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ABSTRACT

Reducing the decoding latency of the turbo codes is important to real-time applica-
tions. Conventionally, the decoding of the turbo codes (TC) runs in serial fashion,
which means only one of the constituent soft decoders runs at a time. Parallel decod-
ing (PD) refers to running the soft decoders in parallel. Although it delivers the output
faster (compared to the serial decoding (SD)), it affects the bit- and frame-error rates.
This paper proposes a decoding procedure that combines both PD and SD. It bridges
the two decoding modes to determine the best combination scheme to achieve the re-
quired level of performance at an acceptable decoding latency. Presented results show
how this procedure can mitigate the performance degradation at a slight increase in the
decoding latency.
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1. INTRODUCTION
Because of their outstanding performance, turbo codes (TC) [1] have been adopted in many modern

communication standards, like 3G and 4G [2]. Improving their performance and optimizing their operation
have been the subjects of many fields within the research community. Since the inception of the turbo code,
many advances have been made in terms of the performance, and the decoding latency. A brief explanation of
the turbo code is needed before we discuss the proposal.

The conventional encoder of the turbo code [1], illustrated in Figure 1 (a), comprises two half-rate
recursive systematic convolutional encoders (RSC), and an interleaver (π). The input to the first encoder is the
binary data (M). The input to the other one is M̃ , which is the permutation of M . The output turbo code is the
multiplexing of these three segments: M ,U (1), and ,U (2) (where U (i) is the parity bits from the encoder i). The
parity bits can be punctured to reduce the transmission rate. Termination bits can be added to the transmission.
So, if the length of M is n bits, the transmission rate of the punctured turbo codes becomes r = n/(2n + τ),
where τ is the number of the bits associated for termination.

Turbo codes are well recognized for their outstanding performance. The performance is mainly de-
rived from the iterative progression of decoding virtually uncorrelated signals that are collaborated to produce
an output. Conventional turbo decoders comprise of two soft-input-soft-output (SISO) decoders, Figure 1 (b).
The received turbo code is restructured into the original components: the systematic message bits Y, and the
parity bits from the first and second RSC, Q(1) and Q(2) respectively.

The SISO decoder runs the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm, which generates a log-
likelihood ratio (LLR) Lj for the information bit mj (the jth bit in M) as in (1), where wj is the received
codeword for mj . This Maximum A Posteriori algorithm maximizes either of the probabilities P (mj |wj) of
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(1). As a result, the values of the LLRs range from −∞ to∞. The reliability of these LLRs is directly related
to the magnitude of their absolute value.
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(b)

Figure 1. The conventional schemes of: (a) the turbo encoder, and (b) the turbo decoder (serial mode)

Lj = log

(
P (mj = +1|wj)
P (mj = −1|wj)

)
(1)

Extrinsic information E(i)
k for the ith SISO at the kth iteration is derived from these LLRs as in (2)

and (3). A SISO decoder uses these values as a priori to decode the channel input. Each SISO runs once per
an iteration. The iterative decoding loop ends when reaching: either the maximum number of iterations, or a
certain level of reliability for the output. The latter is detected by a rule to facilitate the decoding by skipping
“unnecessary” iterations. Finally, the sign of the generated LLRs is used as the hard decision to deliver the
binary bits as output.

E(1)
k = L(1)

k − Y− E(2)
k−1 (2)

E(2)
k = L(2)

k − Y− E(1)
k (3)

2. REDUCING THE DECODING LATENCY
Conventional Turbo decoding is performed through running the BCJR algorithm twice an iteration,

and for several iterations. The BCJR algorithm itself requires extensive number of computations. Hence, the
decoding latency represents a major concern for the operation in practical systems. Latency reduction has been
the subject of many studies in the literature. It can generally be manifested in many ways including: reducing
and/or simplifying the number of computations per iteration, skipping the less-likely computations per iteration,
early-terminating the iterating loop once a reliability level is reached, and deploying parallel decoding of the
constituent sub-decoders. These methods can be summarized as follows.

