
TELKOMNIKA, Vol. 11, No. 9, September 2013, pp. 5119~5125
ISSN: 2302-4046
  5119

Received January 18, 2013; Revised June 4, 2013; Accepted June 17, 2013

Timed Behavioral Specification in Globally
Asynchronous Locally Synchronous systems

Yu Tonglan*1, Liu Jie2, Zhang Juan3, Wu Qujing4
School of Computer Science and Technology, University of South China

HengYang, HuNan, 421001
* e-mail: Ytonglan@163.com

Abstract
 In this paper, we propose a PolGALS language for safety critical GALS(Globally

Asynchronous Locally Synchronous) systems. The formal syntax and semantics are given and
its compilation and implementation are defined. The language is based on timed CSP
(communicating sequential process) style rendezvous between clock domains, aiming at
modelling the timed behavioral of safety critical GALS systems. PolGALS is used to design
timed behavioral pattern to implement timing requirements, e.g. delay, timeout, deadline, timed
interrupt, etc. PolGALS provides a mechanism for implementation of timed behavioral pattern
and potential for their formal verification because it is based on a PolGALS model of
computation and its formal semantics.

Keywords: PolGALS language, Semantics, Syntax, Timed behavioral, Globally Asynchronous
Locally Synchronous systems

Copyright © 2013 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction
Safety critical GALS systems should have higher reliability to ensure not to be deployed

into applications which have relatively rigid performance requirements, such as traffic control,
health care and automotive safety systems. Further, these systems must be strengthened to
meet the request of stringent fail-safe reliability to avoid economic, human or ecological
catastrophes resulted in by failure in those applications. An important feature of these systems
is the ability to provide continual and timely response to unpredictable changes of the state of
the environment [1][2]. Safety critical GALS systems will not be operated in a controlled
environment, and must be robust to unexpected conditions and adaptable to subsystem
failures.

The basic problem of designing safety critical GALS system is the unentirely predictable
physical world. Time is an important aspect of system specification and therefore specification
language support for time is needed. By decoupling the specification from implementation and
using formal mathematical models of computation for specification, GALS systems can be
performed with fast simulation and efficient synthesis. The complex GALS systems can be
modeled as a hierarchical composition of the simpler models of computation. Some of these
simpler models of computation have finite state, such as types of finite state machines, dataflow
models and synchronous/reactive models. Thus the analysis of the system can be performed at
compile-time.

System develop languages are suitable for complex GALS systems, generally
considered as a set of communicating processes, which have hard real-time constraints and
communicate synchronously or asynchronously. System develop languages can be classified
into two separate types, formal and informal. Formal languages are based on rigorous
mathematical foundations, such as Esterel, CRP, SHIM and CRSM [3][4][5], which are suitable
for formal verification and compilation. Informal languages are harder to compile and more
difficult to be verified for lack of formal semantics, for example, SystemC [6]. However, the
System develop Languages, which hides details of time constraints in the language, has failed
because no widely used language expresses timing properties. High-level requirements in real-

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 9, September 2013: 5119 – 5125

5120

time systems are often stated in terms of deadline, time out and timed interrupt.
The authors' opinion is that the system-level designing language should specify time

constraint. A new specification language named PolGALS is proposed which provides higher
reliability and portability. The paper is organized as follows: Section 2 gives motivation PolGALS
program, highlighting the main features of the language. Section 3 decribes the PolGALS
program syntax. The formal semantics and MoC are presented in Section 4 and the compilation
procedure is explained in Section 5. Finally, the paper ends with conclusions and future
research.

