
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 24, No. 1, October 2021, pp. 403~409 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v24.i1.pp403-409      403 

  

Journal homepage: http://ijeecs.iaescore.com 

A new framework for utilizing side information in sparse 

representation 
 

 

Seyed Hadi Hashemi Rafsanjani1, Saeed Ghazi Maghrebi2 
1Digital Communication Department, ICT Research Center, Tehran, Iran 

2Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran 

 

 

Article Info  ABSTRACT 

Article history: 

Received Oct 15, 2020 

Revised Aug 27, 2021 

Accepted Aug 30, 2021 

 

 An underdetermined system of linear equation has infinitely number of 

answers. To find a specific solution, regularization method is used. For this 

propose, we define a cost function based on desired features of the solution 

and that answer with the best matches to these function is selected as the 

desired solution. In case of sparse solution, zero-norm function is selected as 

the cost function. In many engineering cases, there is side information which 

are omitted because of the zero-norm function. Finding a way to conquer 

zero-norm function limitation, will help to improve estimation of the desired 

parameter. In this regard, we utilize maximum a posterior (MAP) estimation 

and modify the prior information such that both sparsity and side information 

are utilized. As a consequence, a framework to utilize side information into 

sparse representation algorithms is proposed. We also test our proposed 

framework in orthogonal frequency division multiplexing (OFDM) sparse 

channel estimation problem which indicates, by utilizing our proposed 

system, the performance of the system improves and fewer resources are 

required for estimating the channel. 
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1. INTRODUCTION 

An underdetermined system of linear equation, 𝑏 =  𝐴𝑥, 𝐴 ∈ ℝ𝑛×𝑚 with 𝑛 < 𝑚 has either 

infinitely answer or no answer, if 𝑏 is not in the span of 𝐴. To guarantee that the underdetermined system of 

linear equation has infinitely answers, 𝐴 the coefficient matrix which is called dictionary matrix in this paper, 

must be a full rank matrix [1]. To find a specific answer with special features, the regularization method is 

used. In this method, a cost function is defined based on desired features and looks for those answers that 

satisfy it [2], [3]. The answer which best satisfies this relation is selected as the desired solution [4]. In case 

of a sparse solution, the selected cost function for regularization is zero-norm function,‖𝑥‖0 = ∑ |𝑥𝑖|
0

𝑖
 

which counts the number of non-zero elements of the 𝑥 as [4], 

 

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥{𝜆||𝑥||
0

+ ||𝐴𝑥 − 𝑏||2}, (1) 

 

where λ is a balancing parameter. The (1) is known as P0-problem and it is nondeterministic polynomial time 

(NP)-hard problem [4]. Solving this problem is important, because in many engineering problems such as 

[5]-[8], the sparse answer is the desired solution. To find the sparse solution for this problem, two general 

https://creativecommons.org/licenses/by-sa/4.0/
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approaches are used. The first one, the greedy methods [9], attempts to find the non-zero elements one by one 

per time. The second one is known as relaxation which replaces the zero-norm function with a smoother one 

and uses optimization technique to find the solution [10]. Algorithms such as orthogonal matching pursuit 

(OMP), smoothed l0 (SL0) and l1-minimization [11]-[13] are some examples of the proposed algorithms for 

finding the sparse solution.  

Although the zero-norm function is a proper cost function for finding the sparse solution, in case of 

existing other features or additional information, it suppresses them. Therefore, modification is required to 

conquer this limitation. To clarify it, let C be a diagonal cost matrix whose diagonal elements are selected 

based on side information. To apply side information into the estimation process, the cost matrix C is 

multiplied by x to assign costs to each element of x, therefore (1) changes as (2). 

 

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥{𝜆||𝐶𝑥||
0

+ ||𝐴𝑥 − 𝑏||2} (2) 

 

However, since‖𝑪𝒙‖0 = ∑ |𝑐𝑖𝑥𝑖|
0 = 𝑖 ∑ |𝑥𝑖|

0 =  ‖𝒙‖0 𝑖 , the zero-norm function eliminates the 

impact of cost matrix. Therefore, to take the impact of side information into account, a new framework is 

required to manipulate side information and conquers the zero-norm limitation.  