2.1. Reduction and/or simplification of the computations
Although the BCJR algorithm involves numerous types of algebraic computations, the most time-

consuming expression is the exponential function (ex). Replacing it by a more time-efficient function can
significantly reduce the delay. One important proposal for this simplification is the Max Log-MAP [3], which
uses the maximum function to approximate the exponential. The slight performance degradation can be toler-
ated in many applications. This approximation is further improved in the Log-MAP [4] (4) algorithm, where
a look-up table is used to reduce the error in the approximation. The computations within the BCJR algorithm
can also be reduced by eliminating the less-likely state transitions, and/or skipping those states whose values
less than a threshold [5].

2.2. Early-terminating the iterating loop
In addition to the extensive computations within the SISO decoders, the latency in turbo decoding is

also related to the iterative behavior of the decoding. Along the iterations, the two constitutive SISO decoders
collaborate to result in gradual growth of the output LLRs. The speed of this growth depends on many factors,
including the signal-to-noise ratio (SNR) and the locations of the corrupted bits. There are three possible
behaviors for this evolution to occur: fast-, slow-, and the non- converging LLRs. The converging blocks are
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decodable. For this type, allowing the decoder to perform more iterations per a block increases the chance
to achieve the convergence. However, especially as the SNR increases, the decoder is more likely to reach
the convergence very early. In these cases, the decoding practically requires fewer iterations; hence, an early
stopping rule is used to terminate the loop. Thus, reducing the number of iterations is important to reduce
the latency in decoding. Numerous works in the literature propose early stopping (ES) rules to terminate the
iterations early. These methods determine the instance when there is no further performance improvement
expected. A simple example for such rule is [6], which terminates the loop once the hard outputs from both
SISOs match. This significantly reduces the average number of iterations as the SNR increases. For lower
SNRs: the decoder is more likely to receive “undecodable” blocks, which means it continues iterating in the
hope of reaching the convergence. Several methods, like in [7], define rules to terminate the iteration on
undecodable blocks. The convergence behavior of the extrinsic information transfer (EXIT) charts is analyzed
in [8] to be used as an early stopping technique.

2.3. Deploying parallel decoding
The classical approach in turbo decoding functions in serial mode as in Figure 2 (a). The constituent

decoders take turns computing new LLRs for the received signal based on the last updated extrinsic information
gathered from the other decoder as a priori values. This means at any given time, only one of the SISOs
operates. The main disadvantage of this mode of operation is the high decoding latency.

To speed-up the decoding, simple parallel decoding is proposed in [9], as in Figure 2 (b). In this
scheme, all the constituent decoders run simultaneously. Each one decodes the channel input using the a
priori gathered form the other decoder(s) from the previous iteration. In [10], [11], the two decoders operate
in synchronous manner: when the first decoder is working on its decoding, it considers the instantaneously
generated extrinsic values form the other one, bit by bit. A method is proposed in [12] to use twice the number
of decoders: as two SISO decoders per a convolutional code. Each one of the twin decoders run in the opposite
direction to deliver the LLRs faster to the other decoders.
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2nd Iter
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Figure 2. Schemes for the extrinsic information flow for the turbo decoding; (a) Serial decoding, (b) Parallel
decoding, (c) Parallel-then-serial decoding, and (d) Serial-then-parallel decoding

Parallel decodable turbo codes are presented in [13]-[17]. The information bits here are divided into
multiple groups, each of which is encoded separately and then multiplexed. These groups are decoded in
parallel at the receiver. A method is proposed in [18], to speed up the decoding by dividing the received turbo
code into sub-blocks without termination, each of which is decoded in parallel separately. Long frames can be
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split into smaller sub-blocks and they can be decoded in parallel separately. Each sub-block can be terminated
[19] for simpler parallel decoding. Otherwise, the reception is sub-divided directly as in [20], [21].

On the BCJR level, many researches in the literature have proposed methods to deploy parallel pro-
cessing to speed up the computations of the algorithm’s metrics. For example, methods are proposed in [18],
[22]-[26] to compute the forward and backward metrics separately in parallel starting from both ends of the
whole data block or from a sliding window. Fully-Parallel Turbo Decoding algorithms [27], [28] process the
decoding in parallel fashion in terms of the computations of the BCJR parameters per individual bit.