2. Motivation and Related Work

To figure out the status of the current time languages and motivate the introduction of
the new language, the comparison of some well-known approaches is discussed in the
following. Many system level languages separate control and data-driven computations and
attempt to insert timing features into system level programming languages. Their syntax and
semantics are more suitable for designing digital circuits, but the timing description of capacity is
limited. Lee summarized timing features in program [7]. Much earlier, Modula-2 [8] gives control
over schedule of co-routines, which makes it possible for programmers to exercise some coarse
control over timing. The synchronous languages have no explicit timing constructs, but their
predictable and repeatable approach to concurrency can yield more predictable and repeatable
timing than most alternatives [9], such as Esterel, Lustre and Signal, so that they are limited by
the underlying platform. Ada can not express timing constraints. Real-Time Java augments the
Java model with a few ad-hoc features that reduce variability of timing [10]. Real-time Euclid
expresses process periods and absolute start times [11]. Time C introduces extensions to
specify timing requirements based on events, with the objective of controlling code generation in
compilers to exploit instruction level pipelining [12]. Rather than new languages, an alternative is
to annotate programs written in conventional languages. Lee gives taxonomy of timing
properties that must be expressible in such annotations [13]. Munzenberger gives annotations
for SDL to express real-time constraints [14].

That these languages separate control and data-driven computations leads to low
adoption rate by Software developer. New PolGALS is designed by using a syntax and design
flow similar to general purpose programming languages, such as Java and C++. PolGALS
extended SystemJ [15] itself with time statements. PolGALS is different from SystemJ, which
can specify high-level time requirements for real-time such as delay, deadline, time out, and
timed interrupt. Such tight integration of control, data-driven and time operations reduces the
source code size and provides a much more powerful abstraction for describing large and
complex models. PolGALS is designed for a general purpose GALS and does not target
towards embedded systems alone, unlike many current system-level languages. It is capable of
modeling multiple clock systems, particularly those can be modeled by a GALS MoC, and by
using both pure Synchronous Reactive and GALS MOC. The compilation of PolGALS targets
towards generating efficient and portable code, in this case Java code, which can be executed
on different computing platforms. With Java as its compilation result, PolGALS is much more
portable compared to any other current system level language. The portability of PolGALS
allows designers to program PolGALS systems on a desktop and then performs automated
deployment on other target architectures, such as embedded systems, without need for
recompilation.

3. PolGALS Language Syntax
PolGALS not only combines features from SystemJ, timed CSP [16] with the Java

programming language, but also combines the GALS reactive model of computation of SystemJ
with timed CSP. Fig1 illustrates an example of PolGALS program model with two clock-domain.

A PolGALS program consists of a number of reactions, which follows the rules of
synchronous reactive model of computation. Each reaction executes in lock-step with a logical
clock called "tick" in the same clock domain. Reactions exchange and synchronize by using
CSP style rendezvous between clock domains. Reaction interacts with its environment through
a set of input and output signals and operations on these signals. Every clock domains samples
inputs from the environment, reacts to these inputs instantaneously and produces the outputs

TELKOMNIKA ISSN: 2302-4046 

Optimizing Process and Design of Die with CAE on the Car (Su Chunjian)

5121

back to the environment, thereby implementing a state machine. The synchronous,
asynchronous, reactions and operations on signals, clock-domains and channels and
statements are together responsible for the control-flow of PolGALS programs.

Figure 1. An example of PolGALS program model

PolGALS kernel statements consist of synchronous, asynchronous and time. Table 1
and II show the PolGALS synchronous and asynchronous kernel statements, which are similar
with SystemJ [17]. The ; operator makes two synchronous reactive statements execute
sequentially. Abort and suspend are based on signals, while trap is the same as Esterel’s
exception mechanism. Working as a watchdog, the abort statement preempts a program if the
the watchdog’s signal status is true in any given tick. There are Several kinds of abort
statements. A weak abort statement allows the program to finish a single tick before
preempting. A strong abort immediately terminates the program when signal status is true.
These two kinds of abort can be further combined with an immediate signal predicate. An
immediate abort starts checking the signal from the very first tick, while a non immediate abort
always checks the signal after the first tick has passed. The suspend statement is similar to the
abort statement. The difference is that the suspend statement pauses in the presence of signal
S instead of preemption, The trap statement is a control flow based preemption statement
similar to those found in modern imperative languages like Java or C++. When the exit
statement is executed in the trap body, the program execution terminates immediately. The
while statement means an infinite iteration statement in PolGALS program. The synchronous
parallel operator || runs two or more reactions concurrently. All reactions forked by the ||
operator start and finish together. The synchronous statements consist of the jterm(p)
statements, which are usually used for data-driven computations. Data-driven computation
provides a much more powerful programming abstraction because it can be freely mixed with
reactive control flow.

