
TELKOMNIKA, Vol. 11, No. 9, September 2013, pp. 5105~5111
ISSN: 2302-4046
  5105

Received March 27, 2013; Revised June 4, 2013; Accepted June 17, 2013

A Hardware Time Stamping Method for PTP Messages
Based on Linux System

Zhi Li*1, 2, a, Zhenlin Zhong1, b, Wangchun Zhu1, Binyi Qin1
1School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin,

541004, China
2Guilin University of Aerospace Technology, Guilin 541004, China

*Corresponding author, e-mail: acclizhi@ guet.edu.cn, bforzzlin@163.com

Abstract
In order to achieve high-precision clock synchronization among instrument nodes in distributed

LXI bus test systems. A Hardware time stamping method for PTP messages is introduced in this paper. It
is implemented in Linux systems, which runs on ARM9 S3C2440 processor. The special PHYTER
DP83640 is used to mark the time of PTP messages in physical layer. The new socket option
SO_TIMESTAMPING is used to obtain the hardware timestamps in user space programming. A clock
synchronization test has been done after transplanting the open source protocol software PTPd on this
platform. The results indicate that this method is feasible. It is able to achieve nanosecond level clock
synchronization accuracy.

Keywords: PTP, IEEE 1588, SO_TIMESTAMPING, hardware timestamp, synchronization

Copyright © 2013 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

The IEEE1588 Precision Time Protocol (PTP) is a key technology of the LXI standard. It
must be implemented in the class A and class B instruments. It makes the instruments in the
Local Area Network (LAN) to achieve clock synchronization through network communication, so
as to coordinate the instruments to work by using IEEE 1588 Time-Based triggers. It plays an
important role in distributed automatic test system. Obtaining the timestamps of PTP messages
is the precondition to implement IEEE1588 clock synchronization algorithm. The protocol
stipulates that slave clocks exchange messages with the master clock via the LAN. The transmit
timestamps and receive timestamps is used to calculate the time offset from the master by
slaves, then it adjusts the local time and the clock rate to achieve clock synchronization with the
master. There are two ways to obtain timestamps for the PTP messages: one is to use
software, it can achieve microsecond-level clock synchronization; the other is special hardware,
it can eliminate the uncertainty delay and jitter caused by PTP messages passing through the
network protocol stack to achieve nanosecond-level clock synchronization [1].

This paper provides a method to obtain PTP messages hardware timestamps base on
embedded Linux operating system. It will be introduced in three sections including hardware
design, network device driver and a standard Application Programming Interface (API) for user
space programs. This method assists the implementation of PTP with high precision clock
synchronization.

2. IEEE1588 Clock Synchronization Principle
In the PTP system, the most stable and accurate clock is selected as the master clock

by using the Best Master Clock (BMC) algorithm. It provides reference time for one or more
slave clocks. Slave clocks can obtain four valid timestamps by exchanging messages with the
master through network. It calculates the time offset from master clock using these four
timestamps, then adjusts the local clock base on this time offset to achieve clock
synchronization. The precision of clock synchronization is influenced by the precision of
timestamps [2-3].

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 9, September 2013: 5105 – 5111

5106

Figure 1 shows the procedure of clock synchronization. The master sends Sync
message by period T (T=2^n s, typically 2 s) and records the send time (tm1). If the Flow_Up
message is enabled, a Flow_Up message containing tm1 will be sent at once after sending
Sync message. Slaves record the receipt time of Sync message (ts1) and extract the tm1 from
Flow_Up message or Sync message (when Flow_Up is disabled). The propagation delay of
message from master to slave is:

dm2s = ts1 – tm1 (1)

Slaves send Delay_Req message intermittently and record the send time (ts2), and the

master records the receipt time (tm2). The master will send a Delay_Resp message containing
tm2 to slaves. The propagation delay of message from slave to master is:

ds2m = ts2 – tm2 (2)

Assuming the path is symmetric in two directions, and then the message propagation

delay is:

dprop = (dm2s + ds2m) / 2 (3)

So the time offset between slave and master is:

offset = dm2s – dprop (4)

Figure 1. Procedure of Clock Synchronization

3. Hardware Design
3.1. Hardware System Block Diagram

The Hardware System Block Diagram is shown in Figure 2. It mainly consists of three
parts: a processor, a MAC controller and a PHY. SAMSUNG’s S3C2440 is a high performance
16/32-bit RISC microprocessor which developed with ARM920T core, it supports Linux system
well. The DM9000 is a cost-effective single chip Fast Ethernet MAC controller with a general
processor interface to connect the processor, and provides a MII interface to connect the
external PHY. DP83640 is a precision PHYTER which designed to achieve high-precision clock
synchronization supporting IEEE 1588 V1 and V2. It supports 10/100 Mb/s network and
provides RMII and MII interface to connect with the MAC.