2.4. The proposed methods
Although the proposals of many methods in the literature reduce the decoding latency, they increase

the system complexity and/or affect the bit error rate (BER). The extra complexity includes: the requirement
for additional hardware (like the processors and the memory units), and the collision-free interleaving. On the
other hand, the simple parallel decoding (PD) of the SISOs’ Figure 2 (b) [9] can be considered a relatively
simple and a good alternative to the conventional serial decoding (SD) Figure 2 (a).

At higher SNRs and with the existence of the ES [6], our simulation shows the difference in the
average number of iterations between SD and PD is mostly less than 1 iteration. However, PD considerably
affect the BER and the frame error rates (FER) performances at these SNRs. Fast converging blocks require few
iterations and they are mostly decoded correctly. The slow and non converging blocks are those which affect
the average number of iterations, the BER, and the FER. Despite the large number of iterations required by the
slow converging blocks, the results are not always immune from errors. The decoding of such type of blocks
performs better through the SD compared to the PD, as the LLRs are gradually evolve through more steps. This
could explain the degradation in both the BER and FER using the PD. This work studies the combination of
both PD and SD for decoding a received block.

There are two possible ways for the simple combination for these two decoding schemes:
1. The process starts in PD mode for z iterations. Then the turbo decoder continues in SD mode for the

rest of the remaining iterations. We call this method Parallel-then-Serial decoding (P |S), as illustrated
in Figure 2 (c).

2. The process starts in SD mode for z iterations. Then the turbo decoder continues in PD mode for the
rest of the remaining iterations. We call this method Serial-then-Parallel decoding (S|P ), as illustrated
in Figure 2 (d).

To compute the average decoding latency, we need to define the units of measure for the different
decoding schemes. A single iteration completes when both SISOs deliver their LLRs. However, as shown
in Figures 2 (a) and (b), the latency is different per iteration according to the decoding mode. To unify the
measures, we set the definition of an iteration for the SD as the standard. This means the iterations in PD is half
of those for SD. The number of iterations is used in this paper to refer to the decoding latency. For simplifying
the comparison and for the sake of presentation, we strict the latency calculations to the number of iterations
for the decoding.

Let µ be the maximum number of decoding iterations, and z be an integer whose value 0 ≤ z ≤ µ.
To define a decoding scheme according to the value of z, we can use the notations: Pz|Sµ−z and Sz|Pµ−z .
The latter, for example, means the constituent decoders run in series for z iterations then they run in parallel for
µ − z iterations. For all values of z, the number of iterations (without ES) for P |S and S|P respectively are
expressed in the (4) and (5).

It is apparent that setting z = µ result in a simple parallel and serial decoding for P |S and S|P
respectively, while setting z to 0 results the other way around. In this work, we examine different values for z,
for the two presented decoding schemes.

δP |S =
z

2
+ (µ− z) = µ− z

2
. (4)

δS|P = z +
µ− z
2

=
z + µ

2
. (5)

3. SIMULATION
The long-term evolution (LTE) specifications of the turbo code [29] are considered. Two 8-state con-

stituent encoders (the generators of the feed-forward and the feedback are 15 and 13, in octal, respectively). The
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Quadratic Permutation Polynomial [30] is used for generating the permutation sequence for the interleavers.
In the receiver, the used SISO decoders are the Max* Log-MAP algorithm [3]. µ is 12 iterations. The ES [6]
is used to terminate the decoding loop once convergence is reached. The size of the message blockes is 512
bits. The channel is assumed to be an ISI-free AWGN with a variance of σ2. The termination bits of only one
encoder are included in the transmission. Puncturing is deployed to reduce the transmission rate. Therefore,
the transmission rate becomes 0.4971.