Regarding utilizing side information with sparse representation, some researchers proposed  

to replace zero-norm function with l1-norm, ||𝑥||1 =  ∑ |𝑥𝑖|
1

𝑖 , and try to utilize side information with  

it [14]-[19]. For example, in [17], an iterative method is proposed that employs a weighted l1-minimization 

method and utilizes the result of previous iterations to calculate the weight of the next iteration. The iterative 

model in [17] reduces the number of measurements and improves the solution of l1-minimization method; 

however, this method does not utilize prior information to find the sparse solution. Also, in [17], Candes 

integrated the information via maximizing the correlation between the prior information and the desired 

solution and found the sparse solution for (3) relation; 

 

𝑎𝑟𝑔𝑚𝑖𝑛𝑥{𝜆(‖𝑥‖1 + ⟨𝑥, 𝜑⟩) + ‖𝐴𝑥 − 𝑏‖2, (3) 

 

where the ||𝒙||𝟏 is the l1-norm and the second term calculates the similarity between prior information, φ, 

and the desired solution, x. Similarly, in [15] they proposed a framework concentrating on l1-l1-minimization 

and tried to utilize side information by replacing l0-norm with l1-norm. These methods and similar 

frameworks considered l1-norm as the cost function to handle side information, and it must be noted they did 

not address utilization of side information in l0-problem. 

All the mentioned methods use relaxation to overcome zero-norm limitation. However, in our 

proposed method, we define a framework to overcome this limitation. In our framework, we define an 

auxiliary variable, 𝑥′ = 𝐶𝑥 and consider modified cost function as 𝐹𝐶(. ). Since C is a diagonal matrix with 

non-zero elements, the inverse matrix exists and this matrix is defined as a weight matrix 𝑊 ≜ 𝐶−1 and 

consequently, 𝑥 = 𝑊𝑥′. Since matrix W is a diagonal 𝑁 × 𝑁 matrix and the dictionary A is an 𝐿 × 𝑁 matrix, 

it is possible to combine the weight matrix, W, with the dictionary, A, and define a weighted-dictionary, 𝐵 ≜
𝐴𝑊. Note that if the desired solution of 𝐴𝑥 =  𝑏 is sparse, then the solution of 𝐵𝑥′  =  𝑏 is also sparse and 

W will be a diagonal matrix with non-zero diagonal elements. As a result, by defining the cost matrix C 

based on side information and replacing the dictionary matrix A with the weighted-dictionary 𝐵 =  𝑊𝐴, the 

observation relation changes to the weighted-observation. In this case, not only its desired answer is sparse, 

but also side information is embedded in it. Therefore, the cost function should be selected so that it handels 

sparse answer. Here since the function must look for a sparse, the best function is a zero-norm function. By 

replacing the weighted-dictionary and selecting zero-norm as the cost function, the regularization relation 

changes as (4). 

 

�̂�′ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑥′{‖𝑥′‖0 + ‖𝐵𝑥′ − 𝑏‖}. (4) 

 

In (4) indicates that in the presence of side information, the weight matrix gives higher weights to those 

columns of the dictionary matrix which are more probable to be selected. At the next sections we try to 

provide materials that support above discussion. 

The rest of this paper is organized as follows. At the section 2, we use maximum a posterior (MAP) 

estimation to utilize side information for finding sparse solution and support above argument. Section 3 is 

devoted to explain the procedure of appending side information into sparse representation problem and in 

section 4, we test our framework on a channel estimation problem for an orthogonal frequency division 

multiplexing (OFDM) ystem and present results. 
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2. ESTIMATING SPRASE BY UTILIZING MAP ESTIMATION 

MAP estimation estimates the desired parameter by utilizing prior information. This estimation tries 

to find the desired answer by maximizing 𝐹(𝑑|𝑜), where d is the desired parameter to be estimated, o is an 

observation parameter and 𝐹 (. |. ) is a conditional probability density function (pdf) [20]. To estimate a 

sparse solution for an underdetermined system of linear equation, by utilizing MAP estimation, the 

observation vector, desired parameter and observation relation are defined as 𝑑 =  𝑥, 𝑜 =  𝑏, 𝑏 =  𝐴𝑥 +  𝑧, 

respectively. It is worth mentioning that z is the observed noise. 