3.2. IEEE 1588 Clock Source

DP83640 clock input pins must be connected to a 25 MHz 0.005% (±50ppm) clock
source when MII interface mode is used. An internal Phase Generation Module (PGM) inside
the DP83640 can generate a nominal 125 MHz reference clock which is provided for the IEEE
1588 PTP logic operation, so as to get 8ns timestamp resolution [4]. The IEEE 1588 clock

TELKOMNIKA ISSN: 2302-4046 

A Hardware Time Stamping Method for PTP Messages based on Linux System (Zhi Li)

5107

supports directly read/writable and frequency scalable. It is convenient for local clock to
implement the precise synchronization with the master clock.

3.3. Hardware Timestamp Generation

PTPv1 messages include Sync, Follow_Up, Delay_Req, Delay_Resp and Management.
They are divided into two types: Sync and Delay_Req are event messages; Follow_Up,
Delay_Resp and Management are general messages. The IEEE 1588 protocol stipulates only
event messages need to be time stamped. As the Figure 3 shows, there is a packet parser in
both the send end and the receipt end inside the DP83640. It is able to identify the incoming
and outgoing PTP event messages and generates timestamps automatically. There are two
ways for software to obtain the hardware timestamps:

(1) Reading timestamps from DP83640 registers.

Whether the timestamp is available or not, it can be determined by reading the PTP
Status Register (PTP_STS). The transmit timestamps are provided in the PTP Transmit
Timestamp Register (PTP_TXTS) and the receive timestamps are provided in the PTP Receive
Timestamp Register (PTP_RXTS).

(2) Getting timestamps through parsing the Status Frame.

If the PHY Status Frame is enabled, DP83640 will generate a Status Frame when it
detects an incoming or outgoing PTP messages. The Status Frame contains transmit timestamp
and receive timestamp, as well as other status messages. It is delivered to the MAC via MII
interface.

Reading timestamps from registers need to continue to query the PTP_STS register, so
getting timestamps through Status Frame has higher efficiency.

Figure 2. Hardware System Block Diagram Figure 3. DP83640 Internal Block Diagram [5]

4. Network Device Driver

In operating system, the device drivers hide the underlying hardware implementation
details for upper applications. The applications only need to call the standard Application
Programming Interface (API) to control the hardware. The network device drivers mainly include
a DM9000 driver and a DP83640 driver. This paper aims to modify the existing network device
drivers to implement hardware time stamping for PTP messages. These modified drivers will be
ported to the embedded Linux system. It provides a standard API for the IEEE 1588
applications to obtain the hardware timestamps. Figure 4 shows the hardware time stamping
implementation in the Linux system. The Linux kernel should be 2.6.30 or later.

a. The receiving process

The receiving message type is identified in function dm9000 _rx(). If it is an ordinary
message, it will be delivered to upper network stack directly through function netif_rx(). If it is a
PTP event message, firstly the skb (a sk_buff type data structure) will be added to a receive
queue, then it waits for a corresponding Status Frame generated by DP83640, when the Status

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 9, September 2013: 5105 – 5111

5108

Frame arrives, the receive hardware timestamp will be extracted and inserted to the responding
skb in the receive queue, finally the skb will be delivered to the upper layer network stack.

b. The transmitting process

In function dm9000_start_xmit(), the transmitting message type will be identified. If it is
a PTP event message, firstly the skb will be cloned, and the cloned skb is added to a transmit
queue, then it waits for a corresponding Status Frame generated by DP83640, when the Status
Frame arrives, the transmit hardware timestamp will be extracted and inserted into the
responding skb in the transmit queue, finally the skb will be added to the socket’s error queue.

Figure 4. Hardware Time Stamping Implementation in Linux System

In order to implement hardware time stamping for PTP event messages, modification of
the network device drivers include the following aspects:

(1) Establishing connection between the DM9000 and DP83640.

