
Java data-driven 

obtaining a signal value 
obtaining a channel 

 
 

Table 2. Asynchronous Kernel Statements and Their Description  
Asynchronous Kernel Statements Description 

Output [type] channel C 
Input [type] channel C 

p1><p2 
send C ([exp]) 
Receive C( ) 

sending channel declaration 
receiving channel declaration 

asynchronous parallel 
send data on channel 

Receive data on channel 

 
 

The time statements are shown in table 3. The wait[d] is reaction p1 wait for exactly d 
time units. The p1 timeout[d] p2 is used to declare the first observable event of reaction p1 shall 
occur before d time units elapse, since the process starts. Otherwise, the reaction p2 takes over 
control after exactly d time units elapse. The p1 interrupt[d] p2 present reaction p1 interrupted 
reaction p2 behaves exactly as p1  until d time units elapse, and then p2 takes over control. The 
p1 deadline[d] constrains p1 to terminate before d time units. 

 
 

Table 3. Time Kernel Statements and Their Description Asynchronous  
Time kernel statements Description 

wait[d] 
p1 timeout[d] p2 
p1 interrupt[d] p2 
p1 deadline[d] p2 

delay 
timeout 
interrupt 
Deadline 

 
 
4. PolGALS Language Semantics 

Semantic rules similar to Esterel and SystemJ are used for describing PolGALS time 
statement semantics. Given p and an input event E, the behavioral semantics essentially 
describes what happens in a single reaction of the module for the given input event. The things 
that can happen are emission of signals and control flow from one set of points to another. This 
is captured by a mathematical relation, called the transition relation,which is described as 
following  semantic rule : ','data,p ,,,K datapEte   . 

The rule represents the antecedent and consequent states of p, respectively, during a 
micro-step transition. p and p' are the statement before and after the reaction. Term data 
represents the state value which related with p before transition and data' represents that after 
transition. The variable value can be omitted if p can be executing pure control statements. 
Term E presents input event which is the status set of all the signals used in reaction p, but 
declared somewhere else. The array indexing notation to refer to signal statuses is utilized in 
the event set E. Term e represents the signals emitted during transition and if none are emitted 
then it takes the value of ⊥. Term K represents the termination code. When p is capable of 
generate a termination , K is an integer value. Three terms can do it. Term ; is encoded with 0, 
pause with 1, and exit T with an integer greater than or equal to 2. If a signal dependency has 
not yet been resolved. synchronous parallel reaction can produce a termination code of ∞. 
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Besides the above mentioned terms,  K has a value of ⊥ i.e., unknown, which means p does not 
generate a termination code after this transition. Term t denotes a transition of t time units 
elapsing. In the following rules, we present the firing ones which are associated with the timed 
statement. 

(1) The wait[d] of semantic rule as: 
(I)   if    t ≤ d   then   
 

'],[data],[ait ,,,K datatdWaitdW Ete    

 
This expresses that the process may be idle for any amount of time when it is less than 

or equal to d time units. 
(II)  if    t ≤ d   then 
 

',data],0[ait ,,,K dataskipW Ete   

 
This expresses that the process terminates immediately after d becomes 0. 
(2) The timeout[d] of semantic rule as: 
(I)  if e output by p1 then   
 

','1data],[ timeoutp1 ,,,K datapd Ete   

 
This expresses that if an output event e can be engaged by p1, then p1 timeout[d] p2 

becomes p1'. 
(II) if  t < d  then   
 

',2][timeout'1data,2][ timeoutp1 ,,,K dataptdppd Ete      

 
 This expresses that if p1 may idle for less than or equal to d time units, so is the 

composition. 
 (III) if  t=d    then   
 

',2data,2]0[timeout p1 ,,,K datapp Ete 　　   

 
This expresses that when d becomes 0, p2 takes over control by a silent transition. 
(3) The interrupt[d] of semantic rule as: 
(I) if t<d then  
 

',2][interrupt1data,2]d[interrput p1 ,,,K dataptdpp Ete    

 
This expresses that if P engages in event x , P interrupt[d]Q becomes P0 interrupt[d]Q. 
(II) if  t=d  then  
 