As shown in Table II ,the asynchronous statements represent the asynchronous MoC
implemented in PolGALS. Signals are basic means of communication which have a status and
possibly a value in PolGALS program. Signals can be either local or interface qualified with
either the input or the output. The first two kernel statement is used to declare channels,
including the output channel to send data across clock-domains and the input channel to
receive data from a corresponding input port. These output and input ports of channels are
initialized internally at channel declaration. An output port is used by the send statement to send
data, while the input port is used by the receive statement to receive data. The send and receive
statements are used to synchronize and transfer data over channels. Rendezvous in PolGALS
is closely related to the scheduling of clock-domains and the asynchronous operator(><).
PolGALS uses rendezvous for synchronization between sending and receiving reactions.

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 9, September 2013: 5119 – 5125

5122

Table 1. Kernel Statements and Their Description
Synchronous Kernel Statements Description

;
pause

[output] [input] [type] Signal S
emit S(exp)

p1;p2
while (true) {p}

present (S) {p1} else {p2}
[weak] abort ([immediate] S) {p}

[weak] suspend ([immediate] S) {p}
trap (T) {p}

exit T
p1 || p2
Jterm(p)

jtermp (p)=#s
jtermp (p)=#c

dummy statement
dummy statement
signal declaration
signal emission

sequential statement
infinite loop

conditional statement
preempt watchdog

halt watchdog
trap exception mechanism

exit from trap
parallel statement
Java data-driven

obtaining a signal value
obtaining a channel

Table 2. Asynchronous Kernel Statements and Their Description
Asynchronous Kernel Statements Description

Output [type] channel C
Input [type] channel C

p1><p2
send C ([exp])
Receive C()

sending channel declaration
receiving channel declaration

asynchronous parallel
send data on channel

Receive data on channel

The time statements are shown in table 3. The wait[d] is reaction p1 wait for exactly d
time units. The p1 timeout[d] p2 is used to declare the first observable event of reaction p1 shall
occur before d time units elapse, since the process starts. Otherwise, the reaction p2 takes over
control after exactly d time units elapse. The p1 interrupt[d] p2 present reaction p1 interrupted
reaction p2 behaves exactly as p1 until d time units elapse, and then p2 takes over control. The
p1 deadline[d] constrains p1 to terminate before d time units.

Table 3. Time Kernel Statements and Their Description Asynchronous
Time kernel statements Description

wait[d]
p1 timeout[d] p2
p1 interrupt[d] p2
p1 deadline[d] p2

delay
timeout
interrupt
Deadline

4. PolGALS Language Semantics

Semantic rules similar to Esterel and SystemJ are used for describing PolGALS time
statement semantics. Given p and an input event E, the behavioral semantics essentially
describes what happens in a single reaction of the module for the given input event. The things
that can happen are emission of signals and control flow from one set of points to another. This
is captured by a mathematical relation, called the transition relation,which is described as
following semantic rule : ','data,p ,,,K datapEte   .

The rule represents the antecedent and consequent states of p, respectively, during a
micro-step transition. p and p' are the statement before and after the reaction. Term data
represents the state value which related with p before transition and data' represents that after
transition. The variable value can be omitted if p can be executing pure control statements.
Term E presents input event which is the status set of all the signals used in reaction p, but
declared somewhere else. The array indexing notation to refer to signal statuses is utilized in
the event set E. Term e represents the signals emitted during transition and if none are emitted
then it takes the value of ⊥. Term K represents the termination code. When p is capable of
generate a termination , K is an integer value. Three terms can do it. Term ; is encoded with 0,
pause with 1, and exit T with an integer greater than or equal to 2. If a signal dependency has
not yet been resolved. synchronous parallel reaction can produce a termination code of ∞.

TELKOMNIKA ISSN: 2302-4046 

Optimizing Process and Design of Die with CAE on the Car (Su Chunjian)

5123

Besides the above mentioned terms, K has a value of ⊥ i.e., unknown, which means p does not
generate a termination code after this transition. Term t denotes a transition of t time units
elapsing. In the following rules, we present the firing ones which are associated with the timed
statement.