The original DM9000 driver operates the internal PHY by default, if it wants to operate
the external PHY DP83640, the Network Control Register (NCR) bit 7 needs to be set. Because
of DM9000 accesses the DP83640 via the MII interface, the driver is designed using the idea
that separating the host and peripheral. Such advantages are the DM9000 driver
implementation does not need to care about the MII peripherals and the same as the DP83640
driver implementation to the specific hosts. They communicate to each other through the kernel
API, the hosts and the peripherals can be combined randomly. That improves the portability of
the drivers. The following steps should be done:

Firstly, a MII bus instance needs to be registered in the DM9000 driver to establish
connection between DM9000 and the MII bus, codes as follow:

struct mii_bus *smi_bus;
mdiobus_register(smi_bus);
Secondly, DP83640 needs to be registered as a PHY device of the MII bus:
mdiobus_scan(smi_bus, addr);//addr is the PHY address
Finally, the connection between dm9000 and dp83640 is established:
phy_attach(db->ndev,dev_name(&phy->dev),0, PHY_INTERFACE_MODE_MII);

(2) The SIOCSHWTSTAMP command needs to be supported by the MAC driver.

It makes users are able to initialize network device using ioctl(SIOCSHWTSTAMP), the
initialization includes determining whether the device is expected to hardware time stamping,
and specifying what kind of messages will be filtered. phy_mii_ioctl() is a kernel MII control

TELKOMNIKA ISSN: 2302-4046 

A Hardware Time Stamping Method for PTP Messages based on Linux System (Zhi Li)

5109

function which contains the implementation details of the SIOCSHWTSTAMP command, it can
be used in the dm9000_ioctl() function.

(3) Hardware time stamping for outgoing PTP event messages.

The function skb_tx_timestamp() should be called in the function dm9000_start_xmit()
as soon as possible after giving the skb to the MAC hardware, but before freeing the skb. It is a
system function supported by Linux 2.6.30 or later, if the outgoing packet is a PTP event
message, it will process the packet correspondingly by calling the DP 83640 driver function
txtstamp().

(4) Hardware time stamping for incoming PTP event messages.

The function skb_defer_rx_timestamp() should be called in the function dm9000_rx()
before delivering skb to the upper layer. It is a system function supported by Linux 2.6.30 or
later, if the incoming packet is a general message, it returns false, otherwise, it processes the
packet correspondingly by calling the dp83640 driver function rxtstamp().

5. User Space API
Linux 2.6.30 or later versions provide a new API for the user space to get the network

packets time stamps. In addition to the existing socket options SO_TIMESTAMP and
SO_TIMESTAMPNS, it increases the SO_TIMESTAMPING. Both SO_TIMESTAMP and
SO_TIMESTAMPNS generate timestamp for each incoming packet by using the system time,
SO_TIMESTAMP returns microseconds resolution, while SO_TIMESTAMPNS returns
nanoseconds resolution. Using SO_TIMESTAMPING option, time stamps can be generated by
software or hardware. Different parameter settings for function setsockopt() can achieve
different return results. The parameter is an integer with some of the bits set showed in Table 1.
Setting other bits is an error and doesn't change the current state [6-8].

Table 1. Parameter Settings of SO_TIMESTAMPING

Parameter Description

SOF_TIMESTAMPING_TX_HARDWARE try to obtain send time stamp in hardware

SOF_TIMESTAMPING_TX_SOFTWARE
if SOF_TIMESTAMPING_TX_HARDWARE is off or fails,
then do it in software

SOF_TIMESTAMPING_RX_HARDWARE
return the original, unmodified time stamp as generated
by the hardware

SOF_TIMESTAMPING_RX_SOFTWARE
if SOF_TIMESTAMPING_RX_HARDWARE is off or
fails, then do it in software

SOF_TIMESTAMPING_RAW_HARDWARE return original raw hardware time stamp

SOF_TIMESTAMPING_SYS_HARDWARE
return hardware time stamp transformed to the system
time base

SOF_TIMESTAMPING_SOFTWARE return system time stamp generated in software

SOF_TIMESTAMPING_TX/RX determines how time stamps are generated.
SOF_TIMESTAMPING_RAW/SYS determines how they are reported.