By utilizing Bayes rule, the MAP estimation changes as follows, 

 

𝑥 ̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝐹(𝑥|𝑏) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥
𝐹(𝑏|𝑥)𝐹(𝑥)

𝐹(𝑏)
 (5) 

 

where 𝐹(𝑏) can be omitted, since it does not affect maximization process. Considering z as an identical 

independent distributed (i.i.d) zero mean white Gaussian noise, the conditional distribution becomes as 

𝐹(𝑏|𝑥) = 𝐹(𝐴𝑥 + 𝑧|𝑥) =  ℵ(𝐴𝑥, 𝜎𝐼), where I is an indentical matrix, and σ is the variance of as observation 

noise and ℵ(. ) is normal distribution function. The pdf of 𝐹(𝑥), which is a prior of the desired parameter, 

should be selected among those pdf that covers sparse feature. Considering a sparse signal, most of its 

elements are zero, and its few elements obtain a nonzero amount, or in other word, the probability density 

function (pdf) of the elements should have a high density at zero and have a heavy tail [21]. High density 

around zero increases concentration of the mass around zero which results in increaseing the probability of 

selecting zero, and guaranties most elements of the signal gain zero amount. On the other hand, its heavy tail 

guarantees few elements gain huge amounts. Spike and slab [22], the mixture of narrow and very wide 

Gaussian distributions, laplace and exponential distribution [21] are some example of sparse pdfs. In this 

paper, we select generalized Gaussian distribution (GGD) as sparse pdf of the desired parameter, because it 

covers wide range of sparse and non-sparse pdf’s while different amounts are assigned to its parameters. In 

this paper, it is assumed that the desired parameter is an i.i.d random process containing N i.i.d parameters, 

𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑁. Consequently, 𝐹(𝑥) =  ∏ 𝑓(𝑥𝑖)
𝑁
𝑖=1 . By replacing normal distribution and GGD in (5), the 

estimation relation changes as (6), 

 

�̂� =  argmax ℵ(𝐴𝑥, 𝜎𝐼) ∏
𝛼

2𝛽Γ(1
𝛼⁄ )

𝑒𝑥𝑝 (−
‖𝑥𝑖‖𝛼

𝛽
)𝑁

𝑖=1 , 𝛼 > 0, 𝛽 > 0, (6) 

 

where α and β are parameters of the GGD distribution controlling shape and variance of the distribution, 

respectively. The parameter α controls sharpness of the GGD distribution and provides a wide range of 

probability density functions. For example, Laplacian distribution is obtained by selecting α = 1 and sparse 

distributions are obtained by selecting α ≤ 1. Since normal distribution and GGD are exponential functions 

and natural logarithmic function (ln-function) is strictly increasing, as a result, performing ln-function in (6) 

does not affect the maximization process. After some manipulations, the estimation relation is calculated as 

follows, 

 

�̂� =  argmax𝑥  ln(
1

√2𝜋𝜎2

𝛼

2𝛽𝚪(1
𝛼⁄ )

) − 
‖𝒃−𝑨𝒙‖2

𝜎2 −
‖𝒙‖𝛼

𝛽𝛼 , (7) 

 

where ‖. ‖2, ‖. ‖𝛼   are the norm-2 and norm-α, respectively. Looking closer at (7), it is observed that the first 

term is a constant amount and can be omitted during maximization problem. By omitting minus sign, 

maximization process changes to minimization process and the estimation relation changes as follows, 

 

�̂� =  𝑎𝑟𝑔𝑚𝑖𝑛𝒙  
‖𝒃−𝑨𝒙‖2

𝜎2 +
‖𝒙‖𝛼

𝛽𝛼 . (8) 

 

In (8) is also obtained while regularization for an underdetermined system of linear equation is used 

and α-norm is selected as a cost function. To consider sparse feature, α ≤ 1 should be selected. By selecting α 

= 1 and performing some calculation, in (8) changes to the following form, 

 

  �̂� =  𝑎𝑟𝑔𝑚𝑖𝑛𝒙  
‖𝒃−𝑨𝒙‖2

𝜎2 +
‖𝒙‖1

𝛽1 . (9) 

 

This relation is a P1-problem which is convex, but not strictly convex [4], [23]. This relation may 

have more than one solution, but these solutions are convex and gathered in a bounded convex set [24]. 

Beside it, as we are looking for the sparse solution (for example k-sparse), there exists at least one answer 

with at most k non-zero elements. The above relation can be formulated as linear programming to find the 
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sparse solution. Algorithms such as least absolute shrinkage and selection operator (LASSO) [24] are used 

to solve it [25]. 

Here, we consider the boundary case where α → 0, and assume that the taps of the channel have 

GGD distribution with α → 0. In this case, the estimation relation changes as follows, 
 

�̂� =  𝑎𝑟𝑔𝑚𝑖𝑛𝒙,𝜶→𝟎  
‖𝒃−𝑨𝒙‖2

𝜎2 +
‖𝒙‖𝛼

𝛽𝛼 . (10) 

 

As it is clearly indicated in (10), by selecting α → 0, the estimation relation changes to P0-problem. 