',2data,2]0[interrput p1 ,,,K datapp Ete   

 
This expresses that if P may idle for less than or equal to d time units, so is the 

composition. When d time units elapse, Q takes over by a transition. 
(4) The deadline[d] of semantic rule as: 
 (I) if t ≤d  then  
 

','1data,]0[deadline p1 ,,,K datapQ Ete   

 
Intuitively, these rules express that p deadline[d] behaves exactly as p except that it 

must terminate before d time units. 
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5. Compile into Java  
The basic technology of PolGALS compiler is the GRC compiler approach used to 

compile SystemJ [17] and Esterl [18], which consists of the structural information and the 
operational. The structural information is preserved by the hierarchical state graph (HSG) , and 
the operational is explicitly represented by the control flow graph (CFG).  

The HSG includes four different types of nodes called thread nodes, parallel nodes, 
compound nodes and boundary nodes. It outlines the structure of the synchronous reactions in 
terms of statements and threads of control. Thread nodes abstract the sequential composition of 
basic instruction inside a particular thread and parallel nodes represent concurrent threads. 
Meanwhile, loops, aborts and other back tracking statements are represented by compound 
nodes and pauses are represented by boundary nodes. The number of branches extending 
from a thread node indicates the number of possible states of that thread. 

The CFG consists of synchronous and asynchronous nodes which are used for the 
code generation stage. There are seven types of synchronous nodes. The action nodes 
represent signal emission, enter nodes state encoding. On the other hand, test nodes represent 
signal tests and switch nodes indicate state selection. The fork nodes and join nodes define 
concurrency. Terminate nodes mark the completion code of a given thread. The sequential 
statements  are encoded using action nodes, which are completely ignored in the HSG. The 
asynchronous nodes are two types. The a-fork nodes and a-join nodes express asynchronous 
concurrency respectively.  

The AGRC intermediate format is well suited for systemJ languages, i.e., GALS 
programs. But it cannot express timed behavior characteristic. The AGRC format is 
insufficient， thereby AGRC further enhances GALS with timed behavior coupling. So we add 
new types nodes in order to make the new compiler suitable for compiling timed MoC, which is 
called TAGRC. The timer nodes represent time consumption. The resulted Timed 
Asynchronous GRaph Code (TAGRC) format derived directly from PolGALS semantics is the 
intermediate representation which PolGALS is translated into before being translated into low 
level Java back-end code. 

The whole process of compiling PolGALS into Java code is divided into four phases as 
shown in Figure 2.  

(1) Abstract syntax tree generation: syntactic analysis and error check includes 
syntactic error and front-end error are performed in this stage.  

(2) Format translation: PolGALS program is translated into the TAGRC format. The 
structural translation rules are followed to translate each statement into one or multiple nodes of 
TAGRC. 

(3) Back-end code Generation: The backend code generation stage is carried out on 
the resulting AGRC. 

(4) The code optimization: some well-known algorithms like redundancy elimination and 
information propagation are used in this implement stage. 
 

 
Figure 2. Compiling PolGALS 
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6. Conclusion 
PolGALS language based on the GALS of computation combines the asynchronous 

features of System J with timed behavior of timed CSP and data computation capabilities of 
Java. We make a detailed description of MoC of PolGALS language, as well as the timed 
behavior semantics of the language, which are suited for compiler construction. PolGALS 
language utilizes timer for time consuming between coupled reactions. The Timed 
Asynchronous Graph Code (TAGRC) format is then proposed which is better suited for 
PolGALS language since it is based on a set of formal semantics, and thus is potentially easier 
to be verified.  The TAGRC compiler provides better performance in our benchmark tests and 
different execution platforms, which in turn provides direct support for the active and timed 
behavior statements within PolGALS language.  

Currently, PolGALS timed behavior model of computation is difficult to be 
verify because it opens a wide variety of verification and optimization techniques available in the 
program modeling domain. A Further study on verification techniques about timed behavior 
model needs to be carried on in the future work. 
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