(1) The wait[d] of semantic rule as:
(I) if t ≤ d then

'],[data],[ait ,,,K datatdWaitdW Ete  

This expresses that the process may be idle for any amount of time when it is less than

or equal to d time units.
(II) if t ≤ d then

',data],0[ait ,,,K dataskipW Ete 

This expresses that the process terminates immediately after d becomes 0.
(2) The timeout[d] of semantic rule as:
(I) if e output by p1 then

','1data],[timeoutp1 ,,,K datapd Ete 

This expresses that if an output event e can be engaged by p1, then p1 timeout[d] p2

becomes p1'.
(II) if t < d then

',2][timeout'1data,2][timeoutp1 ,,,K dataptdppd Ete  

 This expresses that if p1 may idle for less than or equal to d time units, so is the

composition.
 (III) if t=d then

',2data,2]0[timeout p1 ,,,K datapp Ete 　　

This expresses that when d becomes 0, p2 takes over control by a silent transition.
(3) The interrupt[d] of semantic rule as:
(I) if t<d then

',2][interrupt1data,2]d[interrput p1 ,,,K dataptdpp Ete  

This expresses that if P engages in event x , P interrupt[d]Q becomes P0 interrupt[d]Q.
(II) if t=d then

',2data,2]0[interrput p1 ,,,K datapp Ete 

This expresses that if P may idle for less than or equal to d time units, so is the

composition. When d time units elapse, Q takes over by a transition.
(4) The deadline[d] of semantic rule as:
 (I) if t ≤d then

','1data,]0[deadline p1 ,,,K datapQ Ete 

Intuitively, these rules express that p deadline[d] behaves exactly as p except that it

must terminate before d time units.

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 9, September 2013: 5119 – 5125

5124

5. Compile into Java
The basic technology of PolGALS compiler is the GRC compiler approach used to

compile SystemJ [17] and Esterl [18], which consists of the structural information and the
operational. The structural information is preserved by the hierarchical state graph (HSG) , and
the operational is explicitly represented by the control flow graph (CFG).

The HSG includes four different types of nodes called thread nodes, parallel nodes,
compound nodes and boundary nodes. It outlines the structure of the synchronous reactions in
terms of statements and threads of control. Thread nodes abstract the sequential composition of
basic instruction inside a particular thread and parallel nodes represent concurrent threads.
Meanwhile, loops, aborts and other back tracking statements are represented by compound
nodes and pauses are represented by boundary nodes. The number of branches extending
from a thread node indicates the number of possible states of that thread.

The CFG consists of synchronous and asynchronous nodes which are used for the
code generation stage. There are seven types of synchronous nodes. The action nodes
represent signal emission, enter nodes state encoding. On the other hand, test nodes represent
signal tests and switch nodes indicate state selection. The fork nodes and join nodes define
concurrency. Terminate nodes mark the completion code of a given thread. The sequential
statements are encoded using action nodes, which are completely ignored in the HSG. The
asynchronous nodes are two types. The a-fork nodes and a-join nodes express asynchronous
concurrency respectively.

The AGRC intermediate format is well suited for systemJ languages, i.e., GALS
programs. But it cannot express timed behavior characteristic. The AGRC format is
insufficient， thereby AGRC further enhances GALS with timed behavior coupling. So we add
new types nodes in order to make the new compiler suitable for compiling timed MoC, which is
called TAGRC. The timer nodes represent time consumption. The resulted Timed
Asynchronous GRaph Code (TAGRC) format derived directly from PolGALS semantics is the
intermediate representation which PolGALS is translated into before being translated into low
level Java back-end code.

The whole process of compiling PolGALS into Java code is divided into four phases as
shown in Figure 2.

(1) Abstract syntax tree generation: syntactic analysis and error check includes
syntactic error and front-end error are performed in this stage.

(2) Format translation: PolGALS program is translated into the TAGRC format. The
structural translation rules are followed to translate each statement into one or multiple nodes of
TAGRC.

(3) Back-end code Generation: The backend code generation stage is carried out on
the resulting AGRC.

(4) The code optimization: some well-known algorithms like redundancy elimination and
information propagation are used in this implement stage.

