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Abstract 
Since extraneous torque is the key factor to affect the accuracy of electro-hydraulic servo loading 

system, the forming mechanism of extraneous torque was discussed in this work. And then several design 
methods of loading system controller based on modern control theory were introduced, such as internal 
model control, Cerebella model articulation control and adaptive backstepping control. 
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1. Introduction 

The function of aircraft electro-hydraulic servo loading system is to record the loading of 
rudder during the flight in the ground experiment and hardware in the loop simulation [1-5]. And 
the main problem of that loading system is because of the existence of extraneous torque 
during dynamic loading. The extraneous torque seriously affects the accuracy of the loading 
system. In the past twenty years, researchers have done a lot of work on overcoming the 
extraneous torque, and obtained certain achievements [6-11]. However, with the development 
of national defense, higher and higher tracking accuracy is required of the electro-hydraulic 
servo loading system. The design based on hardware correction and traditional control method 
could not satisfy the accuracy requirement of the loading system. Therefore, the forming 
mechanism of extraneous torque, and several design methods of loading system controller 
based on modern control theory were introduced in this work. 
 
 
2. The Forming Mechanism of Extraneous Torque 

The hydraulic motor is mainly adopted as the actuator of the aircraft electro-hydraulic 
servo loading system. The input and output expression of the actuating unit of the loading 
system is [12]: 
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In the aircraft simulation experiments, the loading system is tracked with the torque 

signal, namely Tg is changed with Xv. In this formula, the first item of numerator is the required 
amount of the loading system to ensure the loading torque. It could be also seen that the other 
parameters are related to the rudder, which means that the output of loading system Tg is still 

related with the location signal d . While the torque is imposed to rudder by the loading system, 

the loading system was seriously interfered by the location signal of the rudder, namely the 
extraneous torque of electro-hydraulic servo loading system. The expression of the extraneous 
torque of the loading system could be seen as followed, after decomposition of Equation (1) 
above. 
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From the above formula, it can be seen that the extraneous torque is not only related 

with the location of the rudder, but also with the velocity, accelerated velocity and jerk. 
 
 

3. The Modern Control Strategy of Loading System 
The traditional PID control mode can not well satisfy the loading system with time-

varying parameters [13]. The structure uniformity principle is simple and easy, widely used as 
the control method in the development of the traditional electro-hydraulic servo loading system. 
However, since the high-order differential term of compensation is always simplified as the 
constant, the structure uniformity principle could not meet the design requirement of the high 
accuracy loading system. With the development of modern control strategy, some new methods 
were applied to the electro-hydraulic servo loading system, highly improved the accuracy and 
stability. 
 
3.1. Internal Model Control Method 

Internal model control algorithm, introduced by Garcial in 1982, is a simple and 
convenient control method. Designers can employ this method without understanding its interior 
mechanism and modeling process. The measured or estimated impulse response is used as 
model, and the extraneous torque is restrained or eliminated by the internal model controller 
[14-15]. When designing the internal model controller, the first step is to design a stable ideal 
controller without consideration of the model error and constraints. The second step is to 
introduce a feedback filter at the feedback loop at the appearance of model mismatch or 
interference [15]. The simulation and experimental results show that over 80% of the extraneous 
torque can be eliminated by operating internal model compensation to the loading system and 
the system tracking accuracy is obviously improved.  

 
3.2. Cerebella Model Articulation Control Method 

Cerebella model articulation control (CMAC) method is the outcome of the combination 
of neural network theory and control theory, and it broke a new path to solve the control problem 
for a system with complex nonlinearity and uncertainty. Literature shows that there are several 
ways to operate Cerebella model articulation control, such as CMAC, RBF, DRNN and RTRNN 
[16-19]. In this paper, the CMAC method is discussed in detail since its control mechanism is 
simpler and more effective compared to others [20-21]. 

CMAC learns from the working principle of the cerebellum, and is a partial neural 
network model based on table lookup input and output. The advantages of CMAC include 
partial learning, changing table content by studying algorithm, and the ability of information 
classification and storage. It reduces the correction weights by storing information into partial 
structures. Its learning is fast, and it is suitable for real-time control system while maintaining 
good performance of approximating nonlinear function.  

 
 

 
 

Figure 1. The Working Principle of the Extraneous Torque Compensator in CMAC 
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Figure 1 shows the working principle of the extraneous torque compensator in CMAC. 

The algorithm is a tutorial system, and it calculates bcqu at the end of each control cycle. The 

sum of bcqu  and the PID output is the system input control signal, which is u. The total output of 

the control system is mainly produced by the extraneous torque compensator. From this point of 
view, the control algorithm makes use of the extraneous torque to improve the system dynamic 
characteristics. 

Below are the main equations of the control algorithm. 
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pidbcq uuu                                                                 (5) 

 

Where, ia  is the binary selection vector; iw is the CMAC network weight coefficient; c is the 

CMAC network generalization parameter; T is the sampling control time; )(kER  is the current 

sampling error; )1( kER  is the previous sampling error.  

The CMAC control method, which takes advantage of the self adaptive control ability of 
neural network, eliminates the interference of speed and acceleration in the loading actuator, 
and overcomes the influence of the nonlinear and time-varying parameters and perturbation in 
the hydraulic system. Therefore it can greatly reduce the extraneous torque with good 
robustness. 

 
3.3. Backstepping Self Adaptive Control 

Backstepping self adaptive control is widely used in hydraulic servo control, motor 
control and other relative areas. According to the system characteristics of strong coupling 
interference, B. Zhang proposed a backstepping self adaptive controller considering the 
variation of parameters for the electro-hydraulic loading simulator [12, 22-25]. The design idea 
of backstepping self adaptive controller is to decompose a complex high order system into 
several low order simple subsystems, and design controller for each subsystem respectively. 
Then the coupling term though each subsystem is iterated into the final controller. In the design 
of the controller, the variation of the system parameters must be taken into account, as long as 
the adaptive rate of the parameters. The backstepping self adaptive controller was studied in 
detail under different condition in [12], which shows that it can restrain the extraneous torque 
effectively and improve the system loading property.  

 
 

4. Conclusion 
The suppression of the extraneous torque is one of the key technologies in the electro-

hydraulic servo loading system design. For the design of modern high accuracy loading 
systems, the influence of the parameter variation on control accuracy must be taken into 
consideration. The control strategies introduced in this paper can restrain the extraneous torque 
in an electro-hydraulic servo loading system with time varying parameters, and therefore, the 
property of the loading system is improved greatly. 
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