Here it is shown that by utilizing MAP estimation and selecting GGD distribution as a pdf for a sparse 

signal, the obtained relation is similar to the relation obtained by regularization process. In the next section, 

we explain how to contribute to side information in sparse representation process. 
 

 

3. CONTRIBUTING SIDE INFORMATION IN SPARSE ESTIMATION PROCESS 

While sparsity is the only assumption of the desired answer, all elements of x = {x1, x2, …, xN} 

are treated uniformly and equally probable [26]. In case of side information, some atoms are more 

probable to be selected as non-zero elements of the sparse answer. As x is considered as an i.i.d signal, 

those elements that have higher chance of selection (feasible elements) will gain higher variance, and vice 

versa. The variance of GGD pdf is directly controlled by its scale parameter, β, then to conduct side 

information into estimation process, those elements that are more probable to be selected, as non-zero 

elements, have higher amount of β. To indicate it in a mathematical form, a weight element wi is selected 

based on side information and added to the scale parameter as, 𝛽𝑖  ≜ 𝑤𝑖𝛽. By replacing the scale factor 

with the weighted one, the estimated parameter is calculated as follows, 
 

�̂� =  𝑎𝑟𝑔𝑚𝑖𝑛𝑥(∑
|𝑥𝑖|𝛼

(𝑤𝑖𝛽)𝛼
𝑁
𝑖=1 +

1

2𝛾
‖𝑏 − 𝐴𝑥‖2), (11) 

 

where ||.||2 denotes the l2-norm of a vector. Since wi’s are positive non-zero values, the term ∑
|𝑥𝑖|𝛼

(𝑤𝑖𝛽)𝛼
𝑁
𝑖=1  

can be re-written in a matrix form as ‖𝑊−1𝑥‖𝛼, where W is a diagonal matrix with i’th diagonal element 

defining 𝑥′ ≜  𝑊−1𝑥, in (11) can be re-written as, 
 

�̂�′ =  𝑎𝑟𝑔𝑚𝑖𝑛𝑥′ (‖𝑥′‖𝛼 +
1

2𝛾
‖𝑏 − 𝐵𝑥′‖2). (12) 

 

The weight matrix, W, can be combined with the dictionary matrix, A, to define the weighted-

dictionary, 𝐵 = 𝐴𝑊. It should be noted that prior side information affects the estimation process by 

applying weights into the columns of the dictionary matrix and boosting the selection probability of the 

feasible elements.  

The (12) is obtained while regularization method is used for finding a sparse solution of  
𝑏 =  𝐵𝑥′ and selecting ‖. ‖𝛼 as the cost function. Then, by selecting α → 0, the (12) changes to the 

weighted-P0-problem. In this framework, instead of directly applying side information into the desired 

parameter, the dictionary matrix is modified and weights are applied to its columns. To indicate one of the 

benefits of our framework, we compare it with weighted-l1 method [17]. One of the methods to find the 

sparse solution of an underdetermined system with linear equation is a relaxation method which replaces 

the l0-norm by a smooth function and uses continuous optimization techniques to find the solution [17]. In 

general, weighted-l1 method is used to contribute prior information into the procedure of finding  

the sparse solution [26]. However, relaxing the weighted-P0-problem by a weighted-l1 function is not 

trivial [27]; if a weighted-l1 solution is adopted as a relaxation of the weighted-P0-problem. It is not clear 

whether the solution satisfies the original P0-problem or the weighted-P0-problem due to the fact that 

∑ 𝑤𝑖|𝑥𝑖|
𝑁
𝑖=1 =  ∑ |𝑤𝑖𝑥𝑖|

𝑁
𝑖=1 , and ∑ |𝑤𝑖𝑥𝑖|

𝑁
𝑖=1  is a relaxation of ∑ |𝑤𝑖𝑥𝑖|0

𝑁
𝑖=1  which in turn is equal 

to∑ |𝑥𝑖|0
𝑁
𝑖=1 . Therefore, both weighted-l1 and l1 can be seen as relaxations of the P0-problem, with 

different solutions. On the contrary, our proposed framework contributes prior information into the 

problem formulation by modifying the dictionary matrix and introduces a weighted observation relation. 

Hence, the solution satisfies the original P0-problem in the presence of prior information. 
 