Figure 2. Compiling PolGALS

TELKOMNIKA ISSN: 2302-4046 

Optimizing Process and Design of Die with CAE on the Car (Su Chunjian)

5125

6. Conclusion
PolGALS language based on the GALS of computation combines the asynchronous

features of System J with timed behavior of timed CSP and data computation capabilities of
Java. We make a detailed description of MoC of PolGALS language, as well as the timed
behavior semantics of the language, which are suited for compiler construction. PolGALS
language utilizes timer for time consuming between coupled reactions. The Timed
Asynchronous Graph Code (TAGRC) format is then proposed which is better suited for
PolGALS language since it is based on a set of formal semantics, and thus is potentially easier
to be verified. The TAGRC compiler provides better performance in our benchmark tests and
different execution platforms, which in turn provides direct support for the active and timed
behavior statements within PolGALS language.

Currently, PolGALS timed behavior model of computation is difficult to be
verify because it opens a wide variety of verification and optimization techniques available in the
program modeling domain. A Further study on verification techniques about timed behavior
model needs to be carried on in the future work.

Acknowledgements
This work is partially supported by the projects funded by Science and technology

project of Hunan Province (Grant No. 2011GK3192), Key project of Hunan Province scientific
research of colleges and Universities (Grant No. 11A105).

References
[1] Junsuo, QU. Design of Time Synchronization Method for Real-Time EPON. TELKOMNIKA

Indonesian Journal of Electrical Engineering. 2013; 11(7):
[2] Qing-Quan Liu. Coordinated Motion Control of Autonomous and Semiautonomous Mobile Agents.

TELKOMNIKA Indonesian Journal of Electrical Engineering. 2012; 10(8):1929-1935.
[3] Berry G. The Esterel v5 language primer version 5_9. Ecole des Mines de Paris, CMA, INRIA. 2000.
[4] Ramesh S. Communicating reactive state machines: design, model and implementation. Proceedings

of the IFAC Workshop on distributed computer control systems. Pergamon Press. 1998; 9:105-110.
[5] Tardieu O, Edwards SA. Scheduling-independent threads and exceptions in SHIM. Proceedings of the

6th ACM and IEEE international conference on embedded software. NewYork, NY. 2006: 142–151.
[6] Grötker T, Liao S, Martin G, et al. System design with SystemC. Kluwer Academic Publishers, USA,

2002.
[7] Edward A Lee. Computing needs time.Communications of the ACM. 2009; 52(5): 70-79.
[8] Wirth N, Gries D. Programming in Modula-2. Springer-Verlag, New York. 1983.
[9] Benveniste A, Berry G. The synchronous approach to reactive and real-time systems. Proceedings of

the IEEE. 1991; 79(9): 1270-1282.
[10] Burns A, Wellings A. Real-Time Systems and Programming Languages: Ada 95, Real-Time Java and

Real-Time POSIX. Addison Wesley, 3d edition. 2001.
[11] Klingerman E, Stoyenko AD. Real-time Euclid: A language for reliable real-time systems. Software

Engineering, IEEE Transactions. 1986; 12(9):941-949.
[12] Leung A, Palem KV, Pnueli A. TimeC: A time constraint language for ILP processor compilation.

Technical Report TR1998-764. New York University. 1998.
[13] Lee I, Davidson S, Wolfe V. Motivating time as a first class entity. Technical Report MS-CIS-87-54.

University of Pennsylvania Aug. 1987.
[14] Münzenberger R, Dörfel M, Hofmann R, et al. A general time model for the specification and design of

embedded real-time systems. Microelectronics Journal. 2003; 34(11): 989-1000.
[15] Malik A, Salcic Z, Roop PS, et al. SystemJ: A GALS Language for System Level Design, Computer

Languages. Systems and Structures. 2010; 36(4): 317-344.
[16] Roscoe AW. Understanding concurrent systems. Springerverlag London Limited. 2010.
[17] Malik A. Principia Lingua SystemJ. PhD thesis, The University of Auckland New Zealand. 2010.
[18] Potop-Butucaru D. Optimisations for faster execution of esterel programs. PhD thesis, Ecoledes

Minesde Paris. 2002.