When the device receives a PTP event message, the receive timestamp as an ancillary
data which is SO_TIMESTAMPING type in SOL_SOCKET protocol level storing in the control
message. The function recvmsg() can be used to obtain network data and the control message.
All the ancillary data can be accessed using these macros: CMSG_FIRSTHDR(),
CMSG_NXTHDR() and CMSG_DATA(). It indicates the ancillary data of SO_TIMESTAMPING
type is found when the two equations cmsg_level==SOL_SOCK and cmsg_type==
SO_TIMESTAMPING are satisfied. Part of the implementation codes as follow:

recvmsg(sock, &msg, MSG_DONTWAIT); // receive data and get the control message

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 9, September 2013: 5105 – 5111

5110

for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL; cmsg =
CMSG_NXTHDR(&msg, cmsg))｛

 struct timespec *stamp; // point to the time stamp
if (cmsg->cmsg_level != SOL_SOCKET)
 continue;
 switch (cmsg->cmsg_type)｛
 case SO_TIMESTAMPING:
 stamp = (struct timespec*)CMSG_DATA(cmsg); // timestamp is found
 ……
 ｝
……
｝

For transmit timestamp, the outgoing packet is looped back to the socket's error queue

with the transmit timestamp attached. It can be received with
recvmsg(flags=MSG_ERRQUEUE).

6. Experiment and result
The open source PTP daemon (PTPd) is modified and ported to Linux system based on

the API described above. PTPd is designed as a pure software solution to implement the IEEE
1588 Precision Time Protocol. It can achieve microsecond-level clock synchronization accuracy.
It is improved to obtain higher accuracy [9]. About three hours’ clock synchronization test had
been done by using a self-designed device connect with an Agilent E5818A LXI Class-B trigger
box via a ten meters twisted pair directly. The E5818A is used as the master clock, and the self-
designed device is the slave clock. The test data is processed by MATLAB shown in the Figure
5, it can be seen that after a period of clock synchronization, the time offset between the slave
clock and the master clock is stable within nearly ±100ns.

Figure 5. Clock Synchronization Test

7. Conclusion
The results indicated the method described above correctly. Nanosecond resolution for

clock synchronization is achieved using hardware timestamp to implement the IEEE 1588
protocol. Linux is becoming a leading embedded operating system because of its excellent
performances. It is widely used in the areas like measurement, control and automation. This
paper details a method to obtain the hardware timestamp of PTP message base on ARM and
Linux platform. It provides a great convenience for the IEEE 1588 Precision Time Protocol
applications to achieve high-precision clock synchronization.

TELKOMNIKA ISSN: 2302-4046 

A Hardware Time Stamping Method for PTP Messages based on Linux System (Zhi Li)

5111

Acknowledgements
This research was supported by Guangxi Natural Science Foundation of China (Grant

No. 2013GXNSFAA019332).

References
[1] Park Jae Won, Hwang Jin Ha, Chung Won Young. Design time stamp hardware unit supporting IEEE

1588 standard. 2011 International SoC Design Conference, ISOCC 2011: 345-348.
[2] IEEE Instrumentation and Measurement Society: IEEE Std 1588 -2002.
[3] K Correll, N Barendt, M Branicky. Design considerations for software only implementations of the

IEEE 1588 precision time protocol. Proceedings of the IEEE 1588 Conference, Zurich, Switzerland,
2005.

[4] National Semiconductor Corporation. Precision PHYTER-IEEE 1588 Precision Time Protocol
Transceiver. 2010.

[5] National Semiconductor Corporation. National Semiconductor Ethernet PHYTER Software
Development Guide. 2009.

[6] Patrick Ohly. net: new user space API for time stamping of incoming and outgoing packets.
https://lkml.org/lkml/2008/12/15/145, 2008.

[7] Richard Cochran, Cristian Marinescu. Design and Implementation of a PTP Clock Infrastructure for
the Linux Kernel. ISPCS 2010, United States: IEEE Computer Society. 2010: 116-121.

[8] Richard Cochran, Cristian Marinescu, Christian Riesch. Synchronizing the linux system time to a PTP
hardware clock. IEEE International Symposium on Precision Clock Synchronization for Measurement,
Control, and Communication. ISPCS 2011: 87-92.

[9] Wang Te-Kwei, Chang Fan-Ren. Application of PTPd to find the threshold of precision time
synchronization. Proceedings 2011 International Conference on System Science and Engineering,
ICSSE 2011: 161-164.

[10] Liu Ying, Zhu Yantao, Li Yurong. The embedded information acquisition system of forest resource.
TELKOMNIKA Indonesian Journal of Electrical Engineering. 2012; 10(6): 1843-1848.

[11] Feng Tianrui, Sen Ouyang. Design of a distribution network power quality monitoring system based on
metering automation systems and its application. TELKOMNIKA Indonesian Journal of Electrical
Engineering. 2012; 10(7): 1547-1553.

[12] Yu Wilson. LXI instrument development platform based on an open embedded operating system. Yi
Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrumen. 2007; 28(5): 788-791.