 

4. SIMULATION RESULT 

In this section, we present simulation result of our proposed framework on application of channel 

estimation for an OFDM system. In this system, we utilized a 4-tap Rayleigh fading channel. The input of 

the OFDM system is a stream of one thousand OFDM symbols. We simulate each channel realization for 
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1000 iterations and then, evaluate the mean value of the error rate with respect to different signal to noise 

ratio (SNR) values and the number of estimation pilots as the final result. To indicate the proficiency of our 

proposed framework, we use OMP algorithm and l1-minimization algorithm to estimate OFDM channel 

coefficients and compare their results. 

In Figure 1, the results of our proposed model are denoted by weighted models, W-OMP, which are 

compared with OMP sparse solutions across different SNR values. As indicated in this figure, the impact of 

utilizing side information in low SNR is more than its effects in higher SNR. It has a simple interpretation 

that, side information compensates the impact of noises of the observed samples. For low SNR’s, side 

information compensates the impact of noises. While for higher SNR’s, a good estimation of the channel is 

obtained from the observed samples. Figure 2 indicates that the performance improvement of the weighted 

model for both low and high SNR regimes. Although, for both Figures 1 and 2, by increasing both the SNR 

value and the number of pilots, the impact of prior information is reduced. 

 

 

  
 

Figure 1. Performance of OFDM system using prior 

information with fixed SNR, OMP algorithm 

 

Figure 2. Performance of OFDM system using prior 

information with fixed number of pilots, OMP 

algorithm 

 

 

Figures 1 and 2 clearly show that our proposed weighted model outperforms non-weighted models 

in terms of error probability for different number of pilots and SNR values. For example at SNR=10 dB, the 

error probability is reduced around an order of magnitude from 10-1 to 10-2. As indicated in these figures, at 

the same condition by contributing side information in estimation process, the improvement in channel 

estimation is observed. Then, the system experiences better performance incompare with the ordinary case 

and the bit error rate is reduced. 

To indicate the proficiency of our proposed framework, we test our framework with LASSO 

algorithm and compare its result while side information is used or not. Impacts of side information across 

different SNR values are presented in Figure 3. It is clearly observed that utilizing side information improve 

estimation of the channel and as a result improve performance of the system. Similar to OMP case, by 

increasing SNR value, the impact of side information will be decreased which has similar interpretation for 

OMP case. Figure 4 presents the impact of side information on fixed SNR and different amount of pilots. 

Comparing the performance of the system, it is observed that by utilizing side information, better estimation 

will be obtained which results in higher performance.  

Comparing these figures, it is clearly observed that by considering only sparse feature for the 

channel, more resources are required to provide same performance in comparison with the case that side 

information is taken part at the estimation process. It is also indicated that, while the system is in a good 

condition, such as high SNR value or larger amount of estimation pilots, the need for considering side 

information is reduced. In other words, considering them will not increased the performance of the system 

same as before. This means that the mathematical computations will be decreased and also, the processing 

time will be decreased and as a result this method will be applicable in real-time data communications. 

Therefore, utilizing the prior channel information gives the opportunity to release some portion of resources 

of the OFDM system such as the number of pilots without degrading the system performance. 
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Figure 3. Performance of OFDM system using prior 

information with fixed SNR, LASSO algorithm 

 

Figure 4. Performance of OFDM system using prior 

information with fixed number of pilots, LASSO 

algorithm 

 

 

5. CONCLUSION  

In this paper, we proposed a framework using prior information to improve sparse estimation. We 

showed that because of zero-norm function conventional sparse methods can not manipulate side 

information. However, to in our framework we applied side information and take advantage of it. In our 

model, we simultaneously used both side information and sparse feature of the desired parameters and 

utilized MAP estimation to support our discussion and explained the procedure of appending side 

information to sparse representation. We have shown that to simultaneously use side information and sparse 

representation, columns of the dictionary matrix must be modified and side information is added to them. In 

this regard, we defined weight matrix based on side information and applied it to the dictionary matrix to 

obtained weighted dictionary and weighted observed relation. To find the sparse solution, regularization was 

applied on the weighted observed relation and obtained answer was selected as the sparse solution. We have 

tested our framework for channel estimation problem in an OFDM system and we will have better 

performance in comparision with conventional sparse representation methods at the same condition. In our 

experience to reach same performance level, fewer resources (such as pilots and power) are required while 

side information is used. This shows that by utilizing this framework, for channel estimation, fewer pilots 

are occupied and more data can be transformed. 
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