4. DISCUSSION
As we discussed earlier, the reception is more likely to be fast-converging blocks as the SNR increases,

while the reduction in the SNR increases the probability of receiving slow- and non-converging blocks. Slow
converging blocks perform better through SD as there are more steps to evolve. This is always true, as indicated
by comparing the BER and FER curves of SD and PD in Figure 3 (a) (also in Figure 3 (c)). The performance
curves for the proposed mixed decoding schemes are also shown in these figures. We limit the results for the
cases where z = 0, 2, 6, 10 and 12, as listed in Table 1, just for the sake of the clarity of the presentation.
The listed δmax in this table are for the number of the full-iterations reached without an ES. The schemes
P2|S10 and S10|P2, for example, both run for the same number of iterations, but in the opposite order. With
the deployment of the ES [6], the actual average number of iterations (ρAVG) decreases as the SNR increases,
as shown in Figure 3 (a) and Figure 3 (b). The reduction in ρAVG is a result for the increased percentage of
receiving fast converging blocks, which are detected by the deployed ES.

 
Figure 3. The curves at block size=512 bits of: (a) BER and FER Parallel-then-serial, (b) ρAVG of
Parallel-then-serial, (c) BER and FER of Serial-then-parallel, and (d) ρAVG of Serial-then-parallel
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It is apparent in Figure 3 that the simulation results fill the gaps between SD and PD. The overall
characteristics shifts toward SD, as the number of instances of running SISO decoders serially increases. The
opposite is also true: they shift toward PD as the parallel instances outnumbers the serial decoding instances.

At low SNRs, where the reception is more likely to by non-converging blocks, all the BER and FER
curves are virtually the same. However, the ρAVG curves of the presented schemes gradually shift from SD to
PD as δ decreases (see Figure 3 (b) and Figure 3 (d)). The clear variance in ρAVG due to the fact each scheme
has a different maximum number of iterations, as in Table 1.

Table 1. Number of the full-iterations (without ES) per the selected decoding schemes
Pz |Sµ−z Sz |Pµ−z Number of iterations (ρmax)

P0|S12 S12|P0 12 ≡ SD
P2|S10 S10|P2 11

P6|S6 S6|P6 9
P10|S2 S2|P10 7

P12|S0 S0|P12 6 ≡ PD

As the SNR increases, the probability of convergence also increases. The performance of BER and
FER is directly affected by the decoding scheme. SD achieves the best performance as it runs in a fashion
that requires the highest decoding latency. Although PD, on the other hand, requires the least latency, it com-
promises the performance. The selected combined schemes lie between the two. However, simulation results
show that even at small values of z, the S|P method shows noticeable improvement in terms of the FER and
BER performance compared to the P |S, even at the same ρmax. The improvement is more effective in terms of
the FER as the SNR increases. This can be credited to the improvement in the decoding of the slow-converging
blocks. The S|P method allows the slow-converging blocks to develop at their early stages through more grad-
ual steps. The effectiveness of this method throughout different block sizes depends on the value of z, as these
figures show.

Regarding the comparison through ρAVG, it is clear from the curves that the proposed methods bridge
the gap at the scalable compromise between the decoding latency and the BER/FER performance. The value
of z can be selected to satisfy the required level of performance and/or the tolerable level of the decoding
latency. However, at high SNRs, the value of z becomes ineffective on the average decoding latency. This
means the decoding loop already terminates at a very early stage. At very high SNR, simulation shows that
ρAVG when using the decoding scheme Pz|Sµ−z converges to the value of PD, and regardless of z. The same is
true for Sz|Pµ−z , the ρAVG converges to the value of SD. This can be a result to the used ES, which successfully
terminates most of the reception. Yet, Sz|Pµ−z provide a significant gain in BER and FER by this additional
slight latency.

5. CONCLUSION
Although the parallel turbo decoding provides significant latency reduction, it affects the FER and

BER performance. Running the SISOs in serial achieves better performance at the price of higher decoding
latency. In this paper, we propose two methods that combine both decoding modes. The first one starts the
decoding by running the constitutive SISOs in serial for few iterations and then in parallel for the rest of the
remaining iterations. The second one runs constitutive SISOs is in the other way around. The simulation shows
improvements in BER and FER in both methods. However, the improvement is more significant using the
former method. The proposed method can be further studied in the future on different encoder and interleaver
configurations to examine its effectiveness